- [1]
- O. Emanuelsson,
A. Elofsson, G. von Heijne, and et al.
In silico prediction of the peroxisomal proteome in fungi, plants and animals.
J MOL BIOL, 330 (2):443-456, 2003.
- [2]
- I. Westerlund,
G. Von Heijne, and O. Emanuelsson.
Lumenp - a neural network predictor for protein localization in the thylakoid
lumen.
PROTEIN SCI, 12 (10):2360-2366, 2003.
- [3]
- N. Ampazis, S. J.
Perantonis, and J. G. Taylor.
A dynamical model for the analysis and acceleration of learning in feedforward
networks.
Neural Networks, 14 (8):1075-1088, 2001.
- [4]
- S. J. Perantonis,
N. Ampazis, V. Virvilis, and S. Petridis.
Open issues in feedforward neural network training.
In LFTNC2001, Siena, Italy, 2001.
- [5]
- A. Agogino, J. Ghosh,
S. J. Perantonis, V. Virvilis, S. Petridis, and Lisboa P. J. G.
The role of multiple linear-projection based visualization techniques in RBF
based classification of high dimensional data.
In Proceedings of IEEE-INNS-ENNS IJCNN2000, volume 3, Como, Italy,
2000.
- [6]
- N. Ampazis and S. J. Perantonis.
Levenberg-marquardt algorithm with adaptive momentum for the efficient training
of feedforward networks.
In Proceedings of IEEE & INNS International Joint Conference on Neural
Networks, number NN0401 in 0, Como, Italy, 2000.
- [7]
- S. J.
Perantonis and V. Virvilis.
Efficient perceptron learning using constrained steepest descent.
Neural Networks, 13(3):351-364, 2000.
- [8]
- S. J.
Perantonis, N Ampazis, and S. Spirou.
Training feedforward neural networks with the dogleg method and bfgs hessian
updates.
Como, Italy, 2000.
Submitted to IJCNN' 2000.
- [9]
- S. J.
Perantonis, N. Ampazis, and V. Virvilis.
A learning framework for neural networks using constrained optimization
methods.
In Annals of Operations Research, volume 99, pages 385-401,
2000.
- [10]
- S. J. Perantonis,
S. Petridis, and V. Virvilis.
Supervised principal component analysis using a smooth classifier paradigm.
In Proceedings of International Conference on Pattern Recognition,
number 1572 in 0, Barcelona, Spain, 2000.
- [11]
- N. Ampazis,
S. J. Perantonis, and J. G. Taylor.
Acceleration of learning in feedforward networks using dynamical systems
analysis and matrix perturbation theory.
Washington, DC, 1999.
Presented at International Joint Conference on Neural Networks.
- [12]
- N. Ampazis, S. J.
Perantonis, and J. G. Taylor.
Dynamics of multilayer networks in the vicinity of temporary minima.
Neural Networks, 12 (1):43-58, 1999.
- [13]
- S. J.
Perantonis and V. Virvilis.
Dimensionality reduction using a novel neural network based feature extraction
method.
Washington, DC, 1999.
Presented at International Joint Conference on Neural Networks. Best
presentation award.
- [14]
- S. J.
Perantonis and V. Virvilis.
Input feature extraction for multilayer perceptrons using supervised principal
component analysis.
Neural Processing Letters, 10(3):243-252, 1999.
- [15]
- V. Virvilis.
Finite Training in Single Layer Perceptrons and Feature
Extraction.
PhD thesis, University of Athens Department of Informatics, 1999.
In greek.
- [16]
- S. J.
Perantonis and V. Virvilis.
Efficient linear discriminant analysis using a fast quadratic programming
algorithm.
In International Workshop on Advanced Black-Box Techniques for Nonlinear
Modeling, pages 164-169, Leuven, Belgium, 1998.
- [17]
- S. J.
Perantonis, V. Virvilis, and N. Ampazis.
Recent advances in neural network training using constrained optimization.
In Proceedings of 4th International Conference on Applied Mathematical
Programming and Modeling APMOD98, Limassol, Cyprus, 1998.