OpenSync

A Synchronization Framework

White Paper
© 2004 — 2005 Armin Bauer

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of
the license is included in the section entitled "GNU Free Documentation License".

Table of Contents

L. OVEIVIEW ...ttt ettt ettt ettt ettt e e ettt e e ettt e e et e e s et e e e saabeeesnaseeessasaeens 3
| B 01 Lo F USSP 3

| IR 5 1] (o) o PO PP 3
1.3 The Big PICTUIE...cc..eiiiiiiiiieieeeee et 3
L.3.1 OPENSYNC...iiiiiiiiiiiiieiiie ettt e e e e e e e e eaaeees 4

1.3.2 MUIEISYIIC ...c ettt 4

| T 10 | USSP 5

2. Technical DEtails.........coocuiiiiiiiiiiiiieiiie ettt e itee e sebee e 5
2.1 SYNC PIUZINS. ..ttt e 5
2.2 The SYNC ENGINE.....cccueiiiiiiiiiieiieeee ettt et 7
2.2.1 Thread MOdel..........oooeiiiiiiieiiiee e e 7

2.2.2 Conflict DELECtION.cc.eeruiiiriieeiieeiie ettt 8

2.2.3 ResoIVING CONTICE......ccoiiiiiiiiiiiiiiececeee e 8

2.3 LUID MaPPINE...cuuiiiiiiiiiiiiiieiite ettt st 9
2.4 FOrmat CONVEISION. ...ccccuiieriiieerieeeeiiteeesiteeessireeesniteeeesesreeesasreesssseeessnssesennees 9
241 PIUZINS. .ottt 10
2.4.2 CONVEITETS. ..eeeieuiiiieeereiiteeeeseiitteeesssitteeeeestateeesesnasaeeeessnsreeesssssseeeesannnes 10

2.4.3 Encapsulators / Decapsulators...........ccoocueeeririieeeniiieeeniiieeeeiieee e 10

244 DELECTOTS. c.uuevveeeeeeiiieieeeeiitteee e ettt eeeestateeeesessnteeeeesesanssaeeaesennsseeeessnnnnes 10

2.4.5 CONVETSION...ceiiutieeeiieeerieeeeiteeeeteesetteeasiteeesateeesareesaseessasaeesansseessnneeens 11

2.5 HaShtables......ccccviiiiiiiiiee ettt e e e e e e e e e 12
2.0 ANCROTS.....ciiiiiieeiee ettt et e et e st e e s e e e e e aaeeenns 13
2.7 SIOWSYINIC.ccniiiiiiiiiieee e 13
2.8 INQtial MaAPPING...ceiviiiiiiiieeiiieeeiiieeesiee e estee e eeite e et eeesaeeeeebaeeessbeeeesneeeenns 13
2.9 SYNC ALRTES...eeeeuiiieeitie ettt ettt ettt et et e et e et e e it e e ssabeesabeesnbeeean 14

B LU S L) USSP 14

3. Further REadings........ccooviiiiiiiiieiiiie et et 14
3.1 APT EXAMPIES...eooiiiiiiiiiiiiieceeeeecee et 14
3.2 Plugin EXAmPIESs......cccuuieeiiieeiiiieeiiie ettt e ee e s sevaeeesaaeeeenes 14
3.3 Code DOCUMENTALION.cceruuiieriiieeiiiie ettt ee et ee et ee e eibee s sbaeeeeibee e 14

R € LT |) PSPPSR 15

1. Overview
1.1 Abstract

This document will give you a overview about how OpenSync and MultiSync
work and how they are related. It will also give some explanations about the
technical details of the SyncEngine and how OpenSync and MultiSync can be
used.

1.2 History

MultiSync was originally started by Bo Lincoln. It was intended as a matter to
synchronize various handhelds, cellulars and PIM application. Its focus was
entirely on PIM data (contacts, calendar and todo items). MultiSync was a single
application with dependencies on various gnome and GTK libraries. The
connection to the devices was handled by plugins, which were loaded at the start of
MultiSync.

However it became apparent soon that this approach was not flexible enough, since
some people wanted to use MultiSync without a GUI (Graphical User Interface),
synchronize data besides PIM data etc. At this time a new branch of MultiSync
was created, labeled internally MultiSync-0.9 (as opposed to the currently stable
0.8X branch) which is supposed to offer these new features.

1.3 The Big Picture

Synchronization consist of several different parts:
Access to the data on the devices/applications, which can be separated into
connecting/disconnecting, reading the data (only the changes since the last
synchronization and all objects for slow-synchronization), writing data and
some more “maintenance” function as well as defining which devices should be
synchronized.
The LUID mapping, which describes which object on device A belongs to
which object on device B, so that if one object gets changed/deleted, the correct
corresponding object gets updated.
A conversion system. Sometimes the devices report objects in different formats
(a contact could be stored in a VCard as well as some other format). To be able
to synchronize, these formats have to be converted.
The SyncEngine, which takes care of the synchronization, conflict handling etc.
A UI (user interface) that presents everything to the user.

These parts are separated among OpenSync and MultiSync:

OpenSync implements to low level functions, like synchronization plugins that
can be used for connecting to devices, format conversion, the SyncEngine,
storage of configurations, etc. It also provides some helper functions.
MultiSync which implements the User Interfaces like a normal GUI, a CLI etc.

Multisynec OpenSynec
| S P -
Configuration Confugration - .
5 AP Files | P
i " é
5 . s .
! Control I
| isuicu, — e | | .
Webpage...} !
Syt R 5 1
Engine i
Helper API H
(Mappings, : o
1 Fishiablea ; Plugin M
Anchars elg)

1.3.1 OpenSync

OpenSync implements the low level functions of the synchronization, which
include the SyncEngine, conversion system, mapping tables, hashtables, anchor
storage, configuration API etc.

The idea behind providing this framework is to make it possible for other
developers of applications that are in need of synchronization to reuse the
OpenSync framework and save work and get instant access to the available
plugins. Another advantage for developers is that they can use the OpenSync
Plugin API standard to use different functions from plugins to access devices
and applications in a uniform way.

The advantage for the user is that once more applications start to use the
framework he will be able to reuse SyncGroups he configured between these
different applications since the configuration is stored in OpenSync.

1.3.2 MultiSync

MultiSync is one application that uses OpenSync to provide device
synchronization to the user. It includes a Graphical Ul and a Command Line
Client.

1.4 The Goals

The goal is to create a universal synchronization Framework which has the

following capabilities:

+ Reusability. The framework should be usable by many other applications

+ Speed. Synchronization should be as fast as possible to give the user the best
experience.

- Flexibility. We cannot predict what formats / devices the future will bring.
Therefore OpenSync is built as flexible and modular as possible.

+ Integrity. Data must never be lost, no matter what happens.

- Portability. The framework should run on as many platforms as possible (Linux,
Windows, Mac OS, BSD, etc)

Some of this properties are mutually exclusive, but we try to get as close to these

goals as possible.

2. Technical Details

2.1 Sync Plugins

A SyncPlugin is a module that provides access to a certain device / application /

protocol. The basic functions that it needs to provide are:

« An “initialize” function. In this function, the plugin has to malloc a struct it
needs to track its internal state, load its configuration and start the listening
server if it has one. The return value is the pointer to the struct.

Exanqﬂe: static wvoid *fs_initialize (OSyncMember *member,

OsyncError **error)
« A “finalize” function which stops a listening server and frees the allocated struct

Example: static void fs_finalize (void *data)

These 2 functions are the only ones that are called synchronously on the plugins.
All the other functions are called asynchronous. To be able to track them correctly,
they get passed an OSyncContext struct, which they can use to answer.

It is not important at what time the following functions return, the only important
thing is that they use one of the osync_context_report_* functions. Since each
plugin runs in its own thread, they may block as long as they want.

+ The “connect” function which is called in the beginning of the synchronization. Here
the plugin should connect to the device, open anything it needs etc.
Exmnpk: static void fs_connect (OSyncContext *ctx)

« The “disconnect” function which is called to disconnect.
Exmnpk: static void fs_disconnect (OSyncContext *ctx)

« The “get_changes” function. It is used by the SyncEngine to request the changes
or all (in the case of slow-synchronization) objects from a device.
Exanqﬂe: static void fs_get_changeinfo (OSyncContext *ctx)

+ The “commit_change” function. This function is called once for each object that
the engine want to write to the plugin (the second parameter).

Exanqﬂe: static osync_bool fs_commit_change (OSyncContext *ctx,
OSyncChange *change)

« The “synchronization_done” function which is called once all objects have been
sent to the plugin. It is only called if the synchronization was successful (some
commits may still have failed due to access or conversion errors)

Exanqﬂe: static void fs_synchronization_done (OSyncContext *ctx)

There is another special function on each plugin: The “get_info” function. This is
the only function on the plugin that is actually read via dlsym. It will get passed a
OsyncPluginInfo struct which the plugin has to fill with values. The things it has to
set there are (among others): its name, version, the pointers to the above mentioned
functions and the object-type and formats it accepts.

void get info (OSyncPluginInfo *info) {
info->name = "file-synchronization";

info->functions.initialize = fs initialize;
info->functions.connect = fs connect;
info->functions.synchronization done =

fs synchronization done;
info->functions.disconnect = fs disconnect;
info->functions.finalize = fs finalize;
info->functions.get changeinfo = fs get changeinfo;

osync_plugin accept objtype(info, "data");

osync_plugin accept objformat (info, "data", "file");

osync _plugin set commit objformat(info, "data", "file",
fs commit change);

}

This example shows how the functions are called on a plugin. Note that there
might be quite some time between certain calls to the plugin. The get_info()
function gets called in the very beginning, the connect function only when a
synchronization gets requested.

: OSyncEngine : OSyncPlugin

s get_infol)

o
foreone R A T PR T iy
s plugin_initialize() i
+plugin_connect()
[i
: plugin_get_change_infa()
B
*
1: osync_context_report_change()

% osync_context report_change()
|n: osync_context report_change()
I‘ """""""""""""""""""""""""""""""" i
| 1: plugin_commit_changel} .
| 2: plugin_commit_changel) |
| N
| b

2.2 The Sync Engine

The SyncEngine is responsible for deciding what exactly needs to be done to
synchronize the connected device. This includes initialization, connection, reading
and writing changes, LUID (Local unique identifier) mapping and keeping the log.
It utilizes the helper functions provided by OpenSync.

2.2.1 Thread Model

SyncEngine

SyncEngine
Thread

Member N
Thread

Member 2
Thread

Member 1
Thread

OpenSync Layer

Plugin 1 Plugin 2 Plugin N

The SyncEngine is completely multi-threaded. One thread is responsible for the
synchronization itself. For each member in the SyncGroup, a new thread is
spawned also, so that all member may access their devices at the same time and
block. The communication between the different threads is handled via
asynchronous message queue on which a message bus has been implemented
that supports messages with answers, payloads and timeouts.

2.2.2 Conflict Detection

There are different types of conflicts that might occur:

- Differences in the change-type. For example, a contact could have been
deleted on one side, but modified on the other side.

- Differences in data. The data of 2 sides could have been altered in different
ways.

Each time a conflict is detected, the SyncEngine calls a callback handler set by

the controlling application. This function gets passed a pointer the mapping

with the conflict.

void (* conflict_function) (MSyncEngine *, OSyncMapping *)

Each time this callback function gets called, the user has to resolve the conflict.

2.2.3 Resolving Conflict

The user can decide in different ways how this conflict should be handled. The
first solution is to pick a winning side, whose change overwrites the other sides.

osync_mapping_set_masterentry (mapping, change);

The second solution is to keep all changes as separate entries (Duplication).
Another possibility is that the user wants his choice to be valid for all future
conflicts (e.g. “Duplicate all conflicts”).

msync_mapping_duplicate (engine, mapping);

2.3 LUID Mapping

The LUID (Local unique identifier) mapping is one functions that is provided
optionally by OpenSync. It can be used to save / load information about
synchronization objects and their mappings. The changes are saved in a database in
the current configuration directory of the SyncGroup. The things stored are: the
LUID, the object-type, the format, the id of the member which reported this object,
the id of the mapping.

This stored information is read in the beginning and can be used to map objects
from different sides.

The functions provided are: Functions for creating/deleting mappings,
adding/removing objects from a mapping, searching for objects in a mapping by
the member that reported it, and searching for an object on a member by LUID.

Mapping Tabls

2.4 Format Conversion

A lot of times it happens that different devices report the same object in different
formats (a contact could be encoded in a VCard, a Palm format etc). To be able to
synchronize one needs to be able to convert the formats. The format conversion
takes place during the actual synchronization and is described in detail later in this
chapter.
Each object has 2 attribute types assigned to it:

The object-type. This attribute classifies the abstract information the object

carries. It does not say anything about the format in which the object is
represented. One example for an object-type would be “Contact”.

The object-format. This attribute shows in which format the object-type is
currently encoded. One example for such a format for the object-type “Contact”
would be “VCard”. The formats are stackable which means that you can wrap
one format into another format (which is referred to as “encapsulation”). The
“Contact” object can have its information formated in a “VCard” format, which
is then wrapped up into the “file” format (which adds information about the
modes, owners etc of the file).

2.4.1 Plugins

To be able to support almost any object-type / format we choose to implement
the conversion system with plugins. These plugins work similar to SyncPlugins.
They have a “get_info” function, in which they register the object-types /
formats they support. This function gets a pointer to a “OSyncEnv” struct which
represent the environment in which to register.

void get_info (OSyncEnv *env)
{

osync_env_register_objtype (env, "data");

osync_env_register_objformat (env, "data", "file");
osync_env_format_set_compare_func(env, "file", compare_file);
osync_env_format_set_detect_func(env, "file", detect_file);
osync_env_format_set_duplicate_func(env, "file", duplicate_file);

osync_env_register_converter (env, CONVERTER_CONV, "file", "VCard",
conv_file_to_vcard);

osync_env_register_converter (env, CONVERTER_CONV, "VCard", "file",
conv_vcard_to_file);

}

2.4.2 Converters

One thing a plugin can register is a converter. A converter converts the data of
an object to another format, therefore replacing the current format with another.
The converter gets passed a pointer to some data. It then has to parse this data
and return a pointer to a newly allocated struct with the data in the new format.

2.4.3 Encapsulators / Decapsulators

A decapsulator takes the data it gets passed and just removes the current format
layer, therefore only return the data of the object. The file decapsulator for
example removes all information about the mode, owner etc of the file and just
returns the content of the file.

Encapsulators do just the opposite, they wrap a format into another one.

2.4.4 Detectors

At some point during the conversion, someone has to label the object has
belonging to a certain object-type / format. This can be done while reading the
change (when you connect to the evolution address book you know that you
will always get “Contacts” of format “VCard”). But some plugins cannot do this
(the file-synchronization plugin for example has no idea if the file is actually
some data or a saved “VCard”). Therefore we have data detectors that try to
parse and identify the input they get. (The “VCard” detector for example looks
if it finds the “BEGIN:VCARD” in the data).

2.4.5 Conversion

This section will now explain how a format conversion would look like.

There are 2 occasions where a conversion might be necessary:
« To compare the data of objects to find conflicts
« To commit the data to another side

For the first case the data has to be converted to a “common” format to
compare, which might or might not be the format that the member understands.

For the second case the data always has to be converted to a format that the
member can accept. These formats are set via the accept_objtype and
accept_objformat functions in the “get_info” function of the plugin.

Sometimes it is not directly possible to convert to a given format since no direct
converter exists but a detour over another format has to be taken. This is why
the conversion “path” is detected using a Shortest Path algorithm. It will always
try to convert with as little conversions as possible. One special thing in
detecting this conversion path are the encapsulators. Since decapsulating always
is a loss of information, the path is searched without the decapsulators first. If
no path is found then the decapsulators are used.

The next example shows how a conversion environment for a synchronization
between a Palm device and a file-synchronization plugin could look like. Here
also a intermediate XML Format is used.

Synchronization
Plugin Plugin

£
=
-
&
i
File Fomat g
=
i H
[=] 1]
K [va
=
a
& o1 XML Format Co,
% ey
Weard Format Palm Format

Contact
ObjectType

2.5 Hashtables

Hashtables are a optional feature of OpenSync. They can be used by the plugins to
detect changes in the objects. A lot of devices do not implement a change database
which is used to track if an object has been synchronized. For these devices the
hashtable can be used.

The plugin has to compute a hash for each object on the plugin (which might be a
timestamp or something like a mdS). Each time the engine queries for the changes,
the plugin uses the hashtables function to compare the old hash with the new hash.
If they are not the same, the plugin knows what has changed and can report this
change to the SyncEngine.

A example usage of the hashtable could look like this:

Initial Sync:

Hashtable compares new timestamp “1103060445-110306044” with old
timestamp NULL and reports the change as being “Added”.

Hashtable updates to current hash in the database to “1103060445-110306044”
Now the object gets modified

Second Sync:

Hashtable compares new timestamp “1103061332-110306123” with old
timestamp “1103060445-110306044” and reports the change as being
“Modified”.

Hashtable updates to current hash in the database to “1103061332-110306123”

2.6 Anchors

OpenSync also provides a “anchor” storage. A anchor is some kind of data that is
stored on the device and is updated once during each synchronization. The anchor
is also stored locally using the functions provided by OpenSync. If the anchors do
not match the next time a synchronization is initiated, a SlowSync is requested.

2.7 SlowSync

If a client detects that its database has been reset or the last synchronization was
not successful, a SlowSync is performed, where each client sends all its objects (as
opposed to just the changed objects) to the SyncEngine. This is also used for the
initial synchronization.

2.8 Initial Mapping

If a SyncGroup has never been synchronized before, it needs to detect the initial
mappings on the first synchronization. It might happen that the devices, were
synchronized before using another application and therefore might contain the
same objects on both sides (or the user added the same object to both sides by
hand). The initial mapping happens like this:
All unmapped objects from both sides are compared. The comparison might return
3 answers:
MISMATCH: The objects were different. The search continues until there are
no unmapped objects left on the other side. In this case the object is being
reported as “Added” and will propagate to the other synchronization during the
synchronization.
SIMILAR: The objects were not exactly the same but some key properties are
the same (like the name for a VCard). In this case a mapping is generated for the
objects and a conflict is raised. If the connection between these objects where
not correct (there might be contacts with the same name but different persons),
the user can still choose to keep both object as separate entries (Duplication).

SAME: The objects were the same. A mapping is made for the objects and no
conflict is raised.

2.9 Sync Alerts

Some plugins support SyncAlerts. A SyncAlert is when the plugin has the
capability to detect that an object has just been changed and reports this to the
engine which can then decide to initiate a synchronization.

2.10 Filters

OpenSync supports filtering objects based on certain criteria and on the direction
of the object. You can, for example, filter on an object of format “file” going from
member A to member B.

Once a filter triggers on an object passing through OpenSync, you can invoke
certain actions. The standard actions are to either let it pass, or to drop it.

But sometimes more sophisticated filters are needed. Thats why you can define
custom filters using a callback that will get called with the object that triggered the
filter. You can then return if the object should be allowed to continue or if it should
be dropped.

But you can not only allow/deny an object, you can also manipulate the object you
caught. This way you can alter the object while it passed through OpenSync.
Filters can also be loaded through plugins.

3. Further Readings

3.1 API Examples

You can find several examples of how to use the API of OpenSync and the
SyncEngine online at:
http://www.opensync.org/wiki/Examples

3.2 Plugin Examples

You can find a example plugin at:
http://www.opensync.org/browser/trunk/plugins/example-plugin
3.3 Code Documentation

The functions OpenSync provides are documented using comments in the code.
You can find the latest documentation at:
http://www.opensync.org/docs

4. Glossary
LUID

The LUID (Local unique identifier) uniquely identifies an object on a member.
Most of the time it is only valid and unique on one member.

SyncGroup

A SyncGroup is a group of members which are supposed to be synchronized. This
group can contain any number of members.

Member

A member is part of a SyncGroup. It is a configured instance of a certain
SyncPlugin.

SyncPlugin

A SyncPlugin has the code that is needed to connect to a certain device /
application /server.

SyncEngine

The part of OpenSync which is responsible of deciding what to do next to achieve
a synchronized state.

FormatPlugin

A FormatPlugin has the code that describes a certain format (“VCard” for
example) and provides functions for manipulating this format.

