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ABSTRACT: The constitutive relation of elastoplastic materials generates a Differential Algebraic System (DAS), which
is generally solved numerically. The solution of this system in the context of Finite Elements is called Stress-Point
Integration. Different integration schemes are available and their accuracy and efficiency should be investigated for each
constitutive model. These schemes are generally divided into implicit and explicit. Among the explicit schemes, the
most used are the Forward-Euler (FE) and the Modified-Euler (ME). Among the implicit schemes, the fully implicit
or Backward-Euler (BE) is widely used. The Backward Euler scheme solves the DAS simultaneously updating stress
and internal variables, at the same time that consistency is guaranteed. In this paper the Modified-Euler scheme is
used with an algorithm, which automatically subdivides the imposed strain increments, keeping the truncation error
within a prescribed tolerance. Here BE and ME schemes are applied to the integration of the constitutive relations of
two subloading models, named Sub-Cam and Sub-tij, for a wide range of imposed strain increments and initial stress
conditions. The solutions are compared with the “exact” solution obtained with the FE scheme with very small strain
increments. The results show that the Backward-Euler scheme takes a great number of small increments to converge to
the correct solution. Overall the Modified Euler scheme with automatic step algorithm gives the most accurate results
at a lower computational cost.

1 INTRODUCTION

According to the continuum mechanics theory, the applica-
tion of external loads to any continuum mass of soil causes
changes in stress and strains. This theory establishes ba-
sics concepts, such as stress and strain, that allows for the
study of the internal response of the soil mass for given
boundary conditions. A key concept regarding the solution
of this Initial Boundary Value Problem is the Constitutive
Law (or model) that relates stress to strain at each point
inside a body.

Nakai & Hinokio (2004) proposed the Subloading tij
model (Sub-tij for short) that is very efficient to repre-
sent soil materials subject to cyclic loads. This model
is based on the concept of Subloading first introduced by
Hashiguchi & Ueno (1977) and on the tij-Clay and tij-Sand
models introduced by Nakai & Matsuoka (1986) and Nakai
(1989), respectively. These series of elastoplastic models
are based on the Cam Clay model (Desai & Siriwardane,
1984). Here, an extended version of the Cam Clay model,
named Subloading Cam-clay (Sub-Cam for short), will be
proposed mainly to help check integration algorithms.

Non-linear constitutive laws are given by rate equations.
Therefore, some way to integrate these equations is re-
quired. Since analytical solutions are generally difficult to
be found, numerical schemes are adopted. The constitutive
relation of elastoplastic materials constitutes a Differential
Algebraic System (DAS) (Buttner & Simeon, 2002). The
solution of this system in the context of Finite Elements
is called Stress-Point Integration and the constitutive laws
must be integrated for finite increments of strain (Simo &
Hughes, 1998).

Many integration schemes are available. Since for the
FEM codes, speed is always important, the efficiency of
any stress-point integrator should be investigated. This is
also important considering the specific constitutive model
adopted. Another very important study is the accuracy
of the integration scheme when solving the DAS for differ-
ent constitutive laws. These schemes are generally divided
into implicit and explicit, according to the time-position
at which the gradients are evaluated. Among the explicit
schemes, the most used are the Forward-Euler (FE) and

the Modified-Euler (ME). Among the implicit schemes, the
fully implicit or Backward-Euler (BE) is widely used.

It is important to solve all equations of elastoplastic DAS
at the same time during the stress-point integration. This
implies that both the constitutive law equations and evo-
lution equations for the internal variables should be inte-
grated using the same scheme. The Modified-Euler scheme
presented here, based on the one given by Sloan et al.
(2001), take this in consideration.

In this paper, according to Sloan (1987), Sloan & Booker
(1992) and Sloan et al. (2001), the Modified-Euler (ME)
scheme is used with an algorithm, which automatically sub-
divides the imposed strain increments, keeping the trunca-
tion error within a prescribed tolerance. The Fully Back-
ward Euler (BE) scheme solves the DAS simultaneously
updating stress increments and internal variables, at the
same time that consistency is guaranteed. Here BE and
ME schemes are applied to the integration of the consti-
tutive relations of the subloading models: Sub-Cam and
Sub-tij, for a wide range of imposed strain increments and
initial stress conditions.

The range of strain increments is choosed according to
a virtual grid made of ∆ε1 x ∆ε2 points. These values are
selected in such a way that the corresponding final stress
states increases in both deviatoric and volumetric states,
i.e, moving away from the yield surface. The initial stress
states studied are positioned at different combinations of
mean and shear stress. For each grid of given strain incre-
ments, isoerror lines like the ones showed in Simo & Hughes
(1998) are plotted to help the study of the accuracy. The
solutions of each scheme are compared to the “exact” so-
lution obtained with the FE scheme with a large number
of sub-divisions of the increments that corresponds to very
small strain increments.

2 ELASTOPLASTIC MODELS

Elastoplastic models are formulated as rate or infinitesi-
mal incremental relations between stress and strain ten-
sors. These relations form a Differential Algebraic System
(DAS) subject to some Kuhn-Tucker restrictions. The first
step in developing these models is the assumption of linear



decomposition of the strain increment (rate) into an elastic
and a plastic tensor. From the generalised Hooke’s law the
following basic equation is obtained:
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in which
≈̇

σ is the second order stress rate tensor,
≈̇

ε is the

second order total strain rate tensor,
≈̇

ε
p is the second order

plastic strain rate tensor and
≈

≈

D
e is the fourth order elastic

rigidity moduli tensor. The notation and operations used
in this paper are defined in Appendix A.

Besides the stress-strain evolution, it is also considered
the existence of a set of stress-like zi and strain-like ξi in-
ternal variables, related to plastic hardening (Simo, 1994).
The evolution of these internal variables is linked by a series
of hardening rigidity moduli Hi as follows:

żi = Hiξ̇i (no sum on i) (2)

Eqs. (1) and (2) form the basic relations for any elasto-
plastic model. Specific models will differ on adopted func-
tions for the yield surface, plastic potential surface and
hardening law. The yield function f(

≈

σ, zi) sets a limit in
the stress space for the occurrence of plastic strains. The
plastic potential function gives the direction of plastic flow

≈̇

ε
p. The hardening law establishes the internal variables of

the model and how they relate.
For a generic elastoplastic model the flow rule is obtained

by defining a second order tensor
≈

r that gives the direction
of plastic flow. Thus

≈̇

ε
p = Λ̇

≈

r (3)

in which Λ̇ is a scalar plastic multiplier, obtained by im-
posing the consistency condition ḟ = 0.

The elastoplastic models used in this paper consider the
concept of “subloading”, originally proposed by Hashiguchi
& Ueno (1977). According to this concept, two yield sur-
faces are necessary: the first one is used to smooth the
elastic-plastic transition and the second one is the usual
surface used to memorise the maximum plastic state to
which the point was subjected. The first surface is called
subloading surface and the stress point always lies on it.
The second surface is called normal yield surface and en-
capsulates the subloading surface, coinciding with it only
if the point is normally consolidated.

When using subloading models it is necessary to define
separate internal variables and evolution laws for the two
surfaces. The actual stress point always lies on the subload-
ing surface, therefore both consistency and flow rule are im-
posed on this surface. The internal variables of the normal
yield surface affect the hardening modulus of the subload-
ing surface, thus linking both surfaces.

Hereafter, the internal variables related to the subload-
ing surface will be denoted by an array zα and ξα, while
those related to the normal surface will be denoted by zβ

and ξβ , in which α and β are indexes ranging from one to
the number of internal variables related to the subloading
surface and from one to the number of internal variables
related to the normal surface, respectively.

The strain-like internal variables are defined as scalar
functions of the plastic (rate) strain tensor through the La-
grange multiplier. Therefore, the following hardening laws
may be written

ξ̇α = Λ̇hα and ξ̇β = Λ̇hβ (4)

in which hα and hβ are scalar functions that define the type
of hardening rule used in the model.

Substituting Eq. (1) and Eq. (3) into the consistency
condition, the Lagrangian multiplier can be expressed as:
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where the following variables were defined
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≈

v :
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D
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≈

v =
∂f

∂
≈

σ
(7)

yα =
∂f

∂zα
(8)

Hα = Hαhα (no sum on α) (9)

Substituting Eq. (5) into Eq. (3) and the resulting ex-
pression into Eq. (1), one finds the stress-strain evolution
law as:
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in which the fourth order elastoplastic rigidity tensor is
computed as:
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Furthermore, substituting Eq. (5) into Eq. (4) and the
resulting expression into Eq. (2), one finds the expression
for the evolution law for the internal stress-like:

żi = Hi
≈

b :
≈̇

ε (12)

Eqs. (10) and (12) form the Differential Algebraic Sys-
tem (DAS) of the model and both have to be satisfied si-
multaneously for a given strain (or stress) increment. The
particular expression for a given model depends basically
on the suitable definitions of a yield function f(

≈

σ, zi), on

the direction of plastic flow
≈

r and on the choice of (internal)
hardening variables and hardening rule. These are detailed
for two models studied in this paper in the next sub-items.

2.1 Subloading Cam-clay

The Subloading Cam clay model, or Sub-Cam for short, is
defined here as a simple extension of the modified Cam-clay
model (Desai & Siriwardane, 1984), into which the subload-
ing concept is introduced in the same way as presented by
Nakai & Hinokio (2004). The subloading surface of Sub-
Cam model is assumed to have the same expression as for
the modified Cam clay model:

f(
≈

σ, zα) = M2p (p− zα) + q2 (13)

in which p and q are the mean and deviatoric stress invari-
ants, respectively, and zα (the stress-like internal hardening
variable) represents p1, i.e., the maximum mean stress ever
imposed to the point. M is a model parameter related to
the friction angle at critical state at compression φCS , and
given by

M =
6 sin φCS

3− sin φCS
(14)

As for modified Cam clay, an associated flow rule is also
assumed. Therefore the plastic flow direction is given by
the normal to the subloading yield surface:

≈

r =
df

d
≈

σ
(15)

An expression similar to Eq. (13) could be written for
the normal yield surface, by substituting the stress point



by its image
≈

σ
′ and the stress-like hardening variable by

p1e, as depicted in the upper part of Fig. 1. However, this
expression is not strictly necessary for the development of
the subloading models. All that matters is its evolution
law.

For the normal yield function, as for the conventional
Cam clay models, the internal strain-like hardening vari-
able is given by the volumetric plastic strain ε̇p

v. This re-
lates to the “size” of the normal yield surface, given by p1e,
according to the following expression:

ṗ1e =
p1e

χ
ε̇p

v

„

χ =
λ− κ

1 + e0

«

(16)

where λ and κ are model parameters related to the virgin
compression and swelling indices, respectively and e0 is the
initial void ratio.

Eq. (16) for the evolution of the normal yield surface is
the same as that for the conventional Cam clay models. In
Sub-Cam model, however, a new (subloading) surface is in-
troduced and new hardening variables and hardening laws
must be specified for this surface. The stress-like hardening
variable, as defined previously, is the tip of the subloading
surface zα = p1. The corresponding strain-like hardening
variable is obtained by linking the evolution of the subload-
ing surface to that of the normal surface with an auxiliary
variable ρ in the same way as proposed by Nakai & Hinokio
(2004) for the Subloading tij model (to be explained in the
next sub-item). This is illustrated in the lower part of Fig.
1. The variable ρ gives a measure of over-consolidation or
density of a point which was previously loaded then un-
loaded.
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Fig.1. Subloading Cam-clay

From Fig. 1 it is possible to define the following auxil-
iary strain-like variable εsy

v (sy for sub-yielding) that links
the subloading surface to the normal surface:

εsy
v =

−ρ

1 + e0

„

ρ = (λ− κ) ln
p1e

p1

«

(17)

The hardening law for the subloading surface is now
given by:

ṗ1 =
p1

χ
(ε̇p

v + ε̇sy
v )

„

χ =
λ− κ

1 + e0

«

(18)

A decay function must rule the evolution of εsy
v so that

the subloading surface should approach the normal surface
as the point becomes less over consolidated upon reloading.
Here a law similar to that proposed by Nakai & Hinokio
(2004) for the subloading tij model is assumed:

ε̇sy
v = Λ̇

G(εsy
v )

p

`

G = c(1 + e0)
2(εsy

v )2
´

(19)

in which c is the only additional parameter with respect to
those used in the conventional Cam clay model.

Finally, the evolution laws for the internal variables of
Sub-Cam model can be summarised as:
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«
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żβ = ż2 = ṗ1e =Λ̇
p1e

χ
tr r = Λ̇H2

(20)

All variables necessary for the computation of the elasto-
plastic tensor for the stress-strain evolution in Eq. (10) are
also defined. The main purpose of the above formulation
was to introduce the concept of subloading into the well
established framework of Cam clay model. The main ad-
vantages of introducing subloading concept into Cam clay
model is inclusion of the influence of density and confin-
ing pressure on the soil behaviour as well as an enhanced
capacity to simulated cyclic loading at the cost of a single
additional parameter. However, other drawbacks inherent
to Cam clay formulation still remain and can be better
overcome using the tij concept as briefly explained in the
next sub-item.

2.2 Simplified Subloading tij

A series of tij models has been developed by Nakai and co-
workers in Nagoya Institute of Technology (Nakai & Mat-
suoka, 1986; Nakai, 1989; Nakai & Hinokio, 2004). Com-
mon to all these models is the use of a modified stress quan-
tity, named tensor tij or

≈

t, proposed by Nakai & Mihara

(1984), which is defined as:

≈
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a •
≈
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≈
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≈
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!

(21)

in which
≈

a is a second order tensor related to the SMP (Spa-

tially Mobilized Plane) introduced by Matsuoka & Nakai
(1974). The SMP represents the plane in which the shear
strength of the material is most mobilised on the average.
Therefore, instead of using the stress invariants in the octa-
hedral plane (p and q of Cam clay model), the models use
the stress invariants on the SMP, which are denoted by the
normal component tN and the deviatoric component tS .
Using these invariants, the influence of the intermediate
stresses on the strength and deformability characteristics
of soils can be taken into account.

The last model of this series is the so-called Subloading
tij model and a full description of the model can be found
in details in Nakai & Hinokio (2004). The model also uses
two yield surfaces according to the concept of subloading
proposed by Hashiguchi (1989). The subloading yield sur-
face of the model, in terms of the modified stress invariants
(tN and tS), is given by

f(
≈

σ, zα) = ln
tN

zα
+

1

β

„

tS

M∗tN

«β

(22)

in which M∗ is related to the parameter φCS (similar to M
in Cam clay model) and β is an additional model param-
eter, which defines a unified response for the stress ratio-
dilatancy relation and controls the shape of the yield func-
tion. These parameters can obtained according to:

M∗ =
“

Xβ
CS + YCSXβ−1

CS

”1/β

(23)

in which
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´
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and

RCS =

„

σ1

σ3

«

CS(compression)

=
1 + sin φCS

1− sin φCS
(25)

The size of the subloading surface is measured at its tip
in the tN axis as represented by zα = tN1 in the upper part
of Fig. 2.
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Fig.2. Subloading tij

Another common feature in tij models is the split of the
plastic strain increments into two components: one given
by an “associated” flow-rule (AF) and another due isotropic
compression (IC) related to an increase of mean stress tN .
The feature is supposed to take into account the influence
of stress path on the deformability characteristics of soils.
However, for the sake of simplicity, this split is disregarded
in this paper and only the “associated” flow-rule (AF) com-
ponent is considered. The simplified model will be called
Sub-tij, for short.

The direction of the “associated” flow-rule component
is given by the normal to the yield surface in the modified
stress space

≈

t:

≈

r =
df

d
≈

t
(26)

In fact, Eq. (26) leads to a non-associated flow rule in
the conventional stress space

≈

σ. However no additional
plastic potential function or parameters have to be defined
for this flow rule.

The internal variables and evolution laws for Sub-tij
model are defined in the same way as those for the Sub-
Cam model described previously. In fact, it is just the op-
posite, i.e., Sub-Cam model used all hardening definitions
proposed by Nakai & Hinokio (2004) for the Subloading tij
model as shown in Fig. 2 and just replaced the modified
mean stress invariant tN by the conventional mean stress
p:
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3 INTEGRATION ALGORITHMS

The evolution laws for stress-strain and internal variables
form a Differential Algebraic System which may be gener-
ically written as:

(
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D
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ε

żi = Hi
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ε

(28)

The system is valid for rate relation or infinitesimal in-
crements. However, in the context of real applications,

such as boundary value problems solved by the Finite El-
ement Method, finite time steps, ∆T , and consequently
finite strain increments ∆

≈

ε, are imposed. Therefore, for
a given strain increment, all the equations in the system
should be integrated simultaneously. This integration can
only be performed numerically using different integration
schemes. Supposing that the strain rate is constant, the
main objective of these schemes is to find a solution for the
finite increments of stress and stress-like internal variables
for a given finite strain increment as shown in the following
equation:
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Symbolically, Eq. (29) can be written as:

{∆Σ} =
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The solution in Eq. (30) can be obtained using either
implicit or explicit integration schemes. Here, two schemes
are investigated: the Modified Euler (ME) with variable
time steps and the fully implicit Backward Euler (BE).

3.1 Modified-Euler (ME) with variable time steps

Sloan (1987) presented an algorithm which automatically
divides the given finite strain increment into smaller sub-
increments to keep the solution within a prescribed accu-
racy while, at the same time, saving computational time.
The algorithm was later refined and enhanced by Sloan &
Booker (1992) and Sloan et al. (2001).

The key point in the Modified Euler (ME) scheme con-
sists of computing the elastoplastic tensor and plastic mod-
uli in two different points in the time-stress space. Here
the term stress should be regarded in the broader sense,
including the stress point and stress-like internal variables
as in Eq. (31). The first point corresponds to the present
stress state (Σn, Tn). Thus a first evaluation of the stress
increment, {∆Σ}1 is computed. The second evaluation po-
sition is defined by (Σ1, T1) given by a simple Forward
Euler (FE), i.e., Σ1 = Σn + {∆Σ}1 and T1 = Tn + ∆T as
illustrated in Fig. 3. However, the stresses are not really
updated, and this second point is used only to compute a
second set of elastoplastic tensor and plastic moduli, from
which a second estimate of stress increments, {∆Σ}2, is
computed

Σ
n

K0

Σ

K1

T

∆T

Σ2 = Σ
n+1

Σ1

∆Σ2

∆Σ1

Fig.3. Modified-Euler



The actual stress increment is taken as the average of
the two previous estimates and the stress point is updated
as follows:

{Σ}n+1 = {Σ}n + 1/2 {∆Σ}1 + 1/2 {∆Σ}2 (32)

A local error measure can be defined by the difference
between the updated stresses using the ME scheme and
that given by the FE scheme:

Err =

˛

˛

˛

˛{Σ}2 − {Σ}1
˛

˛

˛

˛

˛

˛

˛

˛{Σ}2
˛

˛

˛

˛

(33)

The first evaluation Σ1, using the Forward Euler (FE)
scheme, is accurate to the first order, while the final eval-
uation {Σ}n+1 = {Σ}2 given by the Modified Euler (ME)
scheme is accurate to the second order. Therefore, for a
given time increment ∆Tk (and ∆

≈

εk = ∆Tk∆
≈

ε), an error
Errk is computed and the next error Errk+1 for a time
increment ∆Tk+1 = m∆Tk can be estimated as:

Errk+1 ≈ m2Errk (34)

Forcing the error at step k + 1 to be smaller than a
given tolerance STOL, then the size of the next step can
be computed from the scaling factor m, given by:

m = 0.9

r

STOL

Errk
(35)

The coefficient 0.9 was introduced to restrict the size of
the increments as a safety factor (Sloan et al., 2001). A
minimum value for m (mmin = 0.01) is set to avoid very
small steps and also a maximum value mmax = 10 prevents
states very far from the initial one. An initial step-size
should also be given from which the scheme can proceed
automatically. Ideally, this step-size would be ∆Tini = 1,
however for some models as Subloading tij, for large incre-
ments, the DAS may not be defined, thus a small value is se-
lected ∆Tini = 0.001. This choice does not affect the overall
efficiency, because the scheme automatically increases the
step-size according to the tolerance given. The algorithm
for the ME with variable sub-steps is given below.

Algorithm 1: Modified-Euler scheme

Set: ∆Tini = 0.001; mmin = 0.01; mmax = 10
Nss← 0
T ← 0
∆T ← ∆Tini

{Σ} ←


≈

σ

zi

ff

while T < 1 do
{Σ}0 ← {Σ}
{∆Σ}1 ← K({Σ}0)∆T
{Σ}1 ← {Σ}0 + {∆Σ}1
{∆Σ}2 ← K({Σ}1)∆T

{Σ}2 ← {Σ}0 + 1
2

`

{∆Σ}1 + {∆Σ}2
´

{Σ}e ← {Σ}2 − {Σ}1
Err ←

˛

˛

˛

˛{Σ}e
˛

˛

˛

˛÷
˛

˛

˛

˛{Σ}2
˛

˛

˛

˛

m← 0.9
p

STOL/Err
if Err < STOL then

T ← T + ∆T
{Σ} ← {Σ}2
if m > mmax then m← mmax

else
if m < mmin then m← mmin

∆T ← m∆T
Nss← Nss + 1
if ∆T > (1− T ) then ∆T ← (1− T )

3.2 Fully implicit Backward-Euler (BE) Scheme

Explicit schemes like the one discussed in the previous sec-
tion can be coded to generically integrate any constitutive
model. On the other hand, implicit schemes consider each
specific model and lose a little in generality. The implicit
scheme used in this paper is based on the approach de-
scribed in Simo & Hughes (1998) and review by Belytschko
et al. (2000). Also, the similar approach given by Jeremić
& Sture (1997) was considered. This scheme can be applied
to any elastoplastic model formulated according to the con-
cepts of internal variables, as described in Section 2, with
any number of internal variables.

Implicit schemes can be applied to the evolution laws
written in terms of stress increments, such as given by Eq.
(10). However, it is simpler to treat the problem in terms
of strain increments. Thus, the problem is put as follows,
given a present state at time n (n

≈

ε, n
≈

ε
p, nzi) and a finite im-

posed total strain increment ∆
≈

ε, find the state at time n+1,

(n+1
≈

ε, n+1
≈

ε
p, n+1zi), satisfying the following conditions:

n+1

≈

ε = n

≈

ε + ∆
≈

ε

n+1

≈

ε
p = n

≈

ε
p + n+1∆Λn+1

≈

r

n+1zi = nzi + n+1∆Λn+1Hi
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σ =
≈

≈

D
e :
“

n+1
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ε− n+1

≈

ε
p
”

n+1f = n+1f(n+1

≈

σ, n+1zα)

(36)

in which, according to the “Fully Implicit Backward Eu-
ler” scheme, all derivatives should be evaluated at position,
n + 1, i.e., at the end of the increment. As this position is
not known, in fact it is the solution to the problem, an iter-
ative scheme must be used. Therefore, the following error
functions (residuals) are defined:

n+1

≈

Rσ(k) = n+1

≈

σ
(k) −

„

≈

σ
trial − n+1∆Λ(k)

≈

≈

D
e : n+1

≈

r
(k)

«

n+1Rz
(k)
i = n+1zi

(k) −
“

nzi + n+1∆Λ(k)n+1H(k)
i

”

(37)
where

≈

σ
trial = n

≈

σ +
≈

≈

D
e : ∆

≈

ε stay constant during the

iterations and allow to visualise this scheme as a return
mapping procedure, as illustrated in Fig. 4.
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Fig.4. Backward-Euler

The errors in Eq. (37) are minimised using Newton-
Rhapson procedure in which the first step is to expand and
zero the residuals around the present estimate (iteration
k). In doing this a series of derivatives appear as defined
below:

≈

≈

M =
∂
≈

r

∂
≈

σ
,

≈

Nα =
∂
≈

r

∂zα
,

≈

Ri =
∂Hi

∂
≈

σ
, Sij =

∂Hi

∂zj
(38)



These derivatives may be quite cumbersome and are pre-
sented in Appendix B for the Sub-Cam and Sub-tij models
defined in this paper. After a few operations, the expansion
ultimately is written in matrix form as the system of equa-
tions below; see (Jeremić & Sture, 1997) and (Belytschko
et al., 2000):

h

A(k)
in

∆Σ(k)
o

= −
n

R(k)
o

− δ∆Λ(k)
n

r(k)
o

(39)

where
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and the following vectors are defined:
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A key step in the BE algorithm is the computation of
the quantity δ∆Λ(k), which is obtained from the consis-
tency condition:
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or, symbolically
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Thus, considering Eq. (39), the following expression is
obtained:

δ∆Λ(k) =
f (k) −

n

V (k)
oT h

A(k)
i

−1 n

R(k)
o

{V (k)}T [A(k)]
−1 {r(k)}

(47)

Algorithm 2 below resumes the iterative procedure for
the fully implicit Backward Euler scheme. An initial solu-
tion is adopted, supposing zero increment plastic strain and
yield surface sizes. That should produce errors in the resid-
ual equations, which are used to compute the estimates.
The procedure continues until the solution is within a pre-
scribed tolerance TOLΣ for the error defined by:
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Algorithm 2: Fully Implicit Backward-Euler scheme

Set: TOLΣ

k ← 0;
∆Λ(0) ← 0;

≈

σ
(0) ← n

≈

σ + n
≈

≈

D
e : ∆

≈

ε;

z
(0)
i ← nzi;

n{Σ} ←


≈

σ

zi

ff

;

CalculateSubYieldFunction(f (k));
repeat

CalculateGradients(
≈

r,
≈

v, yα);

CalculateHighGradients(
≈

≈

M ,
≈

Nα,
≈

Ri, Sij);

Calculate(
h

A(k)
i(−1)

) Eq.(40) ;

Calculate(δ∆Λ) Eq.(47) ;

Calculate({∆Σ} =



∆
≈

σ

∆zi

ff

) Eq.(39) ;

∆Λ(k+1) ← ∆Λ(k) + δ∆Λ;
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σ
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σ
(k) + ∆
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σ;

z
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i ← z

(k)
i + ∆zi;

CalculateSubYieldFunction(f (k+1));

CalculateResiduals(n+1
≈

Rσ(k), n+1Rz
(k)
i ) Eq.(37);

Err ←
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÷ ||n{Σ}||;

until Err < TOLΣ;

4 COMPARISON BETWEEN ME AND BE

The objective of this section is to establish which scheme,
between ME and BE, can produce the most accurate so-
lutions at the lowest computational price. The solutions
given by both schemes are compared to the “exact” so-
lution, which is defined as the values computed with the
Forward-Euler (FE) scheme with a very large number of
sub-steps (100.000). The simulations compute the final
values of the stress tensor and stress-like internal variables
({Σ} (i) =

˘

≈

σ(i) zi(i)
¯T

), for each point (i) in a grid of
strain increments.

Normalised integration errors are defined for each grid
point of strain increments. These errors are compared to

the exact solution ({Σ}c (i) =
˘

≈

σc(i) zci(i)
¯T

), according
to the following expression:

ErrorΣ(i) =
||Σ(i)− Σc(i)||

||Σc||
(49)

Simulations were carried out for both Sub-Cam an Sub-
tij models, assuming the parameters of Fujinomori clay
(Chowdhury, 1998), which are presented in Tab. 1. In
both cases the original OCR is equal to 2, i.e., the initial
size of the normal yield surface was twice the size of the
initial subloading surface. The value of c for the Sub-Cam
model is given by csubcam and for the Sub-tij model, by
csubtij .

Tab.1. Parameters - Fujinomori-Clay

λ 0.0891
κ 0.0196
ν 0.2

φCS 33.7◦

eNC 0.83
β 1.5

csubcam 500.0
csubtij 1000.0



Different initial stress positions and a large combina-
tion of strain increments were imposed to test the inte-
gration schemes. Three initial stress states over the ini-
tial (subloading) surface were specified as depicted in Fig.
5 and 6 for the models Sub-Cam and Sub-tij, respec-
tively. Three-dimensional principal strain increments were
imposed as ∆ε1; ∆ε2;−0.5∆ε3 in a way that the corre-
sponding final stress states increases in both deviatoric and
volumetric states, i.e, moving away from the yield surface.
The values of these increments are selected to create a grid
of points (Fig. 7). This grid is used to plot curves of equal
errors (iso-errors) with ∆ε1 in the abscissas and ∆ε2 in the
ordinates.
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For the Modified-Euler (ME) scheme, five values of toler-
ance STOL (10−1, 10−2, 10−3, 10−4 and 10−5) were inves-
tigated. For the Backward-Euler (BE) scheme the values
of the tolerance TOLΣ were 10−1, 10−3, 10−5, 10−7 and
10−9 and the final integration error was not much affect by
this tolerance.

For each scheme and constitutive model, tables were
elaborated with the summary of integration results in terms
of accuracy and computational time. In these tables NSS
represent the Number of Sub-Steps, computed automati-
cally with the ME scheme; ERR represent the stress er-
ror, computed according to Eq. (49); T ime represent the
total computational time to cover whole mesh of applied
strain increments; NDIV represent the number of divi-
sions imposed to the strain increments in the BE, in order
to guarantee the convergence of this scheme and to improve
its accuracy; and NIT represents the number of iterations
that the BE scheme took to converge, determined by trial
and error.

4.1 Results for Subloading Cam clay

The results for subloading Cam clay model using the ME
and BE schemes are summarised in Tab. 2 and 3, respec-
tively. The results for both schemes show that the position
of the initial stress point (A, B or C) did not influence much
the accuracy and computational time of the final solution.
The results also show the efficiency of the Modified Euler
scheme when compared to the Backward Euler scheme.

For the range of combinations investigated the average
error in the ME scheme varied from the order of 1% to
0.0001% with computational time between 0.06 seconds for
the looser tolerances (STOL = 10−1) up to 1.61 seconds
for the tighter tolerances (STOL = 10−5). On the other
hand, the average errors using the BE scheme started from
4% consuming an overall time in the order of 0.18 seconds
using a smaller number of sub-steps (NDIV = 2), while
the most accurate solutions with an average error of 0.07%
required NDIV = 100 sub-steps and demanded an over-
all time in the order of 6 seconds. The BE method does
not allow for the automatic computation of the number of
divisions necessary to guarantee its convergence.

It is worth to note that the overall average error with the
ME scheme is related the local truncation error (STOL).
In all examples run so far the overall error was at most
one order of magnitude higher than STOL. On the other
hand, the overall error with the BE scheme does not im-
proved significantly if a tighter tolerance is set for its con-
vergence check TOLΣ and that only demands longer pro-
cessing time. The accuracy of BE can only be improved by
imposing smaller strain increments, but the scheme does
not give any hint as to how to sub-divide the total imposed
strain increment.

For the same overall average error, say ERRave in the
order 0.1%, the ME scheme demanded around 0.09 seconds
and the number of sub-steps was automatically computed
between 5 and 12. In order to attain the same accuracy,
the BE scheme requires the total strain increment to be
divided in at least 100 sub-steps, taking between 2 and 3
iterations to converge and demanding around 6 seconds.
This is highly inefficient considering the overall number of
stress computations demanded by each scheme. The num-
ber of stress computation was at most 24 (12 steps x 2
evaluations) for the ME scheme against 300 (100 steps x 3
iterations) for the BE scheme. Thus the number of com-
putations was at most 12.5 (300/24) times higher for the
BE scheme, while the overall computational time was 66.7
(6/0.09) higher for the BE scheme. This is because the
BE scheme requires the evaluation of higher order deriva-
tives and the inversion of matrix A in Eq. (40). These
operations are far more time consuming than evaluating
the elastoplastic tensor and plastic moduli twice in the ME
scheme.



Tab.2. Subloading Cam clay - Modified-Euler

Point STOL NSSmin NSSmax NSSave ERRmin ERRmax ERRave Time
(%) (%) (%) (s)

A 1.0e-01 4 7 6 6.36e− 02 1.68e + 00 1.17e + 00 0.06
A 1.0e-02 5 12 9 5.00e− 02 1.75e− 01 1.24e− 01 0.09
A 1.0e-03 7 28 21 4.92e− 03 1.99e− 02 1.46e− 02 0.20
A 1.0e-04 14 81 60 6.07e− 04 2.26e− 03 1.57e− 03 0.54
A 1.0e-05 37 248 183 6.59e− 05 3.04e− 04 1.84e− 04 1.61

B 1.0e-01 4 7 5 4.17e− 02 2.20e + 00 1.27e + 00 0.05
B 1.0e-02 4 12 8 4.17e− 02 1.75e− 01 1.18e− 01 0.08
B 1.0e-03 6 29 19 4.48e− 03 2.01e− 02 1.35e− 02 0.18
B 1.0e-04 12 82 53 5.87e− 04 2.23e− 03 1.44e− 03 0.47
B 1.0e-05 31 249 160 5.05e− 05 3.23e− 04 1.63e− 04 1.40

C 1.0e-01 4 7 5 2.79e− 02 2.41e + 00 1.44e + 00 0.05
C 1.0e-02 4 12 9 2.79e− 02 1.83e− 01 1.34e− 01 0.08
C 1.0e-03 6 29 20 4.85e− 03 2.05e− 02 1.54e− 02 0.18
C 1.0e-04 11 82 55 5.79e− 04 2.27e− 03 1.65e− 03 0.49
C 1.0e-05 28 251 170 6.33e− 05 3.43e− 04 1.98e− 04 1.49

Tab.3. Subloading Cam clay - Backward-Euler - TOLΣ = 10−3, 10−5, 10−7

Point NDIV TOLΣ NITmin NITmax NITave ERRmin ERRmax ERRave Time
(%) (%) (%) (s)

A 2 1.0e-03 2 8 4 2.39e− 01 1.15e + 01 3.87e + 00 0.18
A 5 1.0e-03 1 4 2 1.08e− 01 3.77e + 00 1.47e + 00 0.31
A 10 1.0e-03 1 3 2 7.95e− 02 1.80e + 00 7.19e− 01 0.55
A 100 1.0e-03 1 2 1 8.21e− 03 1.30e + 00 5.47e− 01 2.65

A 2 1.0e-05 3 18 7 2.45e− 01 1.14e + 01 3.87e + 00 0.28
A 5 1.0e-05 2 6 4 1.03e− 01 3.78e + 00 1.44e + 00 0.44
A 10 1.0e-05 2 4 3 5.27e− 02 1.79e + 00 7.03e− 01 0.67
A 100 1.0e-05 1 2 1 8.21e− 03 1.99e− 01 7.55e− 02 4.43

A 2 1.0e-07 4 28 10 2.45e− 01 1.14e + 01 3.87e + 00 0.40
A 5 1.0e-07 3 8 5 1.04e− 01 3.78e + 00 1.44e + 00 0.57
A 10 1.0e-07 3 6 4 5.29e− 02 1.79e + 00 7.04e− 01 0.95
A 100 1.0e-07 2 3 2 5.39e− 03 1.71e− 01 6.92e− 02 6.08

B 2 1.0e-03 2 8 4 1.79e− 01 1.13e + 01 3.68e + 00 0.18
B 5 1.0e-03 1 4 2 9.42e− 02 3.76e + 00 1.39e + 00 0.31
B 10 1.0e-03 1 3 2 7.10e− 02 1.79e + 00 6.87e− 01 0.54
B 100 1.0e-03 1 2 1 7.39e− 03 1.32e + 00 5.39e− 01 2.64

B 2 1.0e-05 3 19 6 1.83e− 01 1.14e + 01 3.68e + 00 0.28
B 5 1.0e-05 2 6 4 7.64e− 02 3.78e + 00 1.35e + 00 0.43
B 10 1.0e-05 2 4 3 3.90e− 02 1.78e + 00 6.58e− 01 0.66
B 100 1.0e-05 1 2 1 7.31e− 03 1.99e− 01 7.11e− 02 4.42

B 2 1.0e-07 4 30 10 1.83e− 01 1.14e + 01 3.68e + 00 0.40
B 5 1.0e-07 3 8 5 7.69e− 02 3.78e + 00 1.35e + 00 0.57
B 10 1.0e-07 3 5 4 3.91e− 02 1.78e + 00 6.59e− 01 0.95
B 100 1.0e-07 2 3 2 3.98e− 03 1.70e− 01 6.45e− 02 6.09

C 2 1.0e-03 2 9 4 9.75e− 02 1.23e + 01 3.99e + 00 0.18
C 5 1.0e-03 1 4 2 9.68e− 02 4.15e + 00 1.54e + 00 0.31
C 10 1.0e-03 1 3 2 7.04e− 02 1.99e + 00 7.81e− 01 0.53
C 100 1.0e-03 1 2 1 7.24e− 03 1.24e + 00 5.15e− 01 2.63

C 2 1.0e-05 3 20 7 9.33e− 02 1.22e + 01 3.98e + 00 0.29
C 5 1.0e-05 2 6 4 3.93e− 02 4.13e + 00 1.51e + 00 0.42
C 10 1.0e-05 2 4 3 1.96e− 02 1.98e + 00 7.42e− 01 0.66
C 100 1.0e-05 1 2 1 7.24e− 03 2.17e− 01 7.96e− 02 4.40

C 2 1.0e-07 4 31 10 9.32e− 02 1.22e + 01 3.98e + 00 0.40
C 5 1.0e-07 3 8 5 3.83e− 02 4.14e + 00 1.51e + 00 0.58
C 10 1.0e-07 3 5 4 1.93e− 02 1.98e + 00 7.43e− 01 0.94
C 100 1.0e-07 2 3 2 1.95e− 03 1.90e− 01 7.35e− 02 6.04



The difference between the accuracy of the two meth-
ods can be better visualised using the iso-error contours
shown in Figs. 8 to 11 for some specific cases of STOL
and NDIV . In these figures, it is possible to note that the
magnitude of errors is much higher in the Backward-Euler
scheme. Also the overall average error increases with the
norm of the imposed strain increments especially for the BE
scheme, while it is better distributed for the ME scheme.
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Fig.10. Subloading Cam-clay; point A; Backward-Euler;
NDIV = 2; TOLΣ = 10−1
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Fig.11. Subloading Cam-clay; point A; Backward-Euler;
NDIV = 2; TOLΣ = 10−5

4.2 Results for Subloading tij

The results for the model Sub-tij, integrated with Modified-
Euler (ME) and Backward-Euler (BE), are summarised in
Tabs. 4 and 5, respectively. In both cases the order of
error and computational time did not change much for the
initial stress points at A, B or C. Comparing the two ta-
bles overall, it can be observed again that the ME scheme
with automatic step size is far more accurate and efficient
than the BE scheme. Errors for the ME scheme varied in
the range from 1% to 10−4%, while for the BE scheme the
average errors varied between 4% and 10−2%. Besides, the
BE scheme took far longer to integrate the whole mesh of
imposed strains; while the computational time varied be-
tween 0.19 and 5.05 seconds for the ME scheme, the BE
scheme took between 8.79 and 245 seconds.

The error distribution can be better appreciated with
the iso-error curves shown in Figs. 12 to 15, for the initial
stress point at position A and different values of STOL
for the ME scheme and NDIV for the BE scheme. Again
it can be noted that the magnitude of the error with the
Backward Euler scheme was far higher that those for the
ME scheme, reaching in some cases maximum errors in the
order of 20%. Also the errors for the BE scheme increase
with the norm of the imposed strain increments, while be-
ing better distributed for the ME scheme.

It is also interesting to compare the performance of both
ME and BE schemes when integrating both Sub-cam and
Sub-tij models. From Tabs. 2 and 4, both for the ME
scheme, it is noted that the computational time is larger
for integrating the subloading tij model, although keeping
the same order of magnitude. However, the time differ-
ence was one order of magnitude larger for the BE scheme
(tables 3 and 5). This is because the gradients are more
complex in the subloading tij model and also it demands
the computation of eigen-values and eigen-projectors which
are not necessary in the Sub-cam model.

When comparing the iso-error figures for the two mod-
els with the same integration schemes, it can be also noted
that the integration errors are higher for the subloading
tij model. The difference is more noticeable for the BE
scheme, but overall the subloading tij model is harder to
integrate than the subloading Cam clay model. Perhaps,
this is related to the tougher restrictions for the stress do-
main in models using tij modified stress, since the principal
stresses can never become negative.



Tab.4. Subloading tij - Modified-Euler

Point STOL NSSmin NSSmax NSSave ERRmin ERRmax ERRave Time
(%) (%) (%) (s)

A 1.0e-01 4 7 5 1.84e− 01 3.40e + 00 1.59e + 00 0.19
A 1.0e-02 5 12 9 4.53e− 02 3.05e− 01 2.03e− 01 0.30
A 1.0e-03 8 28 20 1.17e− 02 3.77e− 02 2.82e− 02 0.63
A 1.0e-04 17 79 57 1.65e− 03 4.12e− 03 3.23e− 03 1.69
A 1.0e-05 44 242 172 8.81e− 05 3.84e− 04 2.52e− 04 5.05

B 1.0e-01 4 7 6 2.54e− 01 5.43e + 00 2.81e + 00 0.20
B 1.0e-02 6 15 11 8.91e− 02 3.04e− 01 2.13e− 01 0.36
B 1.0e-03 9 32 25 1.07e− 02 2.88e− 02 1.78e− 02 0.78
B 1.0e-04 18 91 67 7.85e− 04 2.78e− 03 1.57e− 03 2.03
B 1.0e-05 53 281 207 1.42e− 04 6.69e− 04 3.15e− 04 6.17

C 1.0e-01 4 7 6 8.17e− 02 7.49e + 00 5.31e + 00 0.30
C 1.0e-02 5 15 12 7.90e− 02 6.19e− 01 3.27e− 01 0.38
C 1.0e-03 7 36 26 8.24e− 03 3.66e− 02 2.93e− 02 0.80
C 1.0e-04 14 100 75 9.34e− 04 3.49e− 03 2.52e− 03 2.22
C 1.0e-05 41 310 230 8.29e− 05 8.90e− 04 3.81e− 04 6.87

Tab.5. Subloading tij - Backward-Euler - TOLΣ = 10−3, 10−5, 10−7

Point NDIV TOLΣ NITmin NITmax NITave ERRmin ERRmax ERRave Time
(%) (%) (%) (s)

A 2 1.0e-03 2 6 4 3.31e− 01 1.31e + 01 4.44e + 00 8.79
A 5 1.0e-03 1 5 2 2.39e− 01 4.31e + 00 1.67e + 00 13.87
A 10 1.0e-03 1 3 2 1.71e− 01 2.07e + 00 8.29e− 01 21.29
A 100 1.0e-03 1 1 1 1.80e− 02 1.65e + 00 7.05e− 01 94.27

A 2 1.0e-05 2 8 6 3.29e− 01 1.31e + 01 4.43e + 00 11.55
A 5 1.0e-05 2 6 4 1.53e− 01 4.35e + 00 1.66e + 00 19.65
A 10 1.0e-05 2 4 3 8.18e− 02 2.06e + 00 8.16e− 01 30.83
A 100 1.0e-05 1 2 1 1.80e− 02 2.03e− 01 8.30e− 02 183.75

A 2 1.0e-07 4 10 7 3.28e− 01 1.31e + 01 4.43e + 00 14.45
A 5 1.0e-07 2 7 5 1.52e− 01 4.35e + 00 1.66e + 00 25.07
A 10 1.0e-07 2 5 4 8.17e− 02 2.06e + 00 8.15e− 01 40.25
A 100 1.0e-07 2 3 2 8.96e− 03 1.96e− 01 8.09e− 02 245.62

B 2 1.0e-03 2 6 4 2.80e− 01 1.34e + 01 4.55e + 00 8.76
B 5 1.0e-03 1 4 2 1.94e− 01 4.42e + 00 1.73e + 00 13.62
B 10 1.0e-03 1 3 2 9.90e− 02 2.12e + 00 8.53e− 01 21.23
B 100 1.0e-03 1 1 1 1.01e− 02 1.63e + 00 6.95e− 01 94.90

B 2 1.0e-05 2 9 6 2.77e− 01 1.34e + 01 4.54e + 00 11.69
B 5 1.0e-05 2 6 4 1.22e− 01 4.44e + 00 1.71e + 00 19.53
B 10 1.0e-05 2 5 3 6.26e− 02 2.11e + 00 8.50e− 01 30.74
B 100 1.0e-05 1 2 1 1.01e− 02 2.10e− 01 8.60e− 02 184.59

B 2 1.0e-07 4 11 7 2.77e− 01 1.34e + 01 4.54e + 00 14.53
B 5 1.0e-07 3 7 5 1.21e− 01 4.44e + 00 1.71e + 00 24.99
B 10 1.0e-07 2 6 4 6.24e− 02 2.11e + 00 8.50e− 01 40.41
B 100 1.0e-07 2 3 2 6.43e− 03 2.03e− 01 8.43e− 02 252.30

C 2 1.0e-03 2 7 4 1.69e− 01 1.45e + 01 4.90e + 00 10.26
C 5 1.0e-03 1 4 2 1.22e− 01 4.92e + 00 1.97e + 00 20.01
C 10 1.0e-03 1 3 2 6.20e− 02 2.46e + 00 1.00e + 00 25.16
C 100 1.0e-03 1 1 1 6.29e− 03 1.62e + 00 6.77e− 01 93.74

C 2 1.0e-05 3 9 6 1.65e− 01 1.44e + 01 4.88e + 00 11.44
C 5 1.0e-05 2 6 4 7.20e− 02 4.96e + 00 1.96e + 00 19.75
C 10 1.0e-05 2 6 3 3.74e− 02 2.46e + 00 1.00e− 00 31.73
C 100 1.0e-05 1 3 1 6.29e− 03 2.44e− 01 9.93e− 02 186.76

C 2 1.0e-07 4 12 7 1.65e− 01 1.44e + 01 4.88e + 00 16.70
C 5 1.0e-07 3 8 5 7.18e− 02 4.96e + 00 1.96e + 00 27.92
C 10 1.0e-07 3 8 4 3.69e− 02 2.46e + 00 1.00e− 00 42.30
C 100 1.0e-07 2 4 2 3.79e− 03 2.37e− 01 9.82e− 02 257.52
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Fig.14. Subtij; point A; BE; NDIV = 2; TOLΣ = 10−1
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Fig.15. Subtij; point A; BE; NDIV = 2; TOLΣ = 10−5

5 CONCLUSIONS

Two numerical integration schemes, namely the explicit
Modified-Euler (ME) with automatic time-step and the
fully implicit Backward-Euler (BE), were applied to inte-
grate the evolution laws of two constitutive models based in
the subloading concept, namely the Subloading Cam clay
model and the Subloading tij model.

Both models were formulated within the same frame-
work, using the concept of internal hardening variables
(stress-like and strain-like). Therefore the integration
schemes can be applied to any elastoplastic model formu-
lated in this way, no matter the number of yield surface
used. Also it is important to emphasise that the evolu-
tion laws for the stress-strain relation and for the internal
hardening variables should be integrated simultaneously in
a coupled way.

The Modified Euler scheme with automatic time step
proved to be extremely versatile and easy to implement.
It always gave the most accurate solutions at the shortest
possible computational time.

The automatic time stepping algorithm is fundamental
to keep the accuracy of the solution and is controlled by
a single local error tolerance (STOL). This rids the user
of the difficult task of predefining the number of steps into
which the integration algorithm should sub-divide a given
strain increment. The examples run in this paper showed
that the overall average error when integrating over a de-
termined grid of imposed strain increment was within one
order of magnitude higher than STOL. This gives an im-
portant clue as to which value to choose for STOL, accord-
ing to the desired overall accuracy.

The fully implicit Backward Euler (BE) scheme resulted
in an integrator which is overall slow, inaccurate and hard
to implement. This scheme can not guarantee convergence
for a given strain increment and in most cases the total in-
crement has to be divided into a number of smaller steps.
However, the BE scheme does not allow for any measure
which can be used to automatically compute the number
of divisions necessary for its convergence or to assure a de-
sired accuracy level. In practice, this can only be done in a
trial and error basis, leading to unnecessary computations.

The longer time demanded by the BE scheme is clearly
related to the need to evaluate higher order derivatives and
due to the iterative process necessary to reach convergence.
In the case of Subloading tij model the computational time
demanded by the BE scheme is even higher, since the
derivatives in this model requires the time-consuming eval-
uation of eigen-values and eigen-projectors.

For the values of initial stresses and imposed mesh of
strain increments investigated in this paper both ME and
BE schemes were stable. The initial stress position did not
affect much the overall accuracy and computational time in
both schemes. However, the magnitude of the integration
error increases with the norm of imposed strain increments,
especially in the case of using the BE scheme.

Both schemes could be applied to Subloading Cam clay
and Subloading tij models. However, the later demanded
longer time and resulted in poorer accuracy, especially
when integrated with the BE scheme. Overall the Subload-
ing tij model seems harder to integrate, perhaps due to the
more restrict stress range imposed by the modified stress
tensor tij.
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A APPENDIX

The definitions in this paper use a system of Cartesian co-
ordinates and an orthonormal basis. Direct or Gibbs nota-
tion is used to facilitate the understanding of the physical
meaning of the equations. Although a bit cumbersome,

the piling of under tildes is used to indicate the order of an
entity. The following operations are defined:

∼
a = ai

∼
ei

∼
a •

∼
b = aibi = s

||
∼
a||2 =

√
∼
a •

∼
a

(
∼
a⊗

∼
b) •

∼
c =

∼
a(

∼
b •

∼
c)

∼
a⊗

∼
b = aibj

∼
ei ⊗

∼
ej

≈

A = Aij
∼
ei ⊗

∼
ej

≈

A :
≈

B = AijBij = S

||
≈

A||2 =
q

≈

A :
≈

A

≈
∼

M = Mijk
∼
ei ⊗

∼
ej ⊗

∼
ek

∼
a⊗

≈

A = aiAjk
∼
ei ⊗

∼
ej ⊗

∼
ek

≈

A⊗
∼
a = Aijak

∼
ei ⊗

∼
ej ⊗

∼
ek

≈

≈

T = Tijkl
∼
ei ⊗

∼
ej ⊗

∼
ek ⊗

∼
el

(
≈

A⊗
≈

B) :
≈

C =
≈

A(
≈

B :
≈

C)

≈

A⊗
≈

B = AijBkl
∼
ei ⊗

∼
ej ⊗

∼
ek ⊗

∼
el

≈

A •
≈

B = AimBmj
∼
ei ⊗

∼
ej

≈

A •
∼
a = Aimam

∼
ei

∼
a •

≈

≈

T = amTmijk
∼
ei ⊗

∼
ej ⊗

∼
ek

≈
∼

M •
≈

A = MijmAmk
∼
ei ⊗

∼
ej ⊗

∼
ek

≈

≈

T •
≈

A = TijkmAml
∼
ei ⊗

∼
ej ⊗

∼
ek ⊗

∼
el

≈

A ~
≈

B = AikBjl
∼
ei ⊗

∼
ej ⊗

∼
ek ⊗

∼
el

≈

A»
≈

B = AilBjk
∼
ei ⊗

∼
ej ⊗

∼
ek ⊗

∼
el

With the present notation it is easy to realize the final
order of a “dot” product. The number of undertildes of
each tensor is added and each dot drops two tildes of the
final result. Thus, a dot (•) drops two tildes and two dots
(:) drops four tildes. In the dyadic products (x or * symbols
encased in a circle or square) the final order is simply the
sum of the number of tildes of the operands.

B APPENDIX

All the derivatives necessary to the definition of the evo-
lution laws and their integration for both Subloading Cam
clay and Subloading tij models are given in this appendix.
For both models the following equation is used:

k = 2c(λ− κ)2 log
zβ

zα
(50)

B.1 Subloading Cam-clay

≈

≈

M =

„

2M2

9
− 1

«

≈

I ⊗
≈

I + 3
≈

≈

I
sym (51)

≈

N1 =
−M2

3 ≈

I (52)

≈

R1 =
p1

χ

„

2M2

3
− G

3p2

«

≈

I (53)

≈

R2 =
p1e

χ

2M2

3 ≈

I (54)

S11 =
tr(

≈

r)

χ
+

G− k

pχ
(55)

S12 =
p1k

p1epχ
(56)



S21 = 0 (57)

S22 =
tr(

≈

r)

χ
(58)

B.2 Subloading tij

Some of the following equations were deduced in Pedroso
(2002). The derivatives of eigen-projectors with respect to
the stress tensors are based on the work of (Miehe, 1997).

≈

≈

M =
dtN

d
≈
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In the following, λk and
≈

P k are the eigen-vectors and
the eigen-projectors of

≈

σ, respectively. The eigenprojec-
tors are the three tensors formed by the dyadic between
the eigenvectors as in:

≈

P k =
∼
ev(k) ⊗

∼
ev(k) (no num on k) (72)

in which
∼
evk are the eigenvectors of

≈

σ and the following
expression represents the spectral decomposition
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