
Data Flow in Babe

Blake R. Matheny

This document describes the data flow of events within Babe. There is an accompanying diagram at the end of this document

that you may wish to skip to. As much as possible, I have tried to split this document into the section by the six major modules

that comprise Babe.

1 Input

1. An input module collects data. Each instance of an input method gets its own thread, and that thread (as of now) does not

get restarted. An input method should sit in a tight loop looking for data, preferably using a method like select() or poll() to

be less resource intensive. Each input module has access to it’s own unique (previously allocated) BABE eventQueue, which

is passed to the module at initialization.

2. When new data has arrived, an input module needs to add the new data to the event queue. A start and a stop time for the

instance should be assigned to each new piece of eventData. eventData should not be added to the queue until the entire

transaction has been assembled.

3. The core continuously loops through the list of input modules, looking for new data on the queue for each instance of the

input. When new data is found on the eventQueue, it is passed to the appropriate format module.

At this point, new data has been acquired by an input module. The new data (after the sequence has been assembled) is added

to the eventQueue by the input module.

2 Formats

4. Each instance of an input module has a format associated with it. For instance, a string or xml format may be associated

with an input module. This makes logical sense, since an input is taking data from a data generation point, which is only

generating data in one format. I mean to say, that a single program rarely generates consumer output in multiple data formats.

The appropriate format module is passed the newly acquired data.

1



Now, the appropriate format module has the eventData that just came in from some input module. Each format module

has a ’format map’ file, that describes how to map data from the original format into an intermediary format. This may be

some kind of grammar, but is undecided at this point. The important point is that the symbols in the intermediary language

are associated with the symbols in the original input, such that the person in charge of administering the system has control

over the semantic interpretation of the information. For instance, if the initial data was in the following format:

<destination>
<ip_address>10.10.10.10</ip_address>
</destination>
<source>
<ip_address>192.168.1.1</ip_address>
</source>

and came from the input module ’socket’ at time ’t’, it might be transformed into the following intermediary format:

((destination_ip = 10.10.10.10)
(source_ip = 192.168.1.1)
(babe_input = socket)
(babe_timestamp = t))

This mapping becomes very important in the way that event descriptions are created. There are several reserved symbols

(including babe input and babe timestamp) that are reserved, the total number of reserved symbols has not yet been decided,

but they may be used by the event descriptions (described later). These symbols must not be specified in the format map, and

while reserved for use by babe, they may be used in the EDL.

5. After the transformation has taken place (this is where I imagine the most CPU intensive activity will take place), the

intermediary representation of the data is passed back to the core. In the format module, the original should not be modified,

since it may be needed later for forensic or proxying purposes.

In steps 3-5, the core has taken new data and passed it to an appropriate data transformation module which has passed back the

intermediary representation of the original. There are now two copies of the data, the original and the intermediary representa-

tion.

2



3 Identification

6. The intermediary representation has to be identified, as to what event this data represents. For instance, say that you had

described an event ev1 as follows:

ev1 = {
destination_ip = "10.10.10.*";
source = any;
babe_input = "socket";

};

in which case ev1 is the set of all events where the destination ip address is 10.10.10.* and the source is ANY. The

advantage of this type of abstraction is it has nothing to do with the original data format. I see this as an advantage because

relevant information to some event may become available in many different original formats. By having an intermediary

representation, events can be described in terms of information and not in terms of data . If the original input (where the

input came from) is important to the event, this can be specified in the event description using ’babe input’. One should note

that correlation between symbols in the intermediary representation and the event description. For more information on the

event descriptions, see the paper I worked on. There are also several predicates available for time comparison as well as for

the predicates as described by McCarthy.

7. So when the intermediary representation (see 4) is passed to the identification module, the ID module returns the identifier(s)

associated with the event(s) this data represents. So in this case the list returned would simply contain ’ev1’. This information

is returned to the core.

In steps 6-7, the event represented by the intermediary representation has been identified and returned to the core. An imple-

mentation detail we need to figure out is what what to do when no event is matched. Also, what to do in the case where an

event requires information a,b,c and some intermediary representation has information a,b,c,d, what do we do with d? What do

we do with ’fuzzy’ matches such as this?

3



4 Storage

8. The core now knows what event this represents, and can build a SQL query to insert the event data into the table associated

with this event. There are several advantage of using a SQL like storage for the backend. One, SQL has built in boolean

operators which we don’t have to code ourselves. Two, SQL implementations offer things such as date comparison, which

we don’t have to code ourselves. Three, SQL helps facilitates offline finite state analysis. Four, queries from some Babe

instance to another Babe instance are uniform. Five, basic regular expressions are supported but can be augmented with

PCRE if needed.

One thought, is that each event description gets its own table. So in our example from 6, there would be a table called ’ev1’

that would contain every instance of this event. This is nice because it makes checking for some types of aggregate events

quite simple, and helps facilitate checking the COUNT() of certain events. The disadvantage to this is that potentially we are

dealing with a large amount of tables. I think that the advantages outweigh the disadvantages, especially since checking for

the existence of some event would be really pretty quick. Something that needs to be thought about is some type of ’archive’

flag, so that the original data can be stored for later forensic analysis.

5 State Analysis

9. The list of events acquired in step 7 is now passed to a state analysis module. The state analysis module checks to see if the

addition of these events to the system completed any state machines for aggregate events.

10. If a machine is completed, return which event(s) are now ’complete’ to the core. A problem here is going to be, how do we

segment off completed events? Basically we need to keep track of which events already were counted in completing a state

machine, so that they are not reused in the state machine. We may need to do look ahead in the state analysis to determine if

the completed event is part of any yet to be completed aggregate event.

In steps 8-10, the new data for events is inserted into a database. After this is completed a state analysis module checks to see

if the new events helped complete any state machines. Any newly completed state machines are returned, represented as a list

of event identifiers.

4



6 Output

11. The core now checks the event chains to see if any of these events returned in step 10 need to be sent to some output.

12. If an event needs to be output, the data format type for that event is looked up and the events intermediary representation is

passed to the appropriate transformation/format module. The format is passed back to the core

13. Pass the newly formatted data to the appropriate output module

14. The appropriate output module sends the data on to its destination.

15. When there are no new events in the list to be output, go back to step 1

In steps 11-14, the events are sent to an output as specified in the configuration and this process starts over when there are no

new events to process. This is a synchronous process, so this isn’t exactly a cycle but this documents the process in general.

5



Input Module Format Module

Output ModuleBabe Core

Data
Sources

Data
Consumers

Identification
Module

Storage Module State Analysis
Module

SQL DB

BABE_eventQueue
BABE_eventData
...

1

2

3

4 5

6

7

8

9

10

11-12

13

14

8a

Data Flow in Babe

9a

babe.edl

babe.conf babe.format.y

Symbols
Configuration
File

Corresponding
Step in doc

n

Key
Sends data
from, to

Continuous
Data Usage

Optional
Connection

Configuration
Usage

6


