
Memory Allocation
Introduction
Normally all memory allocation / deallocation is done by Ada (The Ada Runtime
Environment) without the programmer having to think about it. Whenever a new variable is
created memory is allocated for it and if needed the programs wimpslot extended. The user
only has to make sure the wimpslot is big enough initially at startup after that the program
takes care of itself.

Free for allocationProgram
Wimpslot of a program.

There are however some cases where a more direct means of allocation and deallocation is
needed which is explained in this chapter.

Normal allocation
The basic problem is that you want a block of memory and you want control over when its
allocated and de-allocated. The obvious and easiest way of achieving that is using a
’declare’ structure to allocate a variable.

declare
 Block : String(1..1024);
begin
 -- Block is allocated and can be used.
end;
-- Block is deallocated.

This is still quite inflexible and therefore RASCAL has procedures to allocate and
deallocate memory blocks directly.

with Memory;
procedure Example is
 Block : Memory.mem_adr_type;
begin
 Block := Memory.Allocate (1024);
 -- Block is allocated and can be used.
 Memory.Deallocate (Block);
 -- Block is deallocated.
end Example;

The above should be all you need in most cases, but if your program is going to do a lot of
allocations or deallocations or its handling very big blocks of memory then you should
consider a different means of allocating memory. The reason being that while the wimpslot
is extended automatically when the need arises it is never reduced again. Deallocating will
free the memory for further use by the program but it will not reduce the wimpslot and the
memory is therefore not available for other programs even though it is not used by your
program.

This is not a problem as long as you program is handling ’normal-sized’ data but if you are
handling pictures or anything with sizes like that you should consider using the allocation
method described in the next section.

Flex heap allocation
The flex heap is a library created to solve the problems mentioned above. To use it you need
to link it with you program by adding "-largs RASCALlib:flexlib-32.o
RASCALlib:flexlibzm.o" to the compile statement resulting in something like this:

gnatmake RunImage -cargs -mapcs-32 -LRASCALlib: -IRASCALlib:
-largs -mstubs RASCALlib:flexlib-32.o RASCALlib:flexlibzm.o

The ’Flex’ package in RASCAL is a thin binding to this library and the ’Heap’ package is a
thick binding (which uses the ’Flex’ package). It is recommended that you use the Heap
package and the following will be solely about using the Heap package.

The flex library create a new memory area at end of the Wimpslot. This area can both grow
and shrink and it will defragment to keep memory requirements to a minimum.

Flex areaFree for allocationProgram
Wimpslot of a program with flex heap.

Using the flex heap does not prevent the use of normal allocation methods. If the normal
allocation area needs to be expanded the Wimpslot is extended and the flex area moved to
give space.
All this flexibility means that the memory blocks allocated in the flex area do not stay at the
same place - the address of such blocks may change. The Heap package associates every
flex block with a variable (heap_block_type) and this is always kept uptodate with regard to
the address of the block. Therefore you should always ask this variable for the address of the
block prior to accessing the memory block.

 declare
 Block : Heap.Heap_block_Type(1024);
 -- Block is allocated and can be used.
 begin
 -- Flex heap blocks can be extended.
 Heap.Extend (The => Block, New_Size => 2048);
 -- Always get the uptodate address.
 Memory.StringToMemory (Str => "Example",
 Adr => Heap.Get_Address (Block));
 end;
 -- Block is deallocated.

The flex heap can also be created as a dynamic area. To achieve this you must define the
max. size of this dynamic area before the first flex block is allocated. The default size is
zero and means that no dynamic area is created and the wimpslot used instead. You can also

define the name of the dynamic area, the default name is "RASCAL -Heap".

procedure Example is
begin
 Heap. Set_MaxSize (32*1024*1024);
 Heap. Set_Name ("Example's Heap Area");
 declare
 Block : Heap.Heap_block_Type(1024);
 -- Block is allocated and can be used.
 begin
 -- Flex heap blocks can be extended.
 end;
 -- Block is deallocated.
end Example ;

Flex area

Free for allocationProgram

Wimpslot of a program with flex heap in a separate dynamic area.

