
A Reader Framework for Guile for Guile-Reader 0.3

Ludovi Court�es

Edition 0.324 February 2007Copyright 2005, 2006, 2007 Ludovi Court�esPermission is granted to make and distribute verbatim opies of this manual provided theopyright notie and this permission notie are preserved on all opies.Permission is granted to opy and distribute modi�ed versions of this manual under the on-ditions for verbatim opying, provided that the entire resulting derived work is distributedunder the terms of a permission notie idential to this one.Permission is granted to opy and distribute translations of this manual into another lan-guage, under the above onditions for modi�ed versions, exept that this permission notiemay be stated in a translation approved by the Free Software Foundation.

iTable of ContentsA Reader Framework for Guile 11 Introdution . 32 Overview . 53 API Referene . 73.1 Token Readers . 73.1.1 De�ning a New Token Reader. 73.1.2 Token Reader Calling Convention . 73.1.3 Invoking a Reader from a Token Reader 83.1.4 Token Reader Library . 93.1.5 Limitations . 143.1.5.1 Token Delimiters . 143.1.5.2 Overlapping Token Readers . 153.2 Readers . 163.2.1 De�ning a New Reader . 163.2.2 Reader Library . 173.2.3 Compatibility and Con�nement . 194 Internals . 21Conept Index . 23Funtion Index . 25

ii A Reader Framework for Guile

1A Reader Framework for GuileThis doument desribes Guile-Reader version 0.3, for GNU Guile 1.8. It was last updatedin February 2007.This doumentation should be mostly omplete. Details about the C API are omittedfrom this manual. They an be found in the publi header �les.

2 A Reader Framework for Guile

Chapter 1: Introdution 31 IntrodutionGuile urrently provides limited extensibility of its reader, by means of read-hash-extend(see setion \Reader Extensions" in Guile Referene Manual), for instane, orread-enable (see setion \Sheme Read" in Guile Referene Manual). SRFI-10(http://srfi.shemers.org/srfi-10/srfi-10.html) tries to propose a generi,portable, extension mehanism similar to read-hash-extend but limited to #, sequenes.Moreover, while this may not always be desirable, all these extension failities have a globale�et, hanging the behavior of the sole reader implementation available at run-time. Thismakes it impossible to have, for instane, one module onsider names starting with : assymbols, while another onsiders them as keywords.Extensions suh as the read syntax for SRFI-4 numeri vetors (see setion \UniformNumeri Vetors" in Guile Referene Manual) had to be added to Guile's built-in C reader.Syntati extensions that did not appeal the majority of users, like Emas-Lisp vetors,are #ifdef'd within the reader ode and are not available by default. Moreover, someextensions are inompatible with eah other, suh as the DSSSL keyword syntax and SCSHblok omments (see setion \Blok Comments" in Guile Referene Manual). In short theurrent reader syntax is hardly extensible.The idea of Guile Reader is to provide a framework allowing users to quikly de�nereaders for whatever syntax (or rather: variant of the Sheme syntax) they like. Programsan then provide their own readers and, thanks to Guile's urrent-reader mehanism,have their ode read with this reader.While it is muh simpler than a full-blown lexer generator suh as Flex(http://www.gnu.org/software/flex/), Danny Dub�e's SILex (http://www.iro.umontreal.a/~dube/)and Bigloo's RGC (http://www.inria.fr/mimosa/fp/Bigloo), its simple programminginterfae should make it very straightforward to implement readers, espeially forSheme-like syntaxes. Best of all, Guile Reader omes with a library of omponents thatan typially be used to onstrut a reader for the Sheme syntax. And eah one of thisomponents may be reused at will when reating other readers. On the other hand, oneshould be aware that this simpler API omes at the ost of a lak of onsisteny in someases, as outlined later in this manual (see Setion 3.1.5 [Limitations℄, page 14).Common Lisp has a similar mehanism to extend its reader whih is alled the read table.Gambit Sheme (http://www.iro.umontreal.a/~gambit/), for instane, also provides animplementation of read tables. However, it appears to have limitations similar to Guile'sread-enable and read-hash-extend in terms of possibilities for syntax extension. On theother hand, it allows the reader and writer to be kept onsistent, whih guile-reader doesnot address.

4 A Reader Framework for Guile

Chapter 2: Overview 52 OverviewGuile-reader allows for the onstrution of readers apable of understanding various syn-tati variants. The simplest way to use it is through its reader library that allows oneto pik and hoose various ommonly used syntati extensions to the standard Shemesyntax (see Setion 3.2.2 [Reader Library℄, page 17). However, guile-reader also providesa �ner-grain programming interfae allowing the onstrution of virtually any reader, withits own syntati spei�ities. The following setions fous primarily on this apability.Before going into the details of the reader framework API, let us have a quik overviewof what this is. Basially, guile-reader introdues two objets: readers and token readers.Readers an be thought of, simply, as proedures like Sheme's read (see setion \Input"in Revised^5 Report on the Algorithmi Language Sheme), i.e., proedures that take one(optional) argument, namely the port to read from. We will see later that readers asde�ned by guile-reader an atually reeive two more arguments (see Setion 3.2.1 [De�ninga New Reader℄, page 16). A reader, like read, reads a sequene of haraters (the externalrepresentation of some objet) and returns a Sheme objet.Token readers (TRs, for short) are the building blok of a reader. A token reader isbasially an assoiation between a harater or set of haraters and a proedure to readand interpret a sequene of haraters starting with one of the former. For instane, in astandard Sheme reader, the harater (may be assoiated to a proedure that reads anS-expression. Likewise, lower-ase and upper-ase letters assoiated with the appropriateproedure form a token reader for symbols.In guile-reader, TRs may be written either in Sheme or in C, and they an even be areader produed by guile-reader itself. Unless it is a reader, the proedure (or C funtion)used to reate a TR will reeive four arguments:� the harater that was read and whih triggered its all; in the S-exp example, thiswould be (;� the port to read from;� the reader whih performed this invoation;� the top-level reader whih yielded this invoation.The next setion will provide details about the API.

6 A Reader Framework for Guile

Chapter 3: API Referene 73 API RefereneAll the Sheme proedures desribed below are exported by the (system reader) module.In order to be able to use them, you will need to import this module �rst:(use-modules (system reader))A C variant is also available for most of them by inluding the delarations available inthe <guile-reader/reader.h> header �le.3.1 Token ReadersBasially, token readers are the assoiation of a harater or set of haraters and a funtionthat is able to interpret harater sequenes that start by one of these haraters. We willsee below how to de�ne new token readers �rst, and then how to re-use existing ones.3.1.1 De�ning a New Token ReaderA new token reader objet an be reated by alling the make-token-reader proedurewith a harater spei�ation and a proedure. A harater spei�ation de�nes the set ofharaters whih should trigger an invoation of the orresponding proedure. The haraterspei�ation may be either:� a single harater;� a pair of haraters, whih is interpreted as a harater range;� a list of haraters, whih is interpreted as a set of haraters.The proedure passed to make-token-reader may atually be either a C funtion orSheme proedure that takes four arguments (see Setion 3.1.2 [TR Calling Convention℄,page 7), any \objet" returned by token-reader-proedure, or a reader. This last optionturns out to be quite helpful. For example, this is very onvenient when implementing thevarious Sheme read syntaxes pre�xed by the # harater: one an reate a reader for #,and then turn it into a token reader that is part of the top-level reader.The referene for make-token-reader is given below: [Sheme Proedure℄make-token-reader spe pro [esape?℄ [C Funtion℄sm_make_token_reader (SCM spe, SCM pro, SCM esape p)Use proedure (or reader) pro as a token reader for the haraters de�ned by spe.If esape p is true, then the reader this token reader belongs to should return even ifits result is unde�ned.The next setion explains the token reader alling onvention, i.e., how the pro argumentto make-token-reader is invoked.3.1.2 Token Reader Calling ConventionA token reader's proedure is passed four arguments:� the harater that was read and whih triggered its all; in the S-exp example, thiswould be (;� the port to read from;

8 A Reader Framework for Guile� the reader whih performed this invoation, i.e., either an sm_reader_t objet (if thetoken reader is written in C) or a four-argument Sheme proedure (if the token readeris written in Sheme);� the top-level reader whih yielded this invoation and whih may be di�erent from theprevious argument in the ase a token reader was made from a reader; the use of thesetwo arguments will be detailed in the next setion, Setion 3.1.3 [Invoking a Readerfrom a TR℄, page 8.It must return a Sheme objet resulting from the interpretation of the haraters read.It may as well raise an error if the input sequene is orrupt. Finally, it may return*unspeified*, in whih ase the alling reader will not return and instead ontinue read-ing. This is partiularly useful to de�ne omment token readers: a TR that has just reada omment will obviously not have any sensible Sheme objet to return, and a reader isnot expeted to return anything but a \real" Sheme objet. A token reader for Sheme's; line omments may be de�ned as follows:(make-token-reader #\; read-a-line-and-return-unspeified)This behavior may, however, be overridden by passing make-token-reader a third ar-gument (alled esape?):(make-token-reader #\; read-a-line-and-return-unspeified #t)A reader that inludes this TR will return *unspeified* one a line omment hasbeen read. This is partiularly useful, for instane, when implementing #! blok omments(see setion \Blok Comments" in Guile Referene Manual, for more information) as a TRattahed to #\! within the #\# sub-reader (see Setion 3.1.1 [De�ning a New Token Reader℄,page 7).Finally, the proedure passed to make-token-reader may be #f, in whih ase theresulting TR will just have the e�et of ignoring the haraters it is assoiated to. Forinstane, handling white spaes may be done by de�ning a TR like this:(make-token-reader '(#\spae #\newline #\tab) #f)3.1.3 Invoking a Reader from a Token ReaderAs seen in setion See Setion 3.1.1 [De�ning a New Token Reader℄, page 7, token readersare systematially passed to readers when invoked. The reason why this may be useful maynot be obvious at �rst sight.Consider an S-exp token reader. The TR itself doesn't have suÆient knowledge to readthe objets that omprise an S-exp. So it needs to be able to all the reader that is beingused to atually read those objets.The need for the top-level-reader argument passed to token readers may be illustratedlooking at the implementation of the vetor read syntax (see setion \Vetor Syntax" inGuile Referene Manual). One may implement the vetor reader as a token reader of the# sub-reader (see Setion 3.1.1 [De�ning a New Token Reader℄, page 7). The vetor tokenreader may be implemented like this:(lambda (hr port reader top-level-reader);; At this point, `#' as already been read and CHR is `(',;; so we an diretly all the regular S-expression reader;; and onvert its result into a vetor.(let ((sexp-read (token-reader-proedure

Chapter 3: API Referene 9(standard-token-reader 'sexp))))(apply vetor(sexp-read hr port reader top-level-reader))))When this proedure is invoked, reader points to the # sub-reader. Clearly, in order toread the symbols that omprise the list, sexp-read should not invoke reader beause readeronly knows about #-pre�xed objet syntaxes. For this reason, in order to be onsistent inre-usable, the S-exp reader must all top-level-reader whih points to the top-level reader,i.e., the reader whih yielded the invoation of the # sub-reader.3.1.4 Token Reader LibraryGuile-reader omes with a number of re-usable token readers. Together, they might beassembled to form a omplete Sheme reader equivalent to that of Guile (see Setion 3.2.2[Reader Library℄, page 17). Or they an be used individually in any reader.The standard-token-reader proedure takes a symbol that names a standard TR fromthe library and returns it (or #f if not found). Currently, the available TRs are:Token Reader Charater Spe. Desriptionboolean 4 haraters, #\f...#\F This is a sharp token reader, i.e. it readsan R5RS boolean (#f or #F, #t or #T) onea # harater has been read.boolean-srfi-4 3 haraters, #\t...#\F This is a sharp token reader, i.e. it readsan R5RS boolean (#t, #T, #F, but not #f)one a # harater has been read. Com-pared to the boolean token reader, this oneis useful when SRFI-4 oating-point homo-geneous vetors are to be used at the sametime: the SRFI-4 TR will handle #f on itsown (see Setion 3.1.5.2 [Overlapping To-ken Readers℄, page 15).brae-free-number from #\0 to #\9 Return a number or a symbol, onsideringurly braes as delimiters.brae-free-symbol-lower-ase from #\a to #\z Read a symbol that starts with a lower-ase letter and return a symbol. This to-ken reader reognizes braes as delimiters,unlike R5RS/R6RS.brae-free-symbol-mis-hars 20 haraters, #\[...#\$ Read a symbol that starts with a non-alphanumeri harater and return a sym-bol. This token reader reognizes braes asdelimiters, unlike R5RS/R6RS.

10 A Reader Framework for Guilebrae-free-symbol-upper-ase from #\A to #\Z Read a symbol that starts with an upper-ase letter and return a symbol. This tokenreader reognizes braes as delimiters, un-like R5RS/R6RS.harater #\\ This is a sharp token reader, i.e. it readsan R5RS harater one a # harater hasbeen read.urly-brae-sexp #\{ Read an S-expression enlosed in squarebrakets. This is already permitted bya number of Sheme implementations andwill soon be made ompulsory by R6RS.guile-bit-vetor #* This is a sharp token reader, i.e. it reads abit vetor following Guile's read syntax forbit vetors. See See Info �le `guile', node`Bit Vetors', for details.guile-extended-symbol #\{ This is a sharp token reader, i.e. it reads asymbol using Guile's extended symbol syn-tax assuming a # harater was read. SeeSee Info �le `guile', node `Symbol ReadSyntax', for details.guile-number from #\0 to #\9 Read a number following Guile's fashion,that is, as in R5RS (See Info �le `r5rs',node `Lexial struture', for syntatidetails). Beause the syntaxes for numbersand symbols are losely tight in R5RS andGuile, this token reader may return eithera number or a symbol. For instane, itwill be invoked if the string 123.123.123is passed to the reader but this will atu-ally yield a symbol instead of a number (seeSetion 3.1.5.2 [Overlapping Token Read-ers℄, page 15).guile-symbol-lower-ase from #\a to #\z Read a symbol that starts with a lower-aseletter in a ase-sensitive fashion.guile-symbol-mis-hars 22 haraters, #\[...#\$ Read a symbol that starts with a non-alphanumeri harater in a ase-sensitivefashion.

Chapter 3: API Referene 11guile-symbol-upper-ase from #\A to #\Z Read a symbol that starts with an upper-ase letter in a ase-sensitive fashion.keyword #\: This token reader returns a keyword asfound in Guile. It may be used either aftera # harater (to implement Guile's defaultkeyword syntax, #:kw) or within the top-level reader (to implement :kw-style key-words).It is worth noting that this token readerinvokes its top-level in order to read thesymbol subsequent to the : harater.Therefore, it will adapt to the symbol de-limiters urrently in use (see Setion 3.1.5.1[Token Delimiters℄, page 14).number+radix 12 haraters, #\b...#\E This is a sharp token reader, i.e. it reads anumber using the radix notation, like #b01for the binary notation, #x1d for the hex-adeimal notation, et., see See Info �le`guile', node `Number Syntax', for details.quote-quasiquote-unquote 3 haraters, #\'...#\, Read a quote, quasiquote, or unquote S-expression.r5rs-lower-ase-number from #\0 to #\9 Return a number or a lower-ase symbol.r5rs-lower-ase-symbol-lower-ase from #\a to #\z Read a symbol that starts with a lower-aseletter and return a lower-ase symbol, re-gardless of the ase of the input.r5rs-lower-ase-symbol-mis-hars 22 haraters, #\[...#\$ Read a symbol that starts with a non-alphanumeri harater and return a lower-ase symbol, regardless of the ase of theinput.r5rs-lower-ase-symbol-upper-ase from #\A to #\Z Read a symbol that starts with an upper-ase letter and return a lower-ase symbol,regardless of the ase of the input.r5rs-upper-ase-number from #\0 to #\9 Return a number or an upper-ase symbol.r6rs-number from #\0 to #\9 Return a number or a symbol. This tokenreader onforms to R6RS, i.e. it onsiderssquare brakets as delimiters.

12 A Reader Framework for Guiler6rs-symbol-lower-ase from #\a to #\z Read a symbol that starts with a lower-ase letter and return a symbol. This to-ken reader onforms with R6RS in that it isase-sensitive and reognizes square brak-ets as delimiters (see Setion 3.1.5.1 [TokenDelimiters℄, page 14).r6rs-symbol-mis-hars 20 haraters, #\{...#\$ Read a symbol that starts with a non-alphanumeri harater and return a sym-bol. This token reader onforms withR6RS in that it is ase-sensitive and reog-nizes square brakets as delimiters (see Se-tion 3.1.5.1 [Token Delimiters℄, page 14).r6rs-symbol-upper-ase from #\A to #\Z Read a symbol that starts with an upper-ase letter and return a symbol. This to-ken reader onforms with R6RS in that it isase-sensitive and reognizes square brak-ets as delimiters (see Setion 3.1.5.1 [TokenDelimiters℄, page 14).ssh-blok-omment #\! This is a sharp token reader, i.e. itreads a SCSH-style blok omment (like#! multi-line omment !#) and returns*unspeified*, assuming a # haraterwas read before. This token reader has its\esape" bit set, meaning that the readerthat alls it will return *unspeified* toits parent reader. See also See Info �le`guile', node `Blok Comments', for detailsabout SCSH blok omments.semiolon-omment #\; Read an R5RS semiolon line-omment andreturn *unspeified*. Consequently, thealling reader will loop and ignore the om-ment.sexp #\(Read a regular S-expression enlosed inparentheses.

Chapter 3: API Referene 13skribe-exp #\[Read a Skribe markup expression. Skribe'sexpressions look like this:[Hello ,(bold [World℄)!℄=> ("Hello " (bold "World") "!")See the Skribe web site(http://www.inria.fr/mimosa/fp/Skribe) orthe Skribilo web site(http://www.nongnu.org/skribilo/) formore details.square-braket-sexp #\[Read an S-expression enlosed in squarebrakets. This is already permitted bya number of Sheme implementations andwill soon be made ompulsory by R6RS.srfi-4 3 haraters, #\s...#\f This is a sharp token reader, i.e. it reads anSRFI-4 homogenous numeri vetor onea # harater has been read. This tokenreader also handles the boolean values #f.srfi30-blok-omment #\| This is a sharp token reader, i.e. itreads an SRFI-30 blok omment (like#| multi-line omment |#) and returns*unspeified*, assuming a # haraterwas read before. This token reader has its\esape" bit set. For more details aboutSRFI-30, see Nested Multi-line Comments(http://srfi.shemers.org/srfi-30/srfi-30.html).srfi62-sexp-omment #\; This is a sharp token reader, i.e. itreads an SRFI-62 omment S-expression(as in (+ 2 #;(omment here) 2)) andreturns *unspeified*, assuming a #harater was read before. This tokenreader has its \esape" bit set. Formore details about SRFI-62, please seeS-expression omments spei�ations(http://srfi.shemers.org/srfi-62/srfi-62.html).string #\" Read an R5RS string.vetor #\(This is a sharp token reader, i.e. it readsan R5RS vetor one a # harater has beenread.

14 A Reader Framework for Guilewhitespae from #\soh to#\spae This is a void token reader that auses itsalling reader to ignore (i.e. treat as white-spae) all ASCII haraters ranging from 1to 32.As an be inferred from the above two lists, reading harater sequenes starting withthe # haraters an easily be done by de�ning a sub-reader for that harater. That readeran then be passed to make-token-reader as the proedure attahed to #:(define sharp-reader(make-reader (map standard-token-reader'(boolean haraternumber+radix keywordsrfi-4blok-omment))))(define top-level-reader(make-reader (list (make-token-reader #\# sharp-reader)...)))The proedures available to manipulate token readers are listed below:[Sheme Proedure℄token-reader-esape? tr [C Funtion℄sm_token_reader_esape_p (SCM tr)Return #t if token reader tr requires the readers that use it to return even if its returnvalue is unspei�ed. [Sheme Proedure℄token-reader-speifiation tr [C Funtion℄sm_token_reader_spe (SCM tr)Return the spei�ation, of token reader tr. [Sheme Proedure℄token-reader-proedure tr [C Funtion℄sm_token_reader_pro (SCM tr)Return the proedure attahed to token reader tr. When #f is returned, the tr is a\fake" reader that does nothing. This is typially useful for whitespaes.[Sheme Proedure℄standard-token-reader name [C Funtion℄sm_standard_token_reader (SCM name)Lookup standard token reader named name (a symbol) and return it. If name is doesnot name a standard token reader, then an error is raised.3.1.5 LimitationsThis setion desribes the main limitations and ommon pitfalls enountered when usingguile-reader.3.1.5.1 Token DelimitersAs an be seen from the previous setion, there exist, for instane, an surprisingly highnumber of symbol token readers. The reason for this is that di�erent syntax variants de�ne

Chapter 3: API Referene 15di�erent token delimiters. Token delimiters are haraters that help the reader determinewhere tokens that require impliit termination do terminate. Quoting R5RS (see setion\Lexial struture" in Revised^5 Report on the Algorithmi Language Sheme):Tokens whih require impliit termination (identi�ers, numbers, haraters, anddot) may be terminated by any <delimiter>, but not neessarily by anythingelse.R5RS de�nes token delimiters as one of the following: a whitespae, a parentheses, aquotation mark (") or a semi-olon (;) harater. On the other hand, R6RS, whih is tosupport the ability to use square brakets instead of parentheses for S-expressions, alsoonsiders square brakets as token delimiters. Likewise, if we were to support urly braesto enlose S-expressions, then urly braes would need to be onsidered as token delimiterstoo.For this reason, the token reader library omes with several symbol token readers: theguile-symbol- family does not onsider square brakets as delimiters while the r6rs-symbol- family does, the brae-free- TR family onsiders urly braes as delimiters butnot square brakets, et. Similarly, several variants of number TRs are available. This isdue to the fat that number TRs may return symbols in orner ases like symbol namesstarting with a number.However, although keywords must also omply with the token delimiters rules, there isonly one keyword TR (alled keyword). The reason for this is that this TR relies on thetop-level reader's symbol reader to read the symbol that makes up the keyword being read.In the urrent design of guile-reader, this token delimiter issue reates a number ofpitfalls when one is willing to hange the urrent delimiters. In partiular, one has to bevery areful about using TRs that onsistently assume the same token delimiters.A \real" lexer generator suh as Danny Dub�e's SILex avoids suh issues beause it allowsthe de�nition of tokens using regular expressions. However, its usage may be less trivialthan that of guile-reader.3.1.5.2 Overlapping Token ReadersAs an be seen from the desriptions of the standard token readers (see Setion 3.1.4 [TokenReader Library℄, page 9), token readers sometimes \overlap", i.e., the set of input stringsthey math overlap. For instane, the boolean token reader should math #t, #T, #f or #F.However, the srfi-4 token reader also needs to math oating-point numeri vetors suhas #f32(1.0 2.0 3.0). Similarly, strings like 1 are, logially, handled by the guile-number(or similar) token reader; however, sine a string like 1+ should be reognized as a symbol,rather than a number, it must then be passed to one of the symbol token readers.In those two ases, the input sets of those two token readers overlap. In order for theresulting reader to work as expeted, the two overlapping token readers need to somehowooperate. In the �rst example, this is ahieved by having the srfi-4 TR read in stringsstarting with #f or #F and passing them to the boolean-srfi-4TR if need be. In the seondase, this is done by having number TRs (e.g., guile-number) expliitly hek for non-digitharaters and return a symbol instead of a number when a non-digit is enountered.It should be obvious from these two examples that this limitation impedes full separationof the various TRs. Fortunately, there are not so many ases where suh overlapping

16 A Reader Framework for Guileours when implementing readers for R5RS-like syntaxes. The implementation of make-alternate-guile-reader (see Setion 3.2.2 [Reader Library℄, page 17) shows how suhproblems have been worked around.Lexer generators suh as Flex (http://www.gnu.org/software/flex/), SILex(http://www.iro.umontreal.a/~dube/) and Bigloo's RGC (see setion \RegularParsing" in Bigloo, A \Pratial Sheme Compiler"|User Manual) obviously do nothave this problem: all possible \token" types are de�ned using regular expressions andthe string-handling ode (e.g., ode that onverts a string into a Sheme number) is onlyinvoked one a full mathing string has been found.3.2 ReadersGuile-reader is about de�ning readers. Continuing to read this manual was de�nitely agood idea sine we have �nally reahed the point where we will start talking about how tode�ne new readers.3.2.1 De�ning a New ReaderRoughly, a reader is no more than a loop whih reads haraters from a given port, anddispathes further interpretation to more spei� proedures. Written in Sheme, it ouldresemble something like:(define (my-reader port)(let loop ((result *unspeified*))(let ((the-har (get port)))(ase the-har((#\() (my-sexp-token-reader the-har port my-reader)))((#\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9)(my-number-token-reader the-har port my-reader))(else(error "unexpeted harater" the-har))))))Using guile-reader, this is done simply by providing a list of token readers to the make-reader proedure, as in the following example:(define my-reader(make-reader (list (make-token-reader #\(my-sexp-token-reader)(make-token-reader '(#\0 . #\9)my-number-token-reader))))However, the proedure returned by make-reader is di�erent from the hand-written oneabove in that in takes two additional optional arguments whih makes it look like this:(define (my-reader port faults-aller-handled? top-level-reader)(let loop ((the-har (get port)))(ase the-har...(else(if (not faults-aller-handled?)(error "unexpeted harater" the-har)(unget the-har) ;; and return *unspeified*)))))

Chapter 3: API Referene 17Therefore, by default, my-reader will raise an error as soon as it reads a harater thatit does not know how to handle. However, if the aller passes #t as its faults-aller-handled? argument, then my-reader is expeted to \unget" the faulty harater and return*unspeified*, thus allowing the aller to handle the situation.This is useful, for instane, in the S-exp token reader example: the S-exp token readerneeds to all its alling reader in order to read the omponents between the opening andlosing brakets; however, the alling reader may be unable to handle the #\) harater sothe S-exp token reader has to handle it by itself and needs to tell it to the reader.[Sheme Proedure℄%reader-standard-fault-handler hr port reader [C Funtion℄sm_reader_standard_fault_handler (SCM hr, SCM port, SCMreader)Throw a read-error exeption indiating that harater hr was read from port andould not be handled by reader. [Sheme Proedure℄make-reader token-readers [fault-handler-pro [ags...℄℄ [C Funtion℄sm_make_reader (SCM token readers, SCM fault handler pro, SCMags)Create a reader made of the token readers listed in token readers. token readersshould be a list of token readers returned by make-token-reader or standard-token-reader for instane. The fault handler pro argument is optional and maybe a three-argument proedure to all when an unexpeted harater is read. Whenfault handler pro is invoked, it is passed the faulty harater, input port, and reader;its return value, if any, is then returned by the reader. If fault handler pro is notspei�ed, then %reader-standard-fault-handler is used. ags is a rest argumentwhih may ontain a list of symbols representing reader ompilation ags.Currently, the ags that may be passed to make-reader are the following:� reader/reord-positions will yield a reader that reords the position of the expres-sion read, whih is mostly useful for debugging purposes; this information may then beaessed via soure properties (see setion \Proedure Properties" in Guile RefereneManual).� reader/lower-ase will have the yielded reader onvert to lower-ase all the lettersthat it reads; note that this is not suÆient to implement symbol ase-insensitivityas shown in setion \Reader options" in Guile Referene Manual. For this, the tokenreader(s) that read symbols must also onvert all subsequent haraters to lower-ase.� reader/upper-ase will have the yielded reader onvert to upper-ase all the lettersthat it reads; again, that is not suÆient to implement ase-insensitivity.� reader/debug auses the generated reader to produe debugging output.3.2.2 Reader LibraryThe (system reader) module exports the default-reader proedure whih returns areader equivalent to Guile's built-in default reader made of re-usable token readers writtenin C (see Setion 3.1.4 [Token Reader Library℄, page 9). [Sheme Proedure℄default-sharp-reader-token-readers

18 A Reader Framework for Guile[C Funtion℄sm_default_sharp_reader_token_readers (void)Return the list of token readers that omprise Guile's default reader for the # har-ater. [Sheme Proedure℄default-reader-token-readers [C Funtion℄sm_default_reader_token_readers (void)Return the list of token readers that omprise Guile's default reader.[Sheme Proedure℄default-sharp-reader [C Funtion℄sm_default_sharp_reader (void)Returns Guile's default reader for the # harater. [Sheme Proedure℄default-reader [C Funtion℄sm_default_reader (void)Returns a reader ompatible with Guile's built-in reader.Additionally, the (system reader library) module exports a number of proeduresthat ease the re-use of readers. [Sheme Proedure℄make-guile-reader [fault-handler [ags...℄℄ [C Funtion℄sm_make_guile_reader (SCM fault handler, SCM ags)Make and return a new reader ompatible with Guile's built-in reader. This funtionall make-reader with ags. Note that the sharp reader used by the returned readeris also instantiated using ags. The value of fault-handler defaults to %reader-standard-fault-handler. [Sheme Proedure℄alternate-guile-reader-token-readers optionsGiven options, a list of symbols desribing reader options relative to the reader re-turned by (default-reader), return two lists of token readers: one for use as a sharpreader and the other for use as a top-level reader. Currently, the options supportedare the following:no-sharp-keywordsRemove support for #:kw-style keywords.dsssl-keywordsAdd support for DSSSL-style keywords, like #!kw. This option also hasthe same e�et as no-ssh-blok-omments.olon-keywordsAdd support for :kw-style keywords. This is equivalent to (read-set!keywords 'prefix).no-ssh-blok-ommentsDisable SCSH-style blok omments (see See Info �le `guile', node `BlokComments', for details).srfi30-blok-ommentsAdd support for SRFI-30 blok omments, like:(+ 2 #| This is an #| SRFI-30 |# omment |# 2)srfi62-sexp-ommentsAdd support for SRFI-62 S-expression omments, like:

Chapter 3: API Referene 19(+ 2 #;(a omment) 2)ase-insensitiveRead symbols in a ase-insensitive way.square-braket-sexpsAllow for square brakets around S-expressions. [Sheme Proedure℄make-alternate-guile-reader options ags. . .Return a newly reated Guile reader with options options (a list of symbols, asfor alternate-guile-reader-token-readers), with fault handler fault-handler andags ags. The fault-handler and ags arguments are the same as those passed tomake-reader. By default, fault-handler is set to %reader-standard-fault-handler.[Sheme Proedure℄read-options->extended-reader-options read-optsRead read-opts, a list representing read options following Guile's built-in represen-tation (see See Info �le `guile', node `Sheme Read', for details), and return a listof symbols represented \extended reader options" understood by make-alternate-guile-reader et al.3.2.3 Compatibility and Con�nementGuile's ore read subsystem provides an interfae to ustomize its reader, namely via theread-options (see setion \Sheme Read" in Guile Referene Manual) and read-hash-extend (see setion \Reader Extensions" in Guile Referene Manual) proedures.The main problem with this approah is that hanging the reader's options using theseproedures has a global e�et sine there is only one instane of read. Changing the behaviorof a single funtion at the sale of the whole is not very \shemey" and an be quite harmful.Suppose a module relies on ase-insensitivity while another relies on ase-sensitivity. If onetries to use both modules at the same time, hanes are that at least one of them willnot work as expeted. Risks of onits are even higher when read-hash-extend is used:imagine a module that uses DSSSL-style keywords, while another needs SCSH-style blokomments.In (system reader onfinement), guile-reader o�ers an implementation ofread-option-interfae and read-hash-extend that allows to on�ne suh settings on aper-module basis. In order to enable reader on�nement, one just has to do this:(use-modules (system reader onfinement))Note that this must be done before the suspiious modules are loaded, that is, typiallywhen your program starts. This will rede�ne read-options-interfae and read-hash-extend so that any future modi�ation performed via Guile's built-in reader option interfaewill be on�ned to the alling module.Starting from Guile 1.8.0, urrent-reader is a ore binding bound to a uid whosevalue should be either #f or a reader (i.e., a read-like proedure). The value of this uidditates the reader that is to be used by primitive-load and its value an be hangeddynamially (see setion \Loading" in Guile Referene Manual).The on�ned variants of read-options-interfae and read-hash-extend rely on thisfeature to make reader ustomizations loal to the �le being loaded. This way, invoations ofthese funtions from within a �le being loaded by primitive-load take e�et immediately.

20 A Reader Framework for Guile

Chapter 4: Internals 214 InternalsIn order to not have to trade too muh performane for exibility, guile-reader dynami-ally ompiles ode for the readers de�ned using GNU lightning (see setion \Overview"in Using and Porting GNU lightning). As of version 1.2b, GNU lightning an generateode for the PowerPC, SPARC, and IA32 arhitetures. For other platforms, guile-readerprovides an alternative (slower) C implementation that does not depend on it. Using thelightning-generated readers typially provides a 5% performane improvement over the statiC implementation.Re-using token readers written in C, as explained in See Setion 3.1.4 [Token ReaderLibrary℄, page 9, does not imply any additional ost: the underlying C funtion will bealled diretly by the reader, without having to go through any marshalling/unmarshallingstage.Additionally, on the C side, token readers may be initialized statially (exept, obviously,token readers made out of a dynamially-ompiled reader). Making good use of it animprove the startup time of a program. For example, make-guile-reader (see Setion 3.2.2[Reader Library℄, page 17) is implemented in C and it uses statially initialized arrays oftoken readers. It still needs to invoke sm__make_reader (), but at least, token readersthemselves are \ready to use".Sanners as generated by Flex or similar tools should theoretially be able to providebetter performane beause the input reading and pattern mathing loop is self-ontained,may �t in ahe, and only has to perform funtion alls one a pattern has been fullyreognized.

22 A Reader Framework for Guile

Chapter 4: Conept Index 23Conept IndexCalling onvention . 7harater spei�ation . 7on�nement . 19Llexer . 3, 16Ppitfall . 15RR5RS . 15R6RS . 15

read table . 3reader . 5, 16reader on�nement . 19reader library . 5, 17SSCSH blok omments . 8SILex . 3SRFI-30 . 13SRFI-62 . 13Ttoken delimiters . 14token reader . 5, 7token reader library . 9top-level reader . 8

24 A Reader Framework for Guile

Chapter 4: Funtion Index 25Funtion Index%%reader-standard-fault-handler 17Aalternate-guile-reader-token-readers 18Current-reader . 19Ddefault-reader . 18default-reader-token-readers 18default-sharp-reader. 18default-sharp-reader-token-readers 17Mmake-alternate-guile-reader 19make-guile-reader . 18, 21make-reader . 16, 17make-token-reader . 7Rread-disable . 19

read-enable . 19read-hash-extend . 19read-options . 19read-options->extended-reader-options 19read-options-interfae . 19read-set! . 19Ssm_default_reader . 18sm_default_reader_token_readers 18sm_default_sharp_reader 18sm_default_sharp_reader_token_readers . . . 17sm_make_guile_reader . 18sm_make_reader . 17sm_make_token_reader. 7sm_reader_standard_fault_handler. 17sm_standard_token_reader 14sm_token_reader_esape_p 14sm_token_reader_pro . 14sm_token_reader_spe . 14standard-token-reader . 14Ttoken-reader-esape?. 14token-reader-proedure . 14token-reader-speifiation 14

26 A Reader Framework for Guile

