cellCellSimulate
functionscTensor 1.3.3
Here, we explain the way to generate CCI simulation data.
scTensor has a function cellCellSimulate
to generate the simulation data.
The simplest way to generate such data is cellCellSimulate
with default parameters.
suppressPackageStartupMessages(library("scTensor"))
sim <- cellCellSimulate()
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!
This function internally generate the parameter sets by newCCSParams
,
and the values of the parameter can be changed, and specified as the input of cellCellSimulate
by users as follows.
# Default parameters
params <- newCCSParams()
str(params)
## Formal class 'CCSParams' [package "scTensor"] with 5 slots
## ..@ nGene : num 1000
## ..@ nCell : num [1:3] 50 50 50
## ..@ cciInfo:List of 4
## .. ..$ nPair: num 500
## .. ..$ CCI1 :List of 4
## .. .. ..$ LPattern: num [1:3] 1 0 0
## .. .. ..$ RPattern: num [1:3] 0 1 0
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## .. ..$ CCI2 :List of 4
## .. .. ..$ LPattern: num [1:3] 0 1 0
## .. .. ..$ RPattern: num [1:3] 0 0 1
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## .. ..$ CCI3 :List of 4
## .. .. ..$ LPattern: num [1:3] 0 0 1
## .. .. ..$ RPattern: num [1:3] 1 0 0
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## ..@ lambda : num 1
## ..@ seed : num 1234
# Setting different parameters
# No. of genes : 1000
setParam(params, "nGene") <- 1000
# 3 cell types, 20 cells in each cell type
setParam(params, "nCell") <- c(20, 20, 20)
# Setting for Ligand-Receptor pair list
setParam(params, "cciInfo") <- list(
nPair=500, # Total number of L-R pairs
# 1st CCI
CCI1=list(
LPattern=c(1,0,0), # Only 1st cell type has this pattern
RPattern=c(0,1,0), # Only 2nd cell type has this pattern
nGene=50, # 50 pairs are generated as CCI1
fc="E10"), # Degree of differential expression (Fold Change)
# 2nd CCI
CCI2=list(
LPattern=c(0,1,0),
RPattern=c(0,0,1),
nGene=30,
fc="E100")
)
# Degree of Dropout
setParam(params, "lambda") <- 10
# Random number seed
setParam(params, "seed") <- 123
# Simulation data
sim <- cellCellSimulate(params)
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!
The output object sim has some attributes as follows.
Firstly, sim$input contains a synthetic gene expression matrix. The size can be changed by nGene and nCell parameters described above.
dim(sim$input)
## [1] 1000 60
sim$input[1:2,1:3]
## Cell1 Cell2 Cell3
## Gene1 9105 2 0
## Gene2 4 37 850
Next, sim$LR contains a ligand-receptor (L-R) pair list. The size can be changed by nPair parameter of cciInfo, and the differentially expressed (DE) L-R pairs are saved in the upper side of this matrix. Here, two DE L-R patterns are specified as cciInfo, and each number of pairs is 50 and 30, respectively.
dim(sim$LR)
## [1] 500 2
sim$LR[1:10,]
## GENEID_L GENEID_R
## 1 Gene1 Gene81
## 2 Gene2 Gene82
## 3 Gene3 Gene83
## 4 Gene4 Gene84
## 5 Gene5 Gene85
## 6 Gene6 Gene86
## 7 Gene7 Gene87
## 8 Gene8 Gene88
## 9 Gene9 Gene89
## 10 Gene10 Gene90
sim$LR[46:55,]
## GENEID_L GENEID_R
## 46 Gene46 Gene126
## 47 Gene47 Gene127
## 48 Gene48 Gene128
## 49 Gene49 Gene129
## 50 Gene50 Gene130
## 51 Gene51 Gene131
## 52 Gene52 Gene132
## 53 Gene53 Gene133
## 54 Gene54 Gene134
## 55 Gene55 Gene135
sim$LR[491:500,]
## GENEID_L GENEID_R
## 491 Gene571 Gene991
## 492 Gene572 Gene992
## 493 Gene573 Gene993
## 494 Gene574 Gene994
## 495 Gene575 Gene995
## 496 Gene576 Gene996
## 497 Gene577 Gene997
## 498 Gene578 Gene998
## 499 Gene579 Gene999
## 500 Gene580 Gene1000
Finally, sim$celltypes contains a cell type vector. Since nCell is specified as “c(20, 20, 20)” described above, three cell types are generated.
length(sim$celltypes)
## [1] 60
head(sim$celltypes)
## Celltype1 Celltype1 Celltype1 Celltype1 Celltype1 Celltype1
## "Cell1" "Cell2" "Cell3" "Cell4" "Cell5" "Cell6"
table(names(sim$celltypes))
##
## Celltype1 Celltype2 Celltype3
## 20 20 20
## R version 4.0.0 alpha (2020-04-05 r78150)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Mojave 10.14.6
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
##
## locale:
## [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] AnnotationHub_2.19.12
## [2] BiocFileCache_1.11.6
## [3] dbplyr_1.4.3
## [4] Homo.sapiens_1.3.1
## [5] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
## [6] org.Hs.eg.db_3.10.0
## [7] GO.db_3.10.0
## [8] OrganismDbi_1.29.1
## [9] GenomicFeatures_1.39.7
## [10] AnnotationDbi_1.49.1
## [11] MeSH.Mmu.eg.db_1.13.0
## [12] LRBase.Mmu.eg.db_1.2.0
## [13] MeSH.Hsa.eg.db_1.13.0
## [14] MeSHDbi_1.23.0
## [15] SingleCellExperiment_1.9.3
## [16] SummarizedExperiment_1.17.5
## [17] DelayedArray_0.13.12
## [18] matrixStats_0.56.0
## [19] Biobase_2.47.3
## [20] GenomicRanges_1.39.3
## [21] GenomeInfoDb_1.23.17
## [22] IRanges_2.21.8
## [23] S4Vectors_0.25.15
## [24] BiocGenerics_0.33.3
## [25] scTensor_1.3.3
## [26] RSQLite_2.2.0
## [27] LRBase.Hsa.eg.db_1.2.0
## [28] LRBaseDbi_1.5.0
## [29] BiocStyle_2.15.8
##
## loaded via a namespace (and not attached):
## [1] rsvd_1.0.3 Hmisc_4.4-0
## [3] ica_1.0-2 Rsamtools_2.3.7
## [5] foreach_1.5.0 lmtest_0.9-37
## [7] crayon_1.3.4 MASS_7.3-51.5
## [9] nlme_3.1-147 backports_1.1.6
## [11] GOSemSim_2.13.1 rlang_0.4.5
## [13] XVector_0.27.2 ROCR_1.0-7
## [15] irlba_2.3.3 nnTensor_1.0.4
## [17] GOstats_2.53.0 BiocParallel_1.21.3
## [19] tagcloud_0.6 bit64_0.9-7
## [21] glue_1.4.0 sctransform_0.2.1
## [23] dotCall64_1.0-0 DOSE_3.13.2
## [25] tidyselect_1.0.0 fitdistrplus_1.0-14
## [27] XML_3.99-0.3 tidyr_1.0.2
## [29] zoo_1.8-7 GenomicAlignments_1.23.2
## [31] xtable_1.8-4 magrittr_1.5
## [33] evaluate_0.14 ggplot2_3.3.0
## [35] zlibbioc_1.33.1 rstudioapi_0.11
## [37] rpart_4.1-15 fastmatch_1.1-0
## [39] ensembldb_2.11.4 maps_3.3.0
## [41] fields_10.3 shiny_1.4.0.2
## [43] xfun_0.13 askpass_1.1
## [45] cluster_2.1.0 caTools_1.18.0
## [47] tidygraph_1.1.2 TSP_1.1-10
## [49] tibble_3.0.1 interactiveDisplayBase_1.25.0
## [51] ggrepel_0.8.2 biovizBase_1.35.1
## [53] ape_5.3 listenv_0.8.0
## [55] dendextend_1.13.4 Biostrings_2.55.7
## [57] png_0.1-7 future_1.17.0
## [59] bitops_1.0-6 ggforce_0.3.1
## [61] RBGL_1.63.1 plyr_1.8.6
## [63] GSEABase_1.49.1 AnnotationFilter_1.11.0
## [65] pillar_1.4.3 gplots_3.0.3
## [67] graphite_1.33.0 europepmc_0.3
## [69] vctrs_0.2.4 ellipsis_0.3.0
## [71] plot3D_1.3 urltools_1.7.3
## [73] MeSH.Aca.eg.db_1.13.0 outliers_0.14
## [75] tools_4.0.0 foreign_0.8-78
## [77] entropy_1.2.1 munsell_0.5.0
## [79] tweenr_1.0.1 fgsea_1.13.5
## [81] fastmap_1.0.1 compiler_4.0.0
## [83] abind_1.4-5 httpuv_1.5.2
## [85] rtracklayer_1.47.0 Gviz_1.31.13
## [87] plotly_4.9.2.1 GenomeInfoDbData_1.2.3
## [89] gridExtra_2.3 lattice_0.20-41
## [91] visNetwork_2.0.9 AnnotationForge_1.29.3
## [93] later_1.0.0 dplyr_0.8.5
## [95] jsonlite_1.6.1 concaveman_1.0.0
## [97] scales_1.1.0 graph_1.65.3
## [99] pbapply_1.4-2 genefilter_1.69.0
## [101] lazyeval_0.2.2 promises_1.1.0
## [103] MeSH.db_1.13.0 latticeExtra_0.6-29
## [105] reticulate_1.15 checkmate_2.0.0
## [107] rmarkdown_2.1.2 cowplot_1.0.0
## [109] schex_1.1.5 MeSH.Syn.eg.db_1.13.0
## [111] webshot_0.5.2 Rtsne_0.15
## [113] dichromat_2.0-0 BSgenome_1.55.4
## [115] uwot_0.1.8 igraph_1.2.5
## [117] gclus_1.3.2 survival_3.1-12
## [119] yaml_2.2.1 plotrix_3.7-8
## [121] htmltools_0.4.0 memoise_1.1.0
## [123] VariantAnnotation_1.33.5 rTensor_1.4.1
## [125] Seurat_3.1.5 seriation_1.2-8
## [127] graphlayouts_0.6.0 viridisLite_0.3.0
## [129] digest_0.6.25 assertthat_0.2.1
## [131] ReactomePA_1.31.0 mime_0.9
## [133] rappdirs_0.3.1 registry_0.5-1
## [135] npsurv_0.4-0 spam_2.5-1
## [137] future.apply_1.5.0 lsei_1.2-0
## [139] misc3d_0.8-4 data.table_1.12.8
## [141] blob_1.2.1 cummeRbund_2.29.0
## [143] splines_4.0.0 Formula_1.2-3
## [145] ProtGenerics_1.19.3 RCurl_1.98-1.2
## [147] hms_0.5.3 colorspace_1.4-1
## [149] base64enc_0.1-3 BiocManager_1.30.10
## [151] nnet_7.3-13 Rcpp_1.0.4.6
## [153] bookdown_0.18 RANN_2.6.1
## [155] MeSH.PCR.db_1.13.0 enrichplot_1.7.4
## [157] R6_2.4.1 grid_4.0.0
## [159] ggridges_0.5.2 lifecycle_0.2.0
## [161] acepack_1.4.1 curl_4.3
## [163] MeSH.Bsu.168.eg.db_1.13.0 gdata_2.18.0
## [165] leiden_0.3.3 MeSH.AOR.db_1.13.0
## [167] meshr_1.23.0 DO.db_2.9
## [169] Matrix_1.2-18 qvalue_2.19.0
## [171] RcppAnnoy_0.0.16 RColorBrewer_1.1-2
## [173] iterators_1.0.12 stringr_1.4.0
## [175] htmlwidgets_1.5.1 polyclip_1.10-0
## [177] triebeard_0.3.0 biomaRt_2.43.6
## [179] purrr_0.3.4 gridGraphics_0.5-0
## [181] reactome.db_1.70.0 globals_0.12.5
## [183] openssl_1.4.1 htmlTable_1.13.3
## [185] patchwork_1.0.0 codetools_0.2-16
## [187] gtools_3.8.2 prettyunits_1.1.1
## [189] gtable_0.3.0 tsne_0.1-3
## [191] DBI_1.1.0 highr_0.8
## [193] httr_1.4.1 KernSmooth_2.23-16
## [195] stringi_1.4.6 progress_1.2.2
## [197] reshape2_1.4.4 farver_2.0.3
## [199] heatmaply_1.1.0 annotate_1.65.1
## [201] viridis_0.5.1 hexbin_1.28.1
## [203] fdrtool_1.2.15 Rgraphviz_2.31.0
## [205] magick_2.3 xml2_1.3.2
## [207] rvcheck_0.1.8 ggplotify_0.0.5
## [209] Category_2.53.1 BiocVersion_3.11.1
## [211] bit_1.1-15.2 scatterpie_0.1.4
## [213] jpeg_0.1-8.1 ggraph_2.0.2
## [215] pkgconfig_2.0.3 knitr_1.28