
GNUe Forms: A Developer's Introduction

A Guide to Programming with GNUe Forms

Version 0.5.1

Written by Jason Cater, your tour guide

Copyright © 2000-2003 Free Software Foundation.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled GNU Free Documentation License.

Table of Contents

Introduction..4
Structuring the Database...4
Designing the Form..4
Planning for Security..4

Basic Concepts..5
Datasources...5
Blocks and Fields...5
Pages and Visual Elements...5
Triggers..5
Designing for Multiple Interfaces...5
Designing for Multiple Databases..5

Creating your First Form...6
Preliminary Steps...6
Creating the Empty Form...7
Creating the Datasources..7
Creating the Logic Structure..8
Creating the Layout..9
Running the Form..11
Where To Go Next...11

Understanding Datasources...12
Table-Bound Datasources...12
Static Datasources...12
Defining Conditions..13
Linking Datasources via Master/Detail..13
Advanced Relationships..13

Understanding Events and Triggers..14
Form's Event Model...14
Named Triggers verses Embedded Triggers...14
Form-level Triggers..14
Block-level Triggers...15
Field-level Triggers..18
Page-level Triggers..19
Entry-level Triggers..19
Button-Level Triggers...19

Working with Fields...21
Typecasting Fields...21
Default Values..21
Formatting Fields with Masks..21
Dropdown Fields..24
Check boxes..24

GNUe Forms: A Developer's Introduction

A Brief Introduction to Python...25
The Basics...25
Variables and Expressions..25
Control Structures..25
Tuples, Lists, and Dictionaries... oh, my!..26

Exploring Trigger Namespaces..27
Introduction..27
Object Heirarchy..28
Fields and Entries..28
Blocks..28
Datasources...28
Form..29

Creating and Using Libraries..30
Overview..30

Integration with GNUe Tools..31
Running Reports from Forms..31
Running Forms from Navigator...31

Advanced Topics...32
Runtime Parameters..32
External Python Modules...33
Designing for Multiple Interfaces...33

Trigger Recipes..35
Timestamping a Record prior to a Commit...35
Stamping a Record with User's Login prior to a Commit..35
Auto-Populating an Entry from a Sequence..36

Appendix A: Trigger Hierarchy..37

Appendix B: Form Elements...38
Form Tags...38
Connection Tags...38
Datasource Tags...39
Dialog Tags..43
Layout Tags...43
Logic Tags...46
Menu Tags...48
Options Tags...49
Parameter Tags...50
Trigger Tags..50
Import Tags..51

Appendix C: Form Objects...56

Page 2

GNUe Forms: A Developer's Introduction

Form..56
Datasource..59
Block..60
Entry..62

Appendix D: Data Objects...65
Result Set..65
Record Set...65

Appendix E: Sample Librarian Schema...66

Appendix F: Glossary..67

Appendix G: GNU Free Documentation License..68

Page 3

GNUe Forms: A Developer's Introduction

Introduction

This section briefly introduces the process of designing an application using GNUe Forms.
BLAH, BLAH, BLAH...

Before designing an application for Forms, the developer should be somewhat familiar with
a few key concepts:

• Database Design - This guide does not delve into database design. It is assumed the
developer can either create his own tables, or has an existing set of tables to work with.

• Python Scripting - GNUe uses Python for scripting/event support. Any level of serious
applications programming will likely require some level of Python. There is a short
section entitled "A Brief Introduction to Python" in this guide that can serve as a starting
point. The average programmer can likely learn enough simply by trying out the
examples in this guide.

• XML - GNUe extensively uses XML for its internal storage format. While it is possible to
create GNUe applications via Designer without interacting with the XML formats, a good,
solid understanding of XML basics would definitely be useful.

Structuring the Database
TODO

Designing the Form
TODO

Planning for Security
TODO

Page 4

GNUe Forms: A Developer's Introduction

Basic Concepts

TODO

Datasources
Since GNUe Forms was designed from the ground up to manipulate database data, it must
have some way to tie the graphical elements to database tables. This is where a
datasource comes into play.

A datasource provides a link to a database table or some similar data store.

[TODO: EXPAND]

Datasources are portable from one GNUe tool to another. A datasource that is usable
in forms should also be usable in a report.

Blocks and Fields
A datasource provides a link to a table, but Forms needs more information than a simple
reference to meaningfully interface with an end user. A block is the first step to making
datasources suitable for such user interaction. At its most basic level, a block contains
instructions on how Forms should interact with a datasource.

Any datasources that are to interact with a user must have a single corresponding
block. Datasources that are only used internally and not for displaying data will not
normally have an associated block, although the developer may choose to do so.

A field is

Pages and Visual Elements
TODO

Layout Management

TODO

Triggers
TODO

Designing for Multiple Interfaces
TODO

Designing for Multiple Databases
TODO

Page 5

GNUe Forms: A Developer's Introduction

Creating your First Form

In this chapter, we will create our first full-featured form -- a postal code lookup table.
[TODO: EXPAND]

[TODO: REPLACE THE POSTAL CODE EXAMPLE WITH LIBRARIAN]

We are going to create a form that looks something like:

01234567890123456789012345678901234567890
|---------+---------+---------+---------|

 Zip Code: [___]

 City Name: [_______________________]

 State: [__]

The ruler is simply for our layout reference. We will come back to it later.

[TODO: EXPAND]

Preliminary Steps
[TODO: INTRO]

The following two steps may need to be performed by your database or systems
administrator.

First, we need to create a test table. Using your database of choice, create a table named
zipcodes, with three appropriately sized fields, zipcode, city, and state. In
PostgreSQL, SAP-DB, and others, the following statement will work:

create table zipcodes (
 zipcode varchar(5),
 city varchar(30),
 state varchar(2));

For other databases, create a similarly structured table.

Next, if you have not done so yet, setup your connections.conf file to point to your database.
Our examples will use a connection called tutorial. An example entry:

[tutorial]
comment = Tutorial Database
provider = psycopg
host = localhost
dbname = mydb

Page 6

GNUe Forms: A Developer's Introduction

Of course, your entry will probably look different. This example is using the PostgreSQL
psycopg driver, connecting to a database named mydb running on the local machine. See
the Forms Installation Guide for information on the location and syntax of this file.

If you already have a connection for the database you will be using, simply add an alias =
tutorial line to the appropriate section. Example:

[dev]
comment = Foobar Development
provider = psycopg
host = dbserver
dbname = mydb
alias = tutorial

Creating the Empty Form
By default, GNUe Designer will start up with an empty form. You may also create a new
form by selecting File | New | Form.

[TODO: CHANGE THE TITLE OF THE FORM]

Creating the Datasource
Our sample form will use a single table - zipcodes. To access this table in Forms, we
need to associate it with a datasource. We will call this datasource MyDS.

From the menu, select Edit | Insert | Datasource... to run the datasource
wizard. The first step of the datasource wizard asks for your connection. Select tutorial.
This is the connection we setup in the first part of this section. Click Next... You may be
asked to log in. Provide a valid database username and password.

It will need three attributes: name, connection, and table.

• name: All referencable objects in GNUe need a unique name. We will name our
datasource MyDS.

• connection: This is the name of the connection we set up in the first part of this
section. If you used our example entry, then this is called tutorial.

• table: This should be the name of the table we will be referencing. Once again, if you
used our example table create script, this will be zipcodes.

Creating the Logic Structure
[TODO: EXPLAIN THE LOGIC SECTION AND TAG]

Blocks are the display equivalent of datasources. Since we are working with a single
datasource, we will have a corresponding single block. Since this is tied to the zipcodes
table, we will call this block ZipBlock.

Block-specific attributes:

Page 7

GNUe Forms: A Developer's Introduction

• name: Set this to a unique name that we will later refer back to.

• datasource: The name of the datasource that this block is tied back to. If no
datasource is specified, then the block will be considered an unbound block.

Field-specific attributes:

• name: Set this to a unique name that we will later refer back to.

• field: Set this to the name of the corresponding field in the database.

• case: This can be set to any one of mixed, upper, or lower to force case convention.
For example, if set to upper, then all lower case input characters will be converted to
uppercase. Note that this only applies to data input from the user. Setting this field will
not convert existing data that is queried. The default value is mixed.

.....

Creating the Layout
Forms contains its layout logic in units called pages. Only a single page is normally seen
any given time by the end user. Our simple form will need one page. We will call it MyPage.

Given the layout grid we created earlier, we see that our form will be 40 characters wide
and 7 lines high. For simplicity's sake, we are using a simple character based layout,
identified as GNUe:Layout:Char. In the future, forms will support other layout styles.

Again, looking back at our earlier layout grid, we have three labels and three entries. Each
label starts in column two and each entry starts in column 13. Each pair of label/entry skips
a row, with the first pair being on row 1.

This gives us enough information to create our display layout.

Via GNUe Designer:

An empty form created by GNUe Designer automatically has a single,
empty page. If we were to add more pages, this could be accomplished
by selecting Edit | Insert | Page. However, this example uses a
single page, so we do not need to do anything for this step.

[TODO]

Running the Form
TODO

Page 8

GNUe Forms: A Developer's Introduction

[TODO: INSERT PIC OF WIN32 FORM]

[TODO: INSERT PIC OF HTML FORM]

Where To Go Next
[TODO: WELL, HOME *IS* WHERE THE HEART'S AT]

Page 9

GNUe Forms: A Developer's Introduction

Understanding Datasources

A Datasource links data to our form. Usually, a datasource points to a table if using a
relational database, or a data object if using an object database. A form can have
several datasources if pulling data from multiple locations, or no datasources at all if
the form does not reference outside data.

If a form does not have a datasource, a virtual datasource is created. The commit,
rollback, and query functions do not serve a purpose against virtual datasources.
This is particularly useful for action forms that simply cause actions to occur, but do
not directly manipulate data.

Datasources can be linked to each other in a master/detail fashion via a foreign key.
In essence, each time the master datasource changes, the detail datasource is
automatically requeried to bring up records related to the master. See the section on
master/detail relationships for more information.

Table-Bound Datasources
The most common datasource is one that is bound to an individual table or view.

Static Datasources
TODO

<datasource name="AvailDS" type="static">
 <staticset fields="id,descr">
 <staticsetrow>
 <staticsetfield name="id" value="A"/>
 <staticsetfield name="descr"
 value="Available"/>
 </staticsetrow>
 <staticsetrow>
 <staticsetfield name="id" value="N"/>
 <staticsetfield name="descr"
 value="Not Available"/>
 </staticsetrow>
 <staticsetrow>
 <staticsetfield name="id" value="B"/>
 <staticsetfield name="descr"
 value="Backordered"/>
 </staticsetrow>
 </staticset>
</datasource>

TODO

Page 10

GNUe Forms: A Developer's Introduction

Defining Conditions
Form's datasources support conditions. Conditions place restrictions on the records
returned by a datasource. For those familiar with SQL, a condition translates directly into a
WHERE clause.

<datasource connection="test" table="reps">
 <condition>
 <or>
 <eq>
 <cfield name="active"/>
 <cconst value="Y"/>
 </eq>
 <gt>
 <cfield name="sales_ytd"/>
 <cconst value="0"/>
 </gt>
 </or>
 </condition>
</datasource>

In this example, we are basically only allowing records from the reps table where the
representative is either active (active = 'Y') or had sales this year.

Linking Datasources via Master/Detail
Quite often, you will want a second datasource's behavior to be tied to a primary
datasource. If a new record is queried in the first datasource, all corresponding records in
the second datasource should automatically appear. Likewise, creating a new record in the
first datasource should clear out the second datasource and any subsequent new records in
this second datasource will be automatically associated with the new primary record.

In GNUe, we call this relationship a Master/Detail relationship. It closely mirrors the concept
of primary/foreign keys in relational databases.

Master/detail relationships have the following properties:

• When a new record is created in the master datasource, the detail datasource will have
no records.

• When the master source is queried, a new set of records is queried in the child
datasource for each record in the master source. This happens on an as-needed basis
so as not to waste resources.

• A master record cannot be deleted while detail records exist.

• On posting, or saving, a detail record, its “foreign key” is automatically populated with the
“primary key” of the master record.

Defining Master/Detail Datasources

There are no special attributes for a master datasource to indicate its role as master.

The detail datasource, on the other hand, has three special attributes that must be provided:
master, masterlink, and detaillink.

Page 11

GNUe Forms: A Developer's Introduction

• master: This should be the name of the master datasource.

• masterlink: This is the name of the field or fields in the master datasource that links it
to the child datasource. If there are multiple fields, i.e., the master primary key is
“composite”, then masterlink should be a comma-separated list of field names.

• detaillink: This is the name of the field or fields in the detail datasource that links it to
the child datasource. If there are multiple fields, i.e., the master primary key is
“composite”, then detaillink should be a comma-separated list of field names with
the order of the fields corresponding to the order provided in masterlink.

Master/Detail Considerations

TODO

Advanced Relationships
TODO

Master/Detail/Detail

TODO

Reverse Master/Detail

TODO

Page 12

GNUe Forms: A Developer's Introduction

Understanding Events and Triggers

TODO

Form's Event Model
TODO

Named Triggers verses Embedded Triggers
TODO

Form-level Triggers
A Form-level trigger is defined as an object that is activated at the form-level and is defined
as a child of the form object.

The following form level triggers are defined.

On-Startup

The On-Startup trigger is executed once during the lifetime of a Form's instance. This
happens after all the objects have been initialized and initially populated.

Suggested uses for On-Startup:

• Setting initial flags.

• Marking variables or common functions/modules as:

On-Activate

The On-Activate trigger is executed each time a form or dialog is activated. For a normal
form, the difference between On-Activate and On-Startup is very nominal. However,
for dialog-style forms, the difference is more pronounced. On-Startup will only be
executed once in the form's life, whereas On-Activate is called every time the dialog is
instantiated and displayed.

For non-dialog forms, we recommend you use On-Startup.

Suggested used for On-Activate:

• Useful for adjusting dialogs based upon parameters passed in by the calling form.

On-Exit

The On-Exit trigger is executed when either the user or a trigger requests that a form
closes.

Suggested uses for On-Exit:

• Wishing the user best of luck?

Page 13

GNUe Forms: A Developer's Introduction

Pre-Commit

The Pre-Commit trigger is executed before a form-level commit occurs.

Suggested uses for Pre-Commit:

• Perform form-level validation of data (??)

• [TODO: ???]

Post-Commit

The Post-Commit trigger is executed after a form-level commit occurs.

Suggested uses for Post-Commit:

• [TODO: ???]

Block-level Triggers
All block-level triggers are executed on a per-record basis. That is, a trigger would get
executed once for every applicable record, not just once for the entire block.

Pre-Query

The Pre-Query trigger is executed before a query against the database occurs. This
trigger is unique from all other triggers in that it is called while the form is in query mode --
ie., the same mode as selecting Data | Enter Query from the menu. This means that any
field changes made by this trigger don't actually modify a record, but instead are used as
query conditionals.

Suggested uses for a block-level Pre-Query trigger:

• Adding custom conditions to a query that are more complex than can be
represented by a field's queryDefault property.

Post-Query

The Post-Query trigger is executed after a query occurs on a record. A block-level Post-
Query is executed once for each record that was loaded from a database. Post-Query is
the counter-part to On-NewRecord in that one or the other should be executed for every
displayed record.

NOTE: Post-Query is only fired as a record is loaded from the database. This implies
that, with GNUe's caching system, if only 10 records are displayed on screen at a time out
of a table of 100 records, then only the first 10 or so records will have Post-Query fired. It
is guaranteed, however, that by the time a the user can see a loaded record or before
another trigger can be fired against a loaded record, Post-Query has already been called.
It is possible to get around this by, at some point [TODO: WHERE?], calling
block.lastRecord() and (optionally, if needed) block.firstRecord().

Suggested uses for a block-level Post-Query trigger:

• Populating non-database (automaticall calculated) fields.

• Resetting user-defined flags

Page 14

GNUe Forms: A Developer's Introduction

Pre-Change

The Pre-Change trigger is executed before a record is initially modified -- i.e., when the
first field of a record is set to a new value. At the time the Pre-Change record is called, the
modified field will still contain the old value.

Suggested uses for a block-level Pre-Change trigger:

• [TODO: A GOOD EXAMPLE?]

Pre-Insert

The Pre-Insert trigger is executed before a commit occurs on a record that is pending an
insertion. A block-level Pre-Insert is executed once for each inserted record and is fired
prior to the Pre-Commit trigger.

Suggested uses for a block-level Pre-Insert trigger:

• Stamping records with a creation date or created-by value

• Setting a primary key's value

• Setting other hidden, but pertinent, fields with default or pre-calculated values

• Storing historical information in transaction tables

Pre-Update

The Pre-Update trigger is executed before a commit occurs on a record that is pending an
update. A new or deleted record is not considered "updated" for the purpose of this trigger.
A block-level Pre-Commit is executed once for each changed record and is fired prior to
the Pre-Commit trigger.

Suggested uses for a block-level Pre-Update trigger:

• Stamping records with a modification date or modified-by value

• Setting hidden, but pertinent, fields with default or pre-calculated values

• Storing historical information in transaction tables

Pre-Delete

The Pre-Delete trigger is executed before a commit occurs on a record that is pending a
deletion. A block-level Pre-Commit is executed once for each record that has pending
deletion. A block-level Pre-Delete fires prior to a Pre-Commit trigger.

Suggested uses for a block-level Pre-Delete trigger:

• [TODO: A GOOD EXAMPLE?]

• Storing historical information in transaction tables

Pre-Commit

The Pre-Commit trigger is executed before a commit occurs on a record. A block-level
Pre-Commit is executed once for each record that has pending changes, including new
and deleted records. A block-level Pre-Commit fires prior to a Field's Pre-Commit trigger,
but after the Pre-Insert, Pre-Update, and Pre-Delete triggers.

Page 15

GNUe Forms: A Developer's Introduction

Suggested uses for a block-level Pre-Commit trigger:

• Stamping modified records with a date or modified-by value

• Setting hidden, but pertinent, fields with default or pre-calculated values

• Storing historical information in transaction tables

Post-Commit

The Post-Commit trigger is executed after a commit occurs on a record. A block-level
Post-Commit is executed once for each record that had pending changes, including new
and deleted records. A block-level Post-Commit fires after a Field's Post-Commit trigger.

If a Post-Commit trigger modifies the values in a record, then the record will be, once
again, pending changes. Typically a Post-Commit trigger would not modify any values and
you could create an unsavable form.

Suggested uses for a block-level Post-Commit trigger:

• Resetting user-defined flags or non-database fields.

On-NewRecord

The On-NewRecord trigger is executed when a record is initially created. This trigger is
executed once for each new record at the time of creation in the form.

Suggested uses for a block-level On-NewRecord trigger:

• Setting default values

Pre-FocusIn

The Pre-FocusIn trigger is executed as a new record is focused in a block. It is
recommended that unless you have a specified understanding of the intention of forms, use
Post-FocusIn instead of Pre-FocusIn as the latter trigger's behavior may change at
some point to better reflect record focus.

Suggested uses for a block-level Pre-FocusIn trigger:

• [TODO: ???]

Post-FocusIn

The Post-FocusIn trigger is executed as a new record is focused in a block. This may be
triggered by a user navigating to a different record or by creating a new record. The actual
record change has occurred when this trigger is fired.

Suggested uses for a block-level Post-FocusIn trigger:

• [TODO: ???]

Pre-FocusOut

The Pre-FocusOut trigger is executed as a different record is about to be focused in a
block. This may be triggered by a user navigating to a different record or by creating a new
record. The actual record change has not occurred when this trigger is fired.

Suggested uses for a block-level Pre-FocusOut trigger:

Page 16

GNUe Forms: A Developer's Introduction

• [TODO: ???]

Post-FocusOut

The Post-FocusOut trigger is executed as a new record is focused in a block. It is
recommended that unless you have a specified understanding of the internals of forms, use
Pre-FocusOut instead of Post-FocusOut as the latter trigger's behavior may change at
some point to better reflect record focus.

Suggested uses for a block-level Post-FocusOut trigger:

• [TODO: ???]

Field-level Triggers
TODO

Pre-FocusIn

TODO

Post-FocusIn

TODO

Pre-FocusOut

TODOglimpse

Post-FocusOut

TODO

Post-Query

TODO

Pre-Modify

TODO

Pre-Insert

TODO

Pre-Update

TODO

Pre-Delete

TODO

Pre-Commit

TODO

Page 17

GNUe Forms: A Developer's Introduction

Post-Commit

TODO

Pre-Change

TODO

Post-Change

TODO

Page-level Triggers
TODO

Pre-FocusIn

TODO

Post-FocusIn

TODO

Pre-FocusOut

TODO

Post-FocusOut

TODO

Entry-level Triggers
TODO

Pre-FocusIn

TODO

Post-FocusIn

TODO

Pre-FocusOut

TODO

Post-FocusOut

TODO

Button-Level Triggers
Buttons have a special relationship with triggers.

Page 18

GNUe Forms: A Developer's Introduction

On-Action

This trigger is run when the user activates (e.g., clicks) a button.

Suggested uses for an On-Action trigger:

• Perform a calculation

• Navigate to another section of the form

• Open another form

Pre-FocusIn

TODO

Post-FocusIn

TODO

Pre-FocusOut

TODO

Post-FocusOut

TODO

Post-Change

TODO

Page 19

GNUe Forms: A Developer's Introduction

Working with Fields

TODO

Typecasting Fields
TODO

Default Values
TODO

Formatting Fields with Masks
[NOTE: FORMAT MASKS ARE NOT YET COMPLETELY FUNCTIONAL! THIS SECTION REFLECTS THE INTENDED

SUPPORT]

Forms supports two types of format masks: display masks and input masks. A display mask
defines how the field data will be formatted for display. An input mask defines how the user
will edit a field's value. Input mask elements are a subset of display mask elements -- in
other words, all input masks can also be used as display masks, but not all display masks
can be used as input masks.

 Note: if first character of a format is '&', then rest of date defines a preset format (settable
by developer? in gnue.conf or geas?).

 e.g., in gnue.conf:

FormatDate_longdate = "A, b d, Y"

 Then, in the client, the format string could be: &longdate

 This allows reuse of common format masks throughout the application.

Formatting Numeric Fields

TODO

Formatting Date/Time Fields

Element Input? Description
\ Yes Next character

is a literal
a Yes Abbreviated

weekday name
(Sun..Sat)

Page 20

GNUe Forms: A Developer's Introduction

A Full weekday
name
(Sunday..Saturd
ay)

b Yes Abbreviated
month name
(Jan..Dec)

B Full month
name
(January..Dece
mber)

c Century (20,21)

d Yes Day of month,
left padded with
zeros (01..31)

D Day of month,
non-padded
(1..31)

h Yes Hour (24-hour
format), left
padded with
zeros (00..23)

H Hour (24-hour
format), non-
padded (0..23)

g Yes Hour (12-hour
format), left
padded with
zeros (01..12)

G Hour (12-hour
format), non-
padded (1..12)

j Yes Day of year, left
padded with
zeros (001..366)

J Day of year,
non-padded
(1..366)

m Yes Month, left
padded with
zeros (01..12)

M Month, non-
padded (1..12)

i Yes Minute, left
padded with
zeros (01..59)

Page 21

GNUe Forms: A Developer's Introduction

I Minute, non-
padded (1..59)

p Yes am/pm
designation
(lowercase)

P AM/PM
designation
(uppercase)

s Yes Seconds, left
padded with
zeros (00..59)

S Seconds, non-
padded (0..59)

u Yes Week number of
year with
Sunday as first
day of week, left
padded with
zeros (01..52)

U Week number of
year with
Sunday as first
day of week,
non-padded
(1..52)

v Yes Week number of
year with
Monday as first
day of week, left
padded with
zeros (01..52)

V Week number of
year with
Monday as first
day of week,
non-padded
(1..52)

w Yes Day of week
with Sunday as
first day of week
(0=Sunday)
(0..6)

W Yes Day of week
with Monday as
first day of week
(0=Monday)
(0..6)

Page 22

GNUe Forms: A Developer's Introduction

y Yes Year
(1900..2100)

Y Yes Year, using 2-
digit notation
(00..99) When
used as an input
mask, forms
tries to
reasonably
guess the
century. (TODO:
Elaborate)

Predefined literals: "/-.:, "

Examples: 01/01/2001: "m/d/y" Friday, June 1, 2001: "A, b d, Y"

Formatting Text Fields

TODO

Dropdown Fields
TODO

Check boxes
TODO

Page 23

GNUe Forms: A Developer's Introduction

A Brief Introduction to Python

While GNUe Forms will eventually support a plethora of scripting languages, the default,
and best-supported, language will always be Python. Python is a

If you do not know Python, don't worry! Python is one of the simplest languages to pick
up.

Once multi-language support is added, the developer will be able to write triggers in Python,
Perl, Ruby, Scheme, or possibly even Basic.

While Python is easy to learn, this section assumes that you know at least one
programming language. It is beyond the scope of this guide to cover basic programming
concepts. There are several excellent Python tutorials for those beginning programming
available on the Web. Go to http://www. python .org/doc/ for a listing of available tutorials.
They have docs for every stage of python programming, from new-to-programming to
seasoned veteran.

The Basics
The first thing most people notice about Python is its reliance on whitespace for grouping.

Variables and Expressions

x = 1

Control Structures

if x == 1:
 print "Yip"

for f in (1,2,3):
 print f

for f in range(4):
 print f

n = 1
while n < 10:
 n += 1

Page 24

GNUe Forms: A Developer's Introduction

Tuples, Lists, and Dictionaries... oh, my!
TODO

Page 25

GNUe Forms: A Developer's Introduction

Exploring Trigger Namespaces

Introduction
TODO

Global Names

GNUe Forms supports the Python global construct, which can be used by the developer
to define global variables and methods, or import modules globally. For example, assume
the following code chunk is a form's On-Startup trigger:

##
On-Startup [Form]
##

We want to give our other triggers
access to these three objects.
global math, myfunc, DEBUG

We will use the math module a lot
in our other triggers
import math

A handy function
def myfunc(n1,n2):
 return n1+n2

Are we in DEBUG mode?
Enquiring triggers want to know...
DEBUG = 1

This is an example of a non-global name.
Only our On-Startup trigger sees this.
test = 2

Because Forms executes On-Startup before any other triggers, all other triggers within
this form can now see math, myfunc, and DEBUG.

For example, an On-Change trigger could now do:

##
On-Change (MyEntry)
##
if DEBUG:
 print "Starting value: %s" % self.get()

Page 26

GNUe Forms: A Developer's Introduction

computed = myfunc(self.get(), 12)

AnotherEntry.set(math.floor(computed))

Note that if another trigger wanted to globally change the values of math, myfunc, or
DEBUG, they would also have to use the global construct. The following section of code
would only change DEBUG for this single execution of On-Change:

##
On-Change (MyEntry)
##
DEBUG = 0

... other code ...

The other code in this example would see DEBUG as being 0, but once the trigger was
completed, DEBUG would return to being 1 for all future triggers. Now, suppose the trigger
had instead looked like:

##
On-Change (MyEntry)
##
global DEBUG
DEBUG = 0

... other code ...

Now, this trigger and all future triggers will see DEBUG as 0.

Object Heirarchy
TODO

Fields and Entries
TODO

Blocks
TODO

Datasources
Datasource objects

The datasource objects, in addition to providing sensible methods for data access and
manipulation, also act as python container objects whenever possible. For example, a

Page 27

GNUe Forms: A Developer's Introduction

recordset can behave as a python dictionary, and resultsets behave as tuples. Any
container-related behavior will be discussed after the supported methods are detailed.

Datasource

ResultSet

RecordSet

Examples

TODO

resultset = MyDataSource.createResultSet({'id':1})
recordset = resultset.nextRecord()
if recordset:
 DescrField.set(recordset['description'])

TODO

resultset = MyDataSource.createResultSet()
recordset = resultset.createRecord()
recordset['id'] = 1
recordset['description'] = 'Test Record'
recordset['amount'] = 10.00

TODO

resultset = MyDataSource.createResultSet({'id':1})
recordset = resultset.nextRecord()

Delete the last record
recordset.deleteRecord()

TODO

Query all records where amount is 5.00
resultset = MyDataSource.createResultSet({'amount':5})
for recordset in resultset:
 recordset['queue'] = 'Y'

TODO

Form

Page 28

GNUe Forms: A Developer's Introduction

Creating and Using Libraries

Overview
TODO

Page 29

GNUe Forms: A Developer's Introduction

Integration with GNUe Tools

Running Reports from Forms
TODO

Running Forms from Navigator
TODO

Page 30

GNUe Forms: A Developer's Introduction

Advanced Topics

This section describes advanced forms concepts. [TODO: EXPAND]

Runtime Parameters
Forms supports runtime parameters that can be passed to a form instance at startup.
Parameters are mainly useful for specifying conditions in datasources, but can also be
accessed via triggers. This allows the perceived behavior of a form to be altered only by
passing a parameter.

A good example is a form designed to service two divisions of a company. While you could
offer an opening dialog that asks the user which division he wants to work on, an alternative
is to modify his startup script to tell the form which division he works with. This especially
works well when the worker only belongs in one division and will never need access to any
others.

Note that in the above example, though, parameters are not a good substitute for access
security. This example would strictly be for convenience, not security.

Parameters must be defined, with a default value, using the <parameter> tag:

<form>
 <parameter name="division" default="101"/>
 ...
</form>

Once defined, parameters can be passed to forms in one of two ways. The first is via the
command line. Parameters can be passed in the format parameter=value on the
command line appearing after the name of the form. For example:

gnue-forms myform.gfd division=101

Alternately, if the form is being called from another form, the trigger would look like:

Run "myform.gfd"
form.runForm('myform.gfd', { 'division' : 101 })

That is, the parameters would be passed to runForm as a Python dictionary. Once passed
to the form, parameters can be used in one of two ways: via trigger code or as a parameter
to a datasource condition.

First, triggers can access parameters using the form.getParameter() method. This method
takes one argument, the case-insensitive parameter name. It returns the requsested
parameter, or the default value if no parameter was passed on startup.

Get the "company" parameter
division = form.getParameter('division')

Page 31

GNUe Forms: A Developer's Introduction

Conditions are also a good place for parameters. Take the following fragment:

<datasource name="dtsExsample" table="sales"
 connection="sales"/>
 <condition>
 <eq>
 <cfield name="division"/>
 <cparam name="division"/>
 </eq>
 </condition>
</datasource>

With this in place, whenever the table sales is queried, the only records returned are the
ones where the field division matches the parameter division. Note that if this
datasource will also be used for inserting new rows, a Pre-Insert trigger is needed to set
the division field:

##
Pre-Insert [SalesBlock]
DivisionEntry.set(form.getParameter('division'))

External Python Modules
Python triggers have full access to your installed Python modules. For example, if your
project needs the twofish cryptographic module, you can install it normally and do an
import twofish in your triggers.

Alternately, GNUe's gnue.conf file supports an ImportPath directive. You can have this
point to a directory containing your custom python modules.

Designing for Multiple Interfaces
A form definition, when designed within reasonable guidelines, can be run on a plethora of
system architectures and a wide variety of user interfaces. By using the approach taken in
this guide, most of your forms will, by default, run on a graphical workstation (X11,
Windows, Mac), in a text-based session (telnet or ssh), or via a web browser (HTML). This
section highlights a few key compatibility issues.

This list, while not exhaustive, should give you a good idea of common portability pitfalls. As
with all things in GNUe, you will always have a choice on how to implement your
application. GNUe is not about forcing rules on developers, but about providing viable
options. There will be instances where the following suggestions simply are not feasible or
practical. In any event, these are simply suggestions on getting the most out of Forms.

• Images
Do not make your application dependent on displayed images. It would be acceptable,
and appropriate, to display pictures for informational purposes. For example, when doing
parts lookups, it would be appropriate to display a picture of the part for reference use.
However, it would be normally be inappropriate to prevent the form from working if this
image could not be displayed. (TODO: Better example?)

Page 32

GNUe Forms: A Developer's Introduction

• OS-specific trigger code
Python, the default trigger language, provides an extensive library of cross-platform
functions. For example, it provides a library of file-access routines that work on all its
supported platforms. This is really a broad category as trigger code has all the power of
Python behind it.

• Custom widgets
It is often tempting to use a new whiz-bang widget available on a certain platform/widget
set. This will surely make your application hard to migrate to other platforms/interfaces,
as well as restrict your ability to upgrade to a newer Forms version. Form's widget-set
was carefully selected to be as multi-platform-friendly as possible, while still providing all
the functionality most forms will need. If your application widgets are not supported by
forms, there's a good chance that your form could be more functional with a slight
rethinking of its design. Remember: a goal of Forms is to be usable on as many
platforms as possible, not to exploit all the features of a particular platform.

Page 33

GNUe Forms: A Developer's Introduction

Trigger Recipes

Over the coarse of writing a complex application, you will encounter a few situations where
you will need a trigger to perform a common task. This section lists several

Timestamping a Record prior to a Commit
To automatically fill an entry with a timestamp retrieved from the database, you can use the
datasource extension getTimestamp(). create a Pre-Commit trigger on that block. For
example,

##
Pre-Commit [MyBlock]
##

self.MyTimeField.set(MyDS.extensions.getTimestamp())

This example assumes your entry is named MyTimeField and your datasource is called
MyDS.

As noted elsewhere in this guide, Pre-Commit is run prior to saving changes to the
database regardless of whether the record in question is being inserted, updated, or
deleted. If you want to timestamp only new records, you can use the same code listed
above, only inside a Pre-Insert trigger. Similarly, if you only want to timestamp
modifications, you can use a Pre-Update trigger.

At this point, you may be asking why did we go through MyDS to get to a database
timestamp. After all, MyDS corresponds to a table, not to a database. [TODO: PROVIDE AN

EXPLANATION]

By using a timestamp retrieved from the database server, you do not have to worry about
differences in the client machines' times. If you would prefer to have the client's time, you
can use python's time module.

Stamping a Record with User's Login prior to a Commit
To automatically fill an entry with a the user's login name, you can use
form.getAuthenticatedUser() and creating a Pre-Insert trigger on that block. For
example,

##
Pre-Insert [MyBlock]
##

self.CreatedBy.set(form.getAuthenticatedUser())

This example assumes your entry is named CreatedBy. As noted elsewhere in this guide,
Pre-Insert is run prior to saving a new record to the database.

Page 34

GNUe Forms: A Developer's Introduction

This method is commonly called alongside the timestamping recipe above. Together, a
Pre-Insert trigger to stamp a new record might look like:

##
Pre-Insert [MyBlock]
##

self.CreatedBy.set(form.getAuthenticatedUser())
self.CreatedOn.set(MyDS.extensions.getTimestamp())

See the recipe for timestamping for more information on usage of getTimestamp().

Auto-Populating an Entry from a Sequence
To automatically fill an entry with a value from a sequence, you can create a Pre-Insert
trigger on that entry. For example,

##
Pre-Insert [MyEntry]
##

self.set(MyDS.extensions.getSequence(“MySequence”))

This example assumes your entry is named MyEntry, your datasource is called MyDS, and
the sequence name as stored in the database is MySequence. Note that MyEntry and
MyDS are both names originating in your form, whereas MySequence is a name originating
in your database.

At this point, you may be asking why did we go through MyDS to get to a database
sequence. After all, MyDS corresponds to a table, not to a database. [TODO: PROVIDE AN

EXPLANATION]

Page 35

GNUe Forms: A Developer's Introduction

Appendix A: Trigger Hierarchy

Forms supports

Page 36

GNUe Forms: A Developer's Introduction

Appendix B: Form Elements

[TODO: INTRODUCTION]

Form Tags

form

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

name text A unique ID for the form.

readonly Y, N N If set to Y, then no modifications to data by
the end user will be allowed. The form will
become a query-only form.

style dialog NO DESCRIPTION PROVIDED

title text Untitled
Form

The title of the form.

Child Nodes

connection, datasource, dialog, import-datasource, import-dialog, import-
layout, import-logic, import-trigger, layout, logic, menu, options,
parameter, trigger

Connection Tags

connection

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

name text NO DESCRIPTION PROVIDED

provider text NO DESCRIPTION PROVIDED

comment text NO DESCRIPTION PROVIDED

dbname text NO DESCRIPTION PROVIDED

host text NO DESCRIPTION PROVIDED

service text NO DESCRIPTION PROVIDED

Page 37

GNUe Forms: A Developer's Introduction

Datasource Tags

datasource

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

name text NO DESCRIPTION PROVIDED

cache number 5 NO DESCRIPTION PROVIDED

connection text NO DESCRIPTION PROVIDED

detaillink text NO DESCRIPTION PROVIDED

distinct Y, N N NO DESCRIPTION PROVIDED

explicitfields text NO DESCRIPTION PROVIDED

master text NO DESCRIPTION PROVIDED

masterlink text NO DESCRIPTION PROVIDED

order_by text NO DESCRIPTION PROVIDED

prequery Y, N N NO DESCRIPTION PROVIDED

primarykey text NO DESCRIPTION PROVIDED

table text NO DESCRIPTION PROVIDED

type text object NO DESCRIPTION PROVIDED

Child Nodes

condition, staticset

add

NO DESCRIPTION PROVIDED

Child Nodes

add, cconst, cfield, cparam, div, mul, sub

and

NO DESCRIPTION PROVIDED

Child Nodes

and, between, conditions, eq, ge, gt, le, like, lt, ne, negate, not, notbetween,
notlike, notnull, null, or

between

NO DESCRIPTION PROVIDED

Child Nodes

add, cconst, cfield, cparam, div, mul, sub

Page 38

GNUe Forms: A Developer's Introduction

cconst

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

value text NO DESCRIPTION PROVIDED

cfield

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

name text NO DESCRIPTION PROVIDED

condition

NO DESCRIPTION PROVIDED

Child Nodes

and, between, eq, ge, gt, le, like, lt, ne, negate, not, notbetween, notlike,
notnull, null, or

cparam

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

name text NO DESCRIPTION PROVIDED

div

NO DESCRIPTION PROVIDED

Child Nodes

add, cconst, cfield, cparam, div, mul, sub

eq

NO DESCRIPTION PROVIDED

Child Nodes

add, cconst, cfield, cparam, div, mul, sub

ge

NO DESCRIPTION PROVIDED

Page 39

GNUe Forms: A Developer's Introduction

Child Nodes

add, cconst, cfield, cparam, div, mul, sub

gt

NO DESCRIPTION PROVIDED

Child Nodes

add, cconst, cfield, cparam, div, mul, sub

le

NO DESCRIPTION PROVIDED

Child Nodes

add, cconst, cfield, cparam, div, mul, sub

like

NO DESCRIPTION PROVIDED

Child Nodes

add, cconst, cfield, cparam, div, mul, sub

lt

NO DESCRIPTION PROVIDED

Child Nodes

add, cconst, cfield, cparam, div, mul, sub

mul

NO DESCRIPTION PROVIDED

Child Nodes

add, cconst, cfield, cparam, div, mul, sub

ne

NO DESCRIPTION PROVIDED

Child Nodes

add, cconst, cfield, cparam, div, mul, sub

negate

NO DESCRIPTION PROVIDED

Page 40

GNUe Forms: A Developer's Introduction

Child Nodes

and, between, conditions, eq, ge, gt, le, like, lt, ne, negate, not, notbetween,
notlike, or

not

NO DESCRIPTION PROVIDED

Child Nodes

and, between, conditions, eq, ge, gt, le, like, lt, ne, negate, not, notbetween,
notlike, notnull, null, or

notbetween

NO DESCRIPTION PROVIDED

Child Nodes

add, cconst, cfield, cparam, div, mul, sub

notlike

NO DESCRIPTION PROVIDED

Child Nodes

add, cconst, cfield, cparam, div, mul, sub

notnull

NO DESCRIPTION PROVIDED

null

NO DESCRIPTION PROVIDED

or

NO DESCRIPTION PROVIDED

Child Nodes

and, between, conditions, eq, ge, gt, le, like, lt, ne, negate, not, notbetween,
notlike, notnull, null, or

staticset

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

fields text NO DESCRIPTION PROVIDED

Page 41

GNUe Forms: A Developer's Introduction

Child Nodes

staticsetrow

staticsetfield

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

name text NO DESCRIPTION PROVIDED

value text NO DESCRIPTION PROVIDED

staticsetrow

NO DESCRIPTION PROVIDED

Child Nodes

staticsetfield

sub

NO DESCRIPTION PROVIDED

Child Nodes

add, cconst, cfield, cparam, div, mul, sub

Dialog Tags

dialog

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

name text A unique ID for the form.

readonly Y, N N If set to Y, then no modifications to data by
the end user will be allowed. The form will
become a query-only form.

style dialog dialog NO DESCRIPTION PROVIDED

title text Untitled
Form

The title of the form.

Layout Tags

layout

NO DESCRIPTION PROVIDED

Page 42

GNUe Forms: A Developer's Introduction

Attributes

Attribute Values Default Description

tabbed bottom,
left,
right,
top

Allows a form to convert it's pages as
notebook tabs. Allowed values are left,
right, bottom, top.

Child Nodes

import-page, page

box

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

focusorder number NO DESCRIPTION PROVIDED

label text An optional text label that will be displayed
on the border.

name text NO DESCRIPTION PROVIDED

button

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

focusorder number NO DESCRIPTION PROVIDED

label text The text that should appear on the button

name text A unique ID for the widget. Useful for
importable buttons.

entry

An entry is the visual counterpart to a field.

Attributes

Attribute Values Default Description

block text The name of the block that this ties to.

field text The name of the field that this ties to.

focusorder number NO DESCRIPTION PROVIDED

hidden Y, N N If defined the entry widget will not be
displayed on the form. This is usefull for
fields the user doesn't need to know about
that you wish to update via triggers.

name text The unique ID of the entry.

Page 43

GNUe Forms: A Developer's Introduction

Attribute Values Default Description

navigable Y, N Y It false, the user will be unable to navigate
to this entry. Triggers can still alter the
value.

rowSpacer number NO DESCRIPTION PROVIDED

rows number NO DESCRIPTION PROVIDED

style checkbox,
default,
dropdown,
label,
password

default The style of entry widget requested.
Currently either text, label, checkbox,
or dropdown. To use dropdown you are
required to use both the fk_source,
fk_key, and fk_description
attributes. The label style implies the
readonly attribute.

image

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

block text The name of the block that this ties to.

field text The name of the field that this ties to.

focusorder number NO DESCRIPTION PROVIDED

name text NO DESCRIPTION PROVIDED

type BINARY,
URL

URL NO DESCRIPTION PROVIDED

label

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

text text The text to be displayed.

alignment center,
left,
right

left The justification of the label. Can be one
of the following: left, right, or center.
Requires that the width attribute be set.

name text The unique ID of the label.

rowSpacer number Overriders the rowSpace setting defined
at the block level.

rows number Overrides the rows setting defined at the
block level.

page

NO DESCRIPTION PROVIDED

Page 44

GNUe Forms: A Developer's Introduction

Attributes

Attribute Values Default Description

caption text For tabbed or popup pages, this contains
the caption to use for the page.

name text A unique ID for the widget. This is only
useful when importing pages from a
library.

style normal normal The type of page when importing pages
from a library.

transparent Y, N N If set, then you can tab out of the page via
next- or previous-field events. Makes
navigation in mutlipage forms easier. If
false, focus stays within a page until user
explicitly moves to another page

Child Nodes

box, button, entry, image, import-button, label, scrollbar

scrollbar

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

block text The block to which this scrollbar scrolls.

Logic Tags

logic

NO DESCRIPTION PROVIDED

Child Nodes

block, import-block

block

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

name text A unique ID for the widget.The name of
the widget. No blocks can share the same
name without causing namespace
collisions in user triggers.

datasource text The name of a datasource (defined in by a
<datasource> tag.) that provides this
block with it's data.

Page 45

GNUe Forms: A Developer's Introduction

Attribute Values Default Description

restrictDelete Y, N N If set then the user will be unable to
request that a record be deleted via the
user interface.

restrictInsert Y, N N If set then the user will be unable to
request that new records be inserted into
the block.

rowSpacer number Adjusts the vertical gap of this number of
rows between duplicated widgets. Serves
the same purpose as some of the gap
attributes on individual widgets.

rows number Any widgets inside the block will display
this number of copies in a verticle column.
Simulates a grid entry system.

transparent Y, N Y If set, then you can tab out of the block via
next- or previous-field events. Makes
navigation in mutliblock forms easier. If
false, focus stays within a block until user
explicitly moves to another block

Child Nodes

field, import-field

field

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

name text The unique ID of the entry. Referenced in
master/detail setups as well as triggers.

case lower,
mixed,
upper

mixed NO DESCRIPTION PROVIDED

default text The default value for any new records
created. If the field is visible the user can
override the value.

displaymask text NO DESCRIPTION PROVIDED

editOnNull Y, N N NO DESCRIPTION PROVIDED

field text The name of the field in the datasource to
which this widget is tied.

fk_description text NO DESCRIPTION PROVIDED

fk_key text NO DESCRIPTION PROVIDED

fk_refresh change,
commit,
startup

startup NO DESCRIPTION PROVIDED

fk_source text NO DESCRIPTION PROVIDED

Page 46

GNUe Forms: A Developer's Introduction

Attribute Values Default Description

formatmask text NO DESCRIPTION PROVIDED

ignoreCaseOnQuery Y, N N If defined the entry widget ignores the
case of the information entered into the
query mask.

inputmask text NO DESCRIPTION PROVIDED

ltrim Y, N N Trim extraneous space at beginning of
user input.

max_length number The maximum number of characters the
user is allowed to enter into the entry.

min_length number 0 The minimum number of characters the
user must enter into the entry.

queryDefault text The form will be populated with this value
automatically when a query is requested.
If the field is visible the user can still
override the value.

readonly Y, N N It defined the user will be unable to alter
the contents of this entry. Triggers can still
alter the value.

required Y, N N This object cannot have an empty value
prior to a commit.

rtrim Y, N Y Trim extraneous space at end of user
input.

sloppyQuery text When set, whatever value the user enters
for the query mask is rewritten with %
between each character. Thus example
would be queried as %e%x%a%m%p%l%e%

typecast date,
number,
text

text The type of data the entry widget will
accept. Possible values are text,
number, date.

value text NO DESCRIPTION PROVIDED

Menu Tags

menu

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

name text NO DESCRIPTION PROVIDED

enabled Y, N N NO DESCRIPTION PROVIDED

event text NO DESCRIPTION PROVIDED

label text NO DESCRIPTION PROVIDED

leader text NO DESCRIPTION PROVIDED

Page 47

GNUe Forms: A Developer's Introduction

Attribute Values Default Description

location text NO DESCRIPTION PROVIDED

trigger text NO DESCRIPTION PROVIDED

type text NO DESCRIPTION PROVIDED

Options Tags

options

NO DESCRIPTION PROVIDED

Child Nodes

author, description, name, option, tip, title, version

author

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

name author author NO DESCRIPTION PROVIDED

value text NO DESCRIPTION PROVIDED

description

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

name descript
ion

descript
ion

NO DESCRIPTION PROVIDED

value text NO DESCRIPTION PROVIDED

name

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

name name name NO DESCRIPTION PROVIDED

value text NO DESCRIPTION PROVIDED

option

NO DESCRIPTION PROVIDED

Page 48

GNUe Forms: A Developer's Introduction

Attributes

Attribute Values Default Description

name text NO DESCRIPTION PROVIDED

value text NO DESCRIPTION PROVIDED

tip

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

name tip tip NO DESCRIPTION PROVIDED

value text NO DESCRIPTION PROVIDED

version

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

name version version NO DESCRIPTION PROVIDED

value text NO DESCRIPTION PROVIDED

Parameter Tags

parameter

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

name text NO DESCRIPTION PROVIDED

default text NO DESCRIPTION PROVIDED

description text NO DESCRIPTION PROVIDED

required Y, N N NO DESCRIPTION PROVIDED

type text char NO DESCRIPTION PROVIDED

Trigger Tags

trigger

NO DESCRIPTION PROVIDED

Page 49

GNUe Forms: A Developer's Introduction

Attributes

Attribute Values Default Description

language python python NO DESCRIPTION PROVIDED

name text NO DESCRIPTION PROVIDED

src text NO DESCRIPTION PROVIDED

type text NO DESCRIPTION PROVIDED

Import Tags

import-block

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

library text NO DESCRIPTION PROVIDED

name text A unique ID for the widget.The name of
the widget. No blocks can share the same
name without causing namespace
collisions in user triggers.

datasource text The name of a datasource (defined in by a
<datasource> tag.) that provides this
block with it's data.

restrictDelete Y, N N If set then the user will be unable to
request that a record be deleted via the
user interface.

restrictInsert Y, N N If set then the user will be unable to
request that new records be inserted into
the block.

rowSpacer number Adjusts the vertical gap of this number of
rows between duplicated widgets. Serves
the same purpose as some of the gap
attributes on individual widgets.

rows number Any widgets inside the block will display
this number of copies in a verticle column.
Simulates a grid entry system.

transparent Y, N Y If set, then you can tab out of the block via
next- or previous-field events. Makes
navigation in mutliblock forms easier. If
false, focus stays within a block until user
explicitly moves to another block

import-button

NO DESCRIPTION PROVIDED

Page 50

GNUe Forms: A Developer's Introduction

Attributes

Attribute Values Default Description

library text NO DESCRIPTION PROVIDED

focusorder number NO DESCRIPTION PROVIDED

label text The text that should appear on the button

name text A unique ID for the widget. Useful for
importable buttons.

import-datasource

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

library text NO DESCRIPTION PROVIDED

name text NO DESCRIPTION PROVIDED

cache number 5 NO DESCRIPTION PROVIDED

connection text NO DESCRIPTION PROVIDED

detaillink text NO DESCRIPTION PROVIDED

distinct Y, N N NO DESCRIPTION PROVIDED

explicitfields text NO DESCRIPTION PROVIDED

master text NO DESCRIPTION PROVIDED

masterlink text NO DESCRIPTION PROVIDED

order_by text NO DESCRIPTION PROVIDED

prequery Y, N N NO DESCRIPTION PROVIDED

primarykey text NO DESCRIPTION PROVIDED

table text NO DESCRIPTION PROVIDED

type text object NO DESCRIPTION PROVIDED

import-dialog

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

library text NO DESCRIPTION PROVIDED

name text A unique ID for the form.

readonly Y, N N If set to Y, then no modifications to data by
the end user will be allowed. The form will
become a query-only form.

style dialog dialog NO DESCRIPTION PROVIDED

Page 51

GNUe Forms: A Developer's Introduction

Attribute Values Default Description

title text Untitled
Form

The title of the form.

import-field

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

library text NO DESCRIPTION PROVIDED

name text The unique ID of the entry. Referenced in
master/detail setups as well as triggers.

case lower,
mixed,
upper

mixed NO DESCRIPTION PROVIDED

default text The default value for any new records
created. If the field is visible the user can
override the value.

displaymask text NO DESCRIPTION PROVIDED

editOnNull Y, N N NO DESCRIPTION PROVIDED

field text The name of the field in the datasource to
which this widget is tied.

fk_description text NO DESCRIPTION PROVIDED

fk_key text NO DESCRIPTION PROVIDED

fk_refresh change,
commit,
startup

startup NO DESCRIPTION PROVIDED

fk_source text NO DESCRIPTION PROVIDED

formatmask text NO DESCRIPTION PROVIDED

ignoreCaseOnQuery Y, N N If defined the entry widget ignores the
case of the information entered into the
query mask.

inputmask text NO DESCRIPTION PROVIDED

ltrim Y, N N Trim extraneous space at beginning of
user input.

max_length number The maximum number of characters the
user is allowed to enter into the entry.

min_length number 0 The minimum number of characters the
user must enter into the entry.

queryDefault text The form will be populated with this value
automatically when a query is requested.
If the field is visible the user can still
override the value.

Page 52

GNUe Forms: A Developer's Introduction

Attribute Values Default Description

readonly Y, N N It defined the user will be unable to alter
the contents of this entry. Triggers can still
alter the value.

required Y, N N This object cannot have an empty value
prior to a commit.

rtrim Y, N Y Trim extraneous space at end of user
input.

sloppyQuery text When set, whatever value the user enters
for the query mask is rewritten with %
between each character. Thus example
would be queried as %e%x%a%m%p%l%e%

typecast date,
number,
text

text The type of data the entry widget will
accept. Possible values are text,
number, date.

value text NO DESCRIPTION PROVIDED

import-layout

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

library text NO DESCRIPTION PROVIDED

tabbed bottom,
left,
right,
top

Allows a form to convert it's pages as
notebook tabs. Allowed values are left,
right, bottom, top.

import-logic

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

library text NO DESCRIPTION PROVIDED

import-page

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

library text NO DESCRIPTION PROVIDED

caption text For tabbed or popup pages, this contains
the caption to use for the page.

Page 53

GNUe Forms: A Developer's Introduction

Attribute Values Default Description

name text A unique ID for the widget. This is only
useful when importing pages from a
library.

style normal normal The type of page when importing pages
from a library.

transparent Y, N N If set, then you can tab out of the page via
next- or previous-field events. Makes
navigation in mutlipage forms easier. If
false, focus stays within a page until user
explicitly moves to another page

import-trigger

NO DESCRIPTION PROVIDED

Attributes

Attribute Values Default Description

library text NO DESCRIPTION PROVIDED

language python python NO DESCRIPTION PROVIDED

name text NO DESCRIPTION PROVIDED

src text NO DESCRIPTION PROVIDED

type text NO DESCRIPTION PROVIDED

Page 54

GNUe Forms: A Developer's Introduction

Appendix C: Form Objects

TODO

Form

getParameter()

Syntax:

getParameter(parameter)

Description:

Returns a runtime parameter, or the default value of such if the user did not pass the
requested runtime parameter. See Runtime Parameters on page 31 for more information.

Example:

Get the runtime parameter "company"
company = form.getParameter("company")

setParameter()

Syntax:

setParameter(parameter,value)

Description:

Changes the value of a runtime parameter. See Runtime Parameters on page 31 for more
information.

Example:

Set the runtime parameter "company" to "101"
form.setParameter("company","101")

getFocus()

Syntax:

getFocus(object)

Description:

Request that the current focus be given to object. If object is a block or a page, then
focus will be given to the first navigable entry on that page or block. All appropriate Pre-
FocusOut, Pre-FocusIn, Post-FocusOut, and Post-FocusIn triggers will be

Page 55

GNUe Forms: A Developer's Introduction

executed. If setFocus is called on a non-navigable item (such as a label), the call is
ignored and focus does not change.

Example:

Request that MyEntry gets the current focus
form.setFocus(MyEntry)

setFocus()

Syntax:

setFocus(object)

Description:

Request that the current focus be given to object. If object is a block or a page, then
focus will be given to the first navigable entry on that page or block. All appropriate Pre-
FocusOut, Pre-FocusIn, Post-FocusOut, and Post-FocusIn triggers will be
executed. If setFocus is called on a non-navigable item (such as a label), the call is
ignored and focus does not change.

Example:

Request that MyEntry gets the current focus
form.setFocus(MyEntry)

setStatusText()

Syntax:

setStatusText(text)

Description:

For user interfaces that support a status bar, or some textual equivalent, set the displayed
text. For interfaces without a status bar equivalent, this function is meaningless.

Example:

Tell the user how great they are
form.setStatusText("Dude, you are the best user ever!")

showMessage()

Syntax:

showMessage(text)

Page 56

GNUe Forms: A Developer's Introduction

Description:

Description goes here.

Example:

Code Sample

commit()

Syntax:

commit()

Description:

Description goes here.

Example:

Code Sample

close()

Syntax:

close()

Description:

Description goes here.

Example:

Exit the current form
form.close()

getAuthenticatedUser()

Syntax:

getAuthenticatedUser([connection])

Description:

Description goes here.

Page 57

GNUe Forms: A Developer's Introduction

Example:

Set "modified_by" to the current user's login
modified_by.set(form.getAuthenticatedUser())

Datasource

createResultSet()

Syntax:

createResultSet([conditions], [readOnly])

Description:

Description goes here.

Example:

Code Sample

simpleQuery()

Syntax:

simpleQuery(dictionary)

Description:

Description goes here.

Example:

Code Sample

delete()

Syntax:

delete()

Description:

Description goes here.

Example:

Code Sample

Page 58

GNUe Forms: A Developer's Introduction

Block

clear()

Syntax:

clear()

Description:

Clears the current block with an empty result set.

Example:

Clear out MyBlock
MyBlock.clear()

gotoRecord()

Syntax:

gotoRecord(index)

Description:

Move to the record indicated by index. If index is negative, then move relative to the last
record. Records are numbered beginning with 0.

Example:

Go to the second record in this block
MyBlock.gotoRecord(1)

Go to the last record in this block
MyBlock.gotoRecord(-1)

newRecord()

Syntax:

newRecord()

Description:

Inserts a new record immediately following the current record. This new record will then
become the current record. The On-NewRecord trigger is executed for the newly created
record and any default values are recorded.

Page 59

GNUe Forms: A Developer's Introduction

Example:

Code Sample
MyBlock.newRecord()

nextRecord()

Syntax:

nextRecord()

Description:

Navigate to the next record. If the block is currently on the last record, then this method
returns 0 (false). Otherwise it returns 1 (true).

Example:

Move to the next record
MyBlock.nextRecord()

prevRecord()

Syntax:

prevRecord()

Description:

Navigate to the previous record. If the block is currently on the first record, then this method
returns 0 (false). Otherwise it returns 1 (true).

Example:

Move to the previous record
MyBlock.prevRecord()

deleteRecord()

Syntax:

deleteRecord()

Description:

Mark the current record as deleted. On the next save, this record will be permanently
removed.

Page 60

GNUe Forms: A Developer's Introduction

Example:

Code Sample
MyBlock.deleteRecord()

parent

Description:

This read-only property contains the parent container of this block. The parent container is
usually a page.

Example:

Get MyBlock's parent page
page = MyBlock.parent

Entry

allowedValues()

Syntax:

allowedValues()

Description:

Returns a tuple containing valid values for this entry. This call will only return a set when a
fk_source has been specified for the entry.

Example:

Code Sample
if 'Test' not in MyEntry.allowedValues():
 MyEntry.set(None)

autofillBySequence()

Syntax:

autofillBySequence(sequence)

Description:

Description goes here.

Page 61

GNUe Forms: A Developer's Introduction

Example:

Code Sample

isEmpty()

Syntax:

isEmpty()

Description:

Returns true if the current entry is considered empty. Empty is usually associated with a
blank, or null, value.

Example:

Set MyEntry to 0 if it has no other value.
if MyEntry.isEmpty():
 MyEntry.set(0)

set()

Syntax:

set(value)

Description:

Description goes here.

Example:

Code Sample

get()

Syntax:

get()

Description:

Description goes here.

Example:

Code Sample

Page 62

GNUe Forms: A Developer's Introduction

resetForeignKey()

Syntax:

resetForeignKey()

Description:

Description goes here.

Example:

Code Sample

parent

Description:

This read-only property contains the parent container of this entry. The parent container will
typically be a block, unless container boxes are used.

Example:

Get this entry's parent block
block = self.parent

readonly

Description:

Description goes here.

Example:

Set MyEntry to be readonly if not already
if not MyEntry.readonly:
 MyEntry.readonly = 1

Page 63

GNUe Forms: A Developer's Introduction

Appendix D: Data Objects

TODO

Result Set

xxxx()

Syntax:

getParameter(parameter)

Description:

Description....

Example:

Get the runtime parameter "company"
company = form.getParameter("company")

Record Set

xxxx()

Syntax:

getParameter(parameter)

Description:

Description....

Example:

Get the runtime parameter "company"
company = form.getParameter("company")

Page 64

GNUe Forms: A Developer's Introduction

Appendix E: Sample Librarian Schema

[TODO: ADD EXAMPLE SCHEMA EXPLANATIONS]

Page 65

GNUe Forms: A Developer's Introduction

Appendix F: Glossary

database

datasource

entry

field

python

Page 66

GNUe Forms: A Developer's Introduction

Appendix G: GNU Free Documentation License

GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document "free" in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing
the same freedoms that the software does. But this License is not limited to software
manuals; it can be used for any textual work, regardless of subject matter or whether it is
published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document", below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as "you". You
accept the license if you copy, modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document's overall subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

Page 67

GNUe Forms: A Developer's Introduction

under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising the
document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage
subsequent modification by readers is not Transparent. An image format is not Transparent
if used for any substantial amount of text. A copy that is not "Transparent" is called
"Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification.
Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word processors,
SGML or XML for which the DTD and/or processing tools are not generally available, and
the machine-generated HTML, PostScript or PDF produced by some wordprocessors for
output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, "Title Page" means the text
near the most prominent appearance of the work's title, preceding the beginning of the body
of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another
language. (Here XYZ stands for a specific section name mentioned below, such as
"Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a section "Entitled
XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you add
no other conditions whatsoever to those of this License. You may not use technical

Page 68

GNUe Forms: A Developer's Introduction

measures to obstruct or control the reading or further copying of the copies you make or
distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document's license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible. You
may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

a) Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the
History section of the Document). You may use the same title as a previous version if
the original publisher of that version gives permission.

b) List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

c) State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Page 69

GNUe Forms: A Developer's Introduction

d) Preserve all the copyright notices of the Document.

e) Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

f) Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

g) Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document's license notice.

h) Include an unaltered copy of this License.

i) Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled "History" in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.

j) Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

k) For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

l) Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

m)Delete any section Entitled "Endorsements". Such a section may not be included in the
Modified Version.

n) Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with
any Invariant Section.

o) Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but
endorsements of your Modified Version by various parties--for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition
of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes a
cover text for the same cover, previously added by you or by arrangement made by the

Page 70

GNUe Forms: A Developer's Introduction

same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
"aggregate" if the copyright resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit. When the Document is
included an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document's Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations of
some or all Invariant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License, and all the license notices in the Document,

Page 71

GNUe Forms: A Developer's Introduction

and any Warrany Disclaimers, provided that you also include the original English version of
this License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or a notice or
disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License "or any later version" applies to
it, you have the option of following the terms and conditions either of that specified version
or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

Page 72

Alphabetical Index

C
CUSTOM WIDGETSustom
widgets 33

D
DATASOURCEatasource 10-
13, 35, 36
DESIGNEResigner 7, 10-12

G
GETSEQUENCEetSequence
36
GETTIMESTAMPetTimestamp

35

P
PRE-COMMITre-Commit 35
PRE-INSERTre-Insert 35, 36
PYTHONython 7, 32-34

S
SEQUENCEequence 36

T
TIMESTAMPimestamp 35

X
XMLml 12, 13

