Tcpreplay v1.3.x/1.4.x FAQ

Aaron Turner <aturner_AT_pobox.com>
Matt Bing <mbing_AT _nfr.net>
http://www.sourceforge.net/projects/tcpreplay/

FAQ Version 0.6

7th May 2003

Contents

1 General Info

1.1 Whatisthis FAQfor?
1.2 Whatis tepreplay?
1.3 How can I get tcpreplay’s source?
1.4 What requirements does tcpreplay have?
1.5 How do I compile tcpreplay?
1.6 Are there binaries available?
1.7 Is there a Microsoft Windows port?
1.8 How is tcpreplay licensed?
1.9 What are some uses for tcpreplay?

1.10 Where can I get help or report bugs? L e

2 Basic Usage

2.1
22
23

Replaying the traffic.
Replaying at different speeds

Replaying the same file over and over again

3 Advanced Usage

3.1
32
33
34
35
3.6
3.7
3.8

Replaying on multiple interfaces

Selectively sending or dropping packets

Rewriting destination MAC address

Randomizing IP addresses

Replaying (de)truncated packets

Using ConfigurationFiles

Replaying Packet Capture Formats Other Than Libpcap

Replaying Client Traffic to a Server

4 Using tcpprep

4.1
42
43
44
45
46
47
48
49

4.10 Auto Mode

Can a cache file be used for multiple (different) libpcap files?
Why would I want to use tcpreplay with two network cards?
How big are the cache files?

What are these 'modes’ tcpprep has?

Splitting traffic based upon IP address

4.10.1 How does Auto/Bridge mode work?
4.10.2 How does Auto/Router mode work?
4.10.3 Determining Clients and SEIvers e e e
4.10.4 Client/Server ratio o o e e e e e
4.11 Selectively sending/dropping packets L e e e e e e e
4.12 Using tepprep cache files with tecpreplay e
Tuning OS’s for high performance
5.1 LANUX 24X . L o e e e e
52 FBSD L.
Required Libraries
6.1 Libpcap
6.2 Libnet e
Understanding Common Error Messages
7.1 Can’topen ethO: libnet_select_device(): Can’t find interfaceethO
7.2 Can’topen lo: libnet_select_device(): Can’t find interfacelo L
7.3 Can’topenethO: UID =0 o e
7.4 100000 write attempts failed from full buffers and were repeated
7.5 Invalid mac address: 00:00:00:00:00:00
7.6 Unable to process test.cache: cache file version missmatch oL o
Other pcap tools available
8.1 Tools to capture network traffic or decode pcap files L
8.2 Toolstoeditpcapfiles e
8.3 Othertools e
BSD License

11
11
11

11
11
11

11
11
12
12
12
12
12

12
12
13
13

14

Tcpreplay v1.3.x/1.4.x FAQ

1 General Info

1.1 What is this FAQ for?
Tcpreplay is a powerful tool, but with that power comes complexity. While we have done our best to write good man pages for tcpreplay and
it’s associated utilities, we understand that many people may want more information then we can provide in the man pages. Additionally,

this FAQ attempts to cover material which we feel will be of use to people using tcpreplay, as well as common questions that occur on the
Tcpreplay-Users mailing list.

1.2 What is tcpreplay?

In the simplest terms, tcpreplay is a tool to send network traffic stored in pcap (tcpdump) format back onto the network.

1.3 How can I get tcpreplay’s source?

The source code to tcpreplay is available on SourceForge: http://www.sourceforge.net/projects/tcpreplay

1.4 What requirements does tcpreplay have?

1. You’ll need the libnet library: http://www.packetfactory.net/libnet/

2. You’ll also need a compatible operating system. Basically, any UNIX-like or UNIX-based operating system should work. Linux,
*BSD, Solaris, OS/X and others should all work. If you find any compatibility issues with any UNIX-like/based OS, please let us
know.

1.5 How do I compile tcpreplay?

Two easy steps:

1. As anormal user: ./configure & & make

2. As root: make test -i && make install

There are some optional arguments which can be passed to the configure script which may help in cases where your libnet or libpcap
installation is not standard. If you find that configure isn’t completing correctly, run: ./configure —help for more information.

1.6 Are there binaries available?

Occasionally. And even when we do, generally only for one or two operating systems. Generally speaking, we assume people who want to
use a tool like this can figure out how to compile it.

1.7 Is there a Microsoft Windows port?

Sorry, none of the developers have yet to sell their soul.

1.8 How is tcpreplay licensed?

Tcpreplay is licensed under the BSD License. For details, see Appendix A.

1.9 What are some uses for tcpreplay?

Originally, tcpreplay was written to test network intrusion detection devices, however tcpreplay has been used to test firewalls, routers, and
other devices. In it’s current form, tcpreplay is not very well suited for testing IP stacks or applications running on servers or clients since it
is unable to syncronise TCP sequence numbers nor is able to react or use packets sent by other devices as input.

1.10 Where can I get help or report bugs?

The best place to get help or report a bug is the Tcpreplay-Users mailing list:
http://lists.sourceforge.net/lists/listinfo/tcpreplay—-users

2 Basic Usage

2.1 Replaying the traffic

To replay a given pcap as it was captured all you need to do is specify the pcap file and the interface to send the traffic out of:

tepreplay -i ethO sample.pcap

2.2 Replaying at different speeds
You can also replay the traffic at different speeds then it was originally captured'. To support this, tcpreplay supports four different flags:
-R, -1, -m, and -p

Some examples:

o To replay traffic as fast as possible:
tepreplay -R -i ethO sample.pcap

o To replay traffic at 10Mbps:
tepreplay -r 10.0 -i ethO sample.pcap

e To replay traffic 7.3 times as fast as it was captured:
tepreplay -m 7.3 -i ethO sample.pcap

e To replay traffic at half-speed:
tepreplay -m 0.5 -i ethO sample.pcap

e To pause 1.005 seconds between each packet:
tepreplay -p 1.005 -i ethO sample.pcap

I'Tcpreplay makes a "best" effort to replay traffic at the given rate, but due to limitations in hardware or the pcap file itself, it may not be possible. Capture files with only a
few packets in them are especially succeptable to this.

2.3 Replaying the same file over and over again

Using the loop flag (-1) you can specify that a pcap file will be sent two or more times?:

o To replay the sample.pcap file 10 times:
tepreplay -1 10 -i ethO sample.pcap

e To replay the sample.pcap an infinately or until CTRL-C is pressed:
tepreplay -1 0 -i ethO sample.pcap

3 Advanced Usage

3.1 Replaying on multiple interfaces

Tcpreplay can also split traffic so that each side of a connection is sent out a different interface. In order to do this, tcpreplay needs the name
of the second interface (-j) and a way to split the traffic. Currently, there are two ways to split traffic:

1. -C = split traffic by source IP address

2. -c = split traffic according to a tcpprep cachefile?

When splitting traffic, it is important to remember that traffic that matches the filter is sent out the primary interface (-i). In this case, when
splitting traffic by source IP address, you provide a list of networks in CIDR notation. For example:

e To send traffic from 10.0.0.0/8 out ethQ and everything else out eth1:
tepreplay -C 10.0.0.0/8 -i ethO -j ethl sample.pcap

e To send traffic from 10.1.0.0/24 and 10.2.0.0/20 out ethO and everything else out eth1:
tepreplay -C 10.1.0.0/24,10.2.0.0/20 -i ethO -j ethl sample.pcap

o After using tcpprep to generate a cache file, you can use it to split traffic between two interfaces like this:
tepreplay -c sample.cache -i ethO -j ethl sample.pcap

3.2 Selectively sending or dropping packets

Sometimes, you want to do some post-capture filtering of packets. Tcpreplay let’s you have some control over which packets get sent.

1. -M = disables sending of martian packets. By definition, martian packets have a source IP of 0.x.x.x, 127.x.X.X, or 255.X.X.X
2. -x = send packets which match a specific pattern
3. -X = send packets which do not match a specific pattern

Both -x and -X support a variety of pattern matching types. These types are specified by a single character, followed by a colon, followed
by the pattern. The following pattern matching types are available:

1. S - Source IP
Pattern is a comma delimited CIDR notation

2. D - Destination IP
Pattern is a comma delimited CIDR notation

2Looping files resets internal counters which control the speed that the file is replayed. Also because the file has to be closed and re-opened, an added delay between the
last and first packet may occur.
3For information on generating tcpprep cache files, see the section on tcpprep.

3. B - Both source and destination IP must match
Pattern is a comma delimited CIDR notation

4. E - Either source or destination IP must match
Pattern is a comma delimited CIDR notation

5. P - A list of packet numbers from the pcap file.
Pattern is a series of numbers, seperated by commas or dashes.

Examples:

o To only send traffic that is too and from a host in 10.0.0.0/8:
tepreplay -x B:10.0.0.0/8 -i ethO sample.pcap

e To not send traffic that is too or from a host in 10.0.0.0/8:
tepreplay -X E:10.0.0.0/8 -i ethO sample.pcap

o To send every packet except the first 10 packets:
tepreplay -X P:1-10 -i ethO sample.pcap

e To only send the first 50 packets followed by packets: 100, 150, 200 and 250:
tepreplay -x P:1-50,100,150,200,250 -i ethO sample.pcap

3.3 Rewriting destination MAC address

If you ever want to send traffic to another device on a switched LAN, you may need to change the destination MAC address of the packets.
Tcpreplay allows you to set the destination MAC for each interface independantly using the -I and -J swiches. Example:

e To send traffic out ethQ with a destination MAC of your router (00:00:01:02:03:04):
tepreplay -i ethO -1 00:00:01:02:03:04 sample.pcap

e To split traffic between internal (10.0.0.0/24) and external addresses and to send that traffic to the two interfaces of a firewall:
tepreplay -i eth0 -j ethl -1 00:01:00:00:AA:01 -J 00:01:00:00:AA:02 -C 10.0.0.0/24 sample.pcap

3.4 Randomizing IP addresses

Ocassionally, it is necessary to have tcprewrite rewrite the source and destination IP addresses, yet maintain the client/server relationship.
Such a case might be having multiple copies of tcpdump running at the same time using the same pcap file while trying to stress test firewall,
IDS or other stateful device. If you didn’t change the source and destination IP addresses, the device under test would get confused since it
would see multiple copies of the same connection occuring at the same time. In order to accomplish this, tcpreplay accepts a user specified
seed which is used to generate pseudo-random IP addresses. Also, when this feature is enabled, tcpreplay will automatically recalcuate the
layer 3 and 4 checksums as needed. Example:

tepreplay -i ethO -s 1239 sample.pcap &
tepreplay -i ethO -s 76 sample.pcap &
tepreplay -i eth0Q -s 239 sample.pcap &
tepreplay -i ethO sample.pcap

3.5 Replaying (de)truncated packets

Occasionally, it is necessary to replay traffic which has been truncated by tcpdump. This occurs when the tcpdump snaplen is smaller
then the actual packet size. Since this will create problems for devices which are expecting a full-sized packet or attempting checksum
calculations, tcpreplay allows you to either pad the packet with zeros or reset the packet length in the headers to the actual packet size. In
either case, the layer 3 and 4 checksums are recalculated. Examples:

e Pad truncated packets:
tepreplay -i ethO -u pad sample.pcap

e Rewrite packet header lenghts to the actual packet size:
tepreplay -i ethO -u trunc sample.pcap

3.6 Using Configuration Files

3.7 Replaying Packet Capture Formats Other Than Libpcap

There are about as many different capture file formats as there are sniffers. In the interest of simplicity, tcpreplay only supports libpcap*. If
you would like to replay a file in one of these multitude of formats, the excellent open source tool Ethereal easily allows you to convert it to
libpcap. For instance, to convert a file in Sun’s snoop format to libpcap, issue the command:

tethereal -r blah.snoop -w blah.pcap

and replay the resulting file.

3.8 Replaying Client Traffic to a Server

A common question on the tcpreplay-users list is how does one the client side of a connection back to a server. Unfortunately, tcpreplay
doesn’t support this right now. The major problem concerns syncing up TCP Seq/Ack numbers which will be different. ICMP also often
contains IP header information which would need to be adjusted as well in many cases. About the only thing that could be easy to do is
UDP which doesn’t isn’t usually requested.

This is however a feature that we’re looking into implimenting. If you’re interested in helping add this feature, please contact us and we’d
be more then happy to work with you. At this time however, we don’t have an ETA when this will be implimented, so don’t bother asking.

4 Using tcpprep

4.1 What is tcpprep?

Tcpreplay can send traffic out two network cards, however it requires the calculations be done in real-time. These calculations can be
expensive and can significantly reduce the throughput of tcpreplay.

Tcpprep is a libpcap pre-processor for tcpreplay which enables using two network cards to send traffic without the performance hit of doing
the calcuations in real-time.

4.2 How does tcpprep work?

Tcpprep reads in a libpcap (tcpdump) formatted capture file and does some processing to generate a tcpreplay cache file. This cache file tells
tcpreplay which interface a given packet should be sent out of.

4.3 Does tcpprep modify my libpcap file?

No.

4Note that some versions of tcpreplay prior to 1.4 also supported the Solaris snoop format.

4.4 Why use tcpprep?

There are three major reasons to use tcpprep:

1. Tcpprep can split traffic based upon more methods and critera then tcpreplay.
2. By pre-processing the pcap, tcpreplay has a higher theoretical maximum throughput.

3. By pre-processing the pcap, tcpreplay can be more accurate in timing when replaying traffic at normal speed.

4.5 Can a cache file be used for multiple (different) libpcap files?

Cache files have nothing linking them to a given libpcap file, so there is nothing to stop you from doing this. However running tcpreplay
with a cache file from a different libpcap source file is likely to cause a lot of problems and is not supported.

4.6 Why would I want to use tcpreplay with two network cards?

Tcpreplay traditionally is good for putting traffic on a given network, often used to test a network intrusion detection system (NIDS).
However, there are cases where putting traffic onto a subnet in this manner is not good enough- you have to be able to send traffic *through*
a device such as a router, firewall, or bridge.

In these cases, being able to use a single source file (libpcap) for both ends of the connection solves this problem.

4.7 How big are the cache files?

Very small. Actual size depends on the number of packets in the dump file. Two bits of data is stored for each packet. On a test using a
900MB dump file containing over 500,000 packets, the cache file was only 150K.

4.8 What are these 'modes’ tcpprep has?

Tcpprep has two basic modes which require the user to specify how to split traffic.
e CIDR (-c) mode requires the user to provide a list of networks. Any packet with a source IP in one of these networks gets sent out the
primary interface.
e Regex (-r) mode requires the user to provde a regular expression. Any packet with a source IP matching the regex gets sent out the

primary interface.

And two auto modes in which tcpprep decides how to split traffic. Auto modes are useful for when you don’t know much about the contents
of the dump file in question and you want to split traffic up based upon servers and clients.

e Auto/Router (-a -n router) mode trys to find the largest network(s) that contain all the servers and no clients. Any unknown system is
automatically re-classifed as servers if it’s inside the server network(s), otherwise it is classified as a client.

o Auto/Bridge (-a -n bridge) mode makes the assumption that the clients and servers are horribly intermixed on the network and there’s
no way to subnet them. While this takes less processing time to create the cache file it is unable to deal with unknown systems.

4.9 Splitting traffic based upon IP address

Tcpprep supports the same CIDR mode that tcpreplay supports using the -c flag (tcpreplay uses -C). Additionally, tcpprep also supports
regex(7) regular expressions to match source IP addresses using the -r flag.

4.10 Auto Mode

4.10.1 How does Auto/Bridge mode work?

Tcpprep does an initial pass over the libpcap file to build a binary tree (one node per IP). For each IP, it keeps track of how many times it
was a client or server. It then does a second pass of the file using the data in the tree and the ratio to determine if an IP is a client or server. If

tcpprep is unable to determine the type (client or server) for each and every packet, then auto/bridge mode will fail. In these cases, it is best
to use auto/router mode.

4.10.2 How does Auto/Router mode work?
Tcpprep does the same first pass as Auto/Bridge mode. It then trys to convert the binary tree into a list of networks containing the servers.

Finally it uses the CIDR mode with the list of server networks in a second pass of the libpcap file. Unlike auto/bridge mode, auto/router
mode can always sucessfuly split IP addresses into clients and servers.

4.10.3 Determining Clients and Servers

Tcpprep uses the following methods in auto/router and auto/bridge mode to determine if an IP address is a client or server:

e Client:

— TCP with Syn flag set
— UDP source/destination port 53 (DNS) without query flag set
— ICMP port unreachable (destination IP of packet)

e Server:

— TCP with Syn/Ack flag set
— UDP source/destination port 53 (DNS) with query flag set
— ICMP port unreachable (source IP of packet)

4.10.4 Client/Server ratio

Since a system may send traffic which would classify it as both a client and server, it’s necessary to be able to weigh the traffic. This is done
by specifying the client/server ratio (-R) which is by default set to 2.0. The ratio is the modifier to the number of client connections. Hence,
by default, client connections are valued twice as high as server connections.

4.11 Selectively sending/dropping packets

Tcpprep supports the same -x and -X options to selectively send or drop packets.

4.12 Using tcpprep cache files with tcpreplay

Just run:

tepreplay -c sample.cache -i ethQ -j ethl sample.pcap

10

S Tuning OS’s for high performance

Regardless of the size of physical memory, UNIX kernels will only allocate a static amount for network buffers. This includes packets sent
via the "raw" interface, like with tcpreplay. Most kernels will allow you to tweak the size of these buffers, drastically increasing performance
and accuracy.

NOTE: Please note that the following information is provided based upon our own experiances or the reported experiances of others.
Depending on your hardware and specific hardware, it may or may not work for you. It may even make your system horribly unstable,
corrupt your harddrive, or worse.

NOTE: Different operating systems, network card drivers, and even hardware can have an effect on the accuracy of packet timestamps that
tcpdump or other capture utilities generate. And as you know: garbage in, garbage out.

5.1 Linux 2.4.x

The following is known to apply to the 2.4.x series of kernels. If anyone has any information regarding other kernel versions, please let us
know. By default Linux’s tcpreplay performance isn’t all that stellar. However, with a simple tweak, relatively decent performance can be
had on the right hardware. By default, Linux specifies a 64K buffer for sending packets. Increasing this buffer to about half a megabyte does
a good job:

echo 524287 >/proc/sys/net/core/wmem_default
echo 524287 >/proc/sys/net/core/wmem_max
echo 524287 >/proc/sys/net/core/rmem_max
echo 524287 >/proc/sys/net/core/rmem_default

On one system, we’ve seen a jump from 23.02 megabits/sec (5560 packets/sec) to 220.30 megabits/sec (53212 packets/sec) which is nearly
a 10x increase in performance. Depending on your system, different numbers may provide different results.

5.2 *BSD

*BSD systems typically allow you to specify the size of network buffers with the NMBCLUSTERS option in the kernel config file. Experi-
ment with different sizes to see which yields the best performance. See the options(4) man page for more details.

6 Required Libraries

6.1 Libpcap

As of tepreplay v1.4, you’ll need to have Libpcap installed on your system. Any recent Libpcap version should do, but we only test our code
with the latest version: 0.7.1. Libpcap can be obtained here: http://www.tcpdump.org/

6.2 Libnet

Tcpreplay v1.3 is the last version to support the old Libnet API (everything before 1.1.x). As of v1.4 you will need to use Libnet 1.1.0 or
better which can be obtained from the Libnet homepage: http://www.packetfactory.net/Projects/Libnet/

7 Understanding Common Error Messages

7.1 Can’t open eth0: libnet_select_device(): Can’t find interface eth(

Generally this occurs when the interface (ethO in this example) is not up or doesn’t have an IP address assigned to it. For example:
ifconfig ethO 1.1.1.1 netmask 255.255.255.0 up

Will do the trick on most operating systems.

11

7.2 Can’t open lo: libnet_select_device(): Can’t find interface lo

Version 1.1.0 of Libnet is unable to send traffic on the loopback device. Try upgrading to the 1.1.1 (pre)release of the Libnet library to solve
this problem.

7.3 Can’t open ethO: UID !=0

Tcpreplay requires that you run it as root.

7.4 100000 write attempts failed from full buffers and were repeated

When tcpreplay displays a message like "100000 write attempts failed from full buffers and were repeated”, this usually means the kernel
buffers were full and it had to wait until memory was available. This is quite common when replaying files as fast as possible with the "-R"
option. See the tuning OS section in this document for suggestions on solving this problem.

7.5 Invalid mac address: 00:00:00:00:00:00

Currently tcpreplay reserves the MAC address of 00:00:00:00:00:00 as reserved for internal use. Hence you can’t rewrite the destination
MAC address of packets to be all zeros. While we intend to fix this someday it’s not currently high on our priority list, so let us know if we
should re-prioritize things.

7.6 Unable to process test.cache: cache file version missmatch

Cache files generated by tcpprep and read by tcpreplay are versioned to allow enhancements to the cache file format. Anytime the cache file
format changes, the version is incremented. Since this occurs on a very rare basis, this is generally not an issue; however anytime there is a
change, it breaks compatibility with previously created cache files. The solution for this problem is to use the same version of tcpreplay and
tcpprep to read/write the cache files. Cache file versions match the following versions of tcpprep/tcpreplay:

e Version 1:
Prior to 1.3.betal

e Version 2:
1.3.beta2 to 1.3.1/1.4.betal

e Version 3:
1.3.2/1.4.beta2 and above

8 Other pcap tools available

8.1 Tools to capture network traffic or decode pcap files

e tcpdump
http://www.tcpdump.org/

e cthereal
http://www.ethereal.com/

e ettercap
http://ettercap.sourceforge.net/

12

8.2 Tools to edit pcap files

8.3

tepslice
Splits pcap files into smaller files
Tcepdump

mergecap
Merges two pcap capture files into one
Ethereal

pcapmerge
Merges two or more pcap capture files into one
Tepdump

editcap
Converts capture file formats (pcap, snoop, etc)
Ethereal

Other tools

capinfo
Prints statistics and basic information about a pcap file
Tcpreplay

text2pcap
Generates a pcap capture file from a hex dump
Ethereal

13

Appendix

A BSD License

Copyright (c) 1999-2002 Matt Bing, Aaron Turner. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are
met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistri-
butions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution. 3. All advertising materials mentioning features or use of this software must display
the following acknowledgement: This product includes software developed by Anzen Computing, Inc. 4. Neither the name of Anzen Com-
puting, Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

14

