
Gnucap

The Gnu Circuit Analysis Package

Users manual

Albert Davis

March 26, 2002

2

Contents

1 Introduction 7
1.1 What is it? . 7
1.2 Starting . 7
1.3 How to use this manual . 7
1.4 Command structure . 8
1.5 Standard options . 8
1.6 Getting help, and the Gnucap user community . 9
1.7 How to contribute . 9
1.8 Licensing . 9

2 Command descriptions 15
2.1 Command Summary . 15
2.2 ! command . 16
2.3 < command . 16
2.4 > command . 17
2.5 AC command . 17
2.6 ALARM command . 18
2.7 ALTER command . 19
2.8 BUILD command . 19
2.9 CHDIR command . 19
2.10 CLEAR command . 19
2.11 DC command . 20
2.12 DELETE command . 21
2.13 DISTO command . 21
2.14 EDIT command . 21
2.15 END command . 22
2.16 EXIT command . 22
2.17 FANOUT command . 22
2.18 FAULT command . 22
2.19 FOURIER command . 23
2.20 GENERATOR command . 24
2.21 GET command . 25
2.22 IC command . 26
2.23 INSERT command . 26
2.24 LIST command . 26
2.25 LOG command . 26

3

4 CONTENTS

2.26 MARK command . 27
2.27 MERGE command . 27
2.28 MODIFY command . 28
2.29 NODESET command . 28
2.30 NOISE command . 28
2.31 OP command . 28
2.32 OPTIONS command . 29
2.33 PAUSE command . 33
2.34 PLOT command . 34
2.35 PRINT command . 35
2.36 QUIT command . 37
2.37 SAVE command . 38
2.38 SENS command . 38
2.39 STATUS command . 38
2.40 SWEEP command . 38
2.41 TEMP command . 39
2.42 TF command . 39
2.43 TITLE command . 39
2.44 TRANSIENT command . 40
2.45 UNFAULT command . 41
2.46 UNMARK command . 41
2.47 WIDTH command . 42

3 Circuit description 43
3.1 Summary . 43
3.2 C: Capacitor . 43
3.3 Trans-capacitor . 45
3.4 D: Diode . 45
3.5 E: Voltage Controlled Voltage Source . 47
3.6 F: Current Controlled Current Source . 47
3.7 G: Voltage Controlled Current Source . 48
3.8 Voltage Controlled Capacitor . 48
3.9 Voltage Controlled Admittance . 48
3.10 Voltage Controlled Resistor . 48
3.11 H: Current Controlled Voltage Source . 49
3.12 I: Independent Current Source . 49
3.13 J: Junction Field-Effect Transistor . 49
3.14 K: Coupled (Mutual) Inductors . 49
3.15 L: Inductor . 50
3.16 M: MOSFET . 50
3.17 Q: Bipolar Junction Transistor . 55
3.18 R: Resistor . 58
3.19 S: Voltage Controlled Switch . 58
3.20 T: Transmission Line . 59
3.21 U: Logic Device . 59
3.22 V: Independent Voltage Source . 61
3.23 W: Current Controlled Switch . 61
3.24 X: Subcircuit Call . 62

CONTENTS 5

3.25 Y: Admittance . 62

4 Behavioral modeling 63
4.1 Conditionals . 64
4.2 Functions . 64
4.3 COMPLEX: Complex value . 66
4.4 EXP: Exponential time dependent value . 66
4.5 FIT: Fit a curve . 67
4.6 GENERATOR: Signal Generator time dependent value . 68
4.7 POLY: Polynomial nonlinear transfer function . 68
4.8 POSY: Polynomial with non-integer powers . 68
4.9 PULSE: Pulsed time dependent value . 69
4.10 PWL: Piecewise linear function . 69
4.11 SFFM: Frequency Modulation time dependent value . 70
4.12 SIN: Sinusoidal time dependent value . 70
4.13 TANH: Hyperbolic tangent transfer function . 71
4.14 .model TABLE: Fit a curve . 71

5 Installation 73
5.1 The easy way . 73
5.2 If that doesn’t work . 73
5.3 Details, custom compilation . 73

6 Adding models 77
6.1 Using the model compiler . 77

7 Technical Notes 83
7.1 Architecture . 83
7.2 Transient analysis . 84
7.3 Data Structures . 88
7.4 Performance . 88

6 CONTENTS

Chapter 1

Introduction

1.1 What is it?

Gnucap is a general purpose mixed analog and dig-
ital circuit simulator. It performs nonlinear dc and
transient analyses, fourier analysis, and ac analysis
linearized at an operating point. It is fully interac-
tive and command driven. It can also be run in batch
mode. The output is produced as it simulates. Spice
compatible models for the MOSFET (levels 1-7) and
diode are included in this release.

Since it is fully interactive, it is possible to make
changes and re-simulate quickly. This makes Gnucap
ideal for experimenting with circuits as you might do
in an iterative design or testing design principles as
you might do in a course on circuits.

In batch mode it is mostly Spice compatible, so it
is often possible to use the same file for both Gnucap
and Spice.

The analog simulation is based on traditional nodal
analysis with iteration by Newton’s method and LU
decomposition. An event queue and incremental ma-
trix update speed up the solution considerably for
large circuits and provide some of the benefits of re-
laxation methods but without the drawbacks.

It also has digital devices for true mixed mode sim-
ulation. The digital devices may be implemented as
either analog subcircuits or as true digital models.
The simulator will automatically determine which to
use. Networks of digital devices are simulated as dig-
ital, with no conversions to analog between gates.
This results in digital circuits being simulated faster
than on a typical analog simulator, even with behav-
ioral models.

Gnucap also has a simple behavioral modeling lan-
guage that allows simple behavioral descriptions of

most components including capacitors and inductors.
Gnucap is an ongoing research project. It is being

released in a preliminary phase in hopes that it will
be useful and that others will use it as a thrust or
base for their research.

1.2 Starting

To run this program, type and enter the command:
gnucap, from the command shell.

The prompt --> shows that the program is in the
command mode. You should enter a command. Nor-
mally, the first command will be to build a circuit,
or to get one from the disk. First time users should
turn to the tutorial section for further assistance.

To run in batch mode, use gnucap -b file. It
will run that file then exit.

To load a file on starting, use gnucap file. This is
equivalent to starting with no arguments, then using
the get command to load a file.

1.3 How to use this manual

The best approach is to read this chapter, then read
the command summary at the beginning of chapter 2,
then run the examples in the tutorial section. Later,
when you want to use the advanced features, go back
for more detail.

This manual is designed as a reference for users who
are familiar with circuit design, and therefore does
not present information on circuit design but only
on the use of this program to analyze such a design.
Likewise, it is not a text in modeling, although the
models section does touch on it.

7

8 CHAPTER 1. INTRODUCTION

Throughout this manual, the following notation
conventions are used:

• Typewriter font represents exactly what you
type, or computer output.

• Underlined typewriter font is what you type,
in a dialogue with the computer.

• Command words are shown in mixed UPPER
and lower case. The upper case part must be
entered exactly. The lower case part is optional,
but if included must be spelled correctly.

• Italics indicate that you should substitute the
appropriate name or value.

• Braces { } indicate optional parameters.

• Ellipses (...) indicate that an entry may be re-
peated as many times as needed or desired.

1.4 Command structure

Commands are whole words, but usually you only
have to type enough of the word to make it unique.
The first three letters will almost always work. In
some cases less will do. The whole word is significant,
if used, and must be spelled correctly.

In files, commands must be prefixed with a dot (.).
This is done for compatibility with other simulation
programs, such as SPICE.

Command options should be separated by commas
or spaces. In some cases, the commas or spaces are
not necessary, but it is good practice to use them.

Upper and lower case are usually the same.
Usually options can be entered in any order. The

exceptions to this are numeric parameters, where the
order determines their meaning, and command-like
parameters, where they are executed in order. If pa-
rameters conflict, the last takes precedence.

In general, standard numeric parameters, such as
sweep limits, must be entered first, before any op-
tions.

Any line starting with * is considered a comment
line, and is ignored. Anything on any line following
a quote is ignored. This is mainly intended for files.

This program supports abbreviated notation for
floating point numeric entries. ‘K’ means kilo, or ‘e3’,

etc. ‘M’ and ‘m’ mean milli, not mega (for Spice com-
patibility). ‘Meg’ means mega. Of course, it will also
take the standard scientific notation. Letters follow-
ing values, without spaces, are ignored.

T = Tera = e12
G = Giga = e9
Meg = Mega = e6
K = Kilo = e3
m = milli = e-3
u = micro = e-6
n = nano = e-9
p = pico = e-12
f = femto = e-15

1.5 Standard options

There are several options that are used in many com-
mands that have a consistent meaning.

Quiet Suppress all unnecessary output, such as in-
termediate results, disk reads, activity indica-
tors.

Echo Echo all disk reads to the console, as read from
the disk.

Basic Format the output for compatibility with
other software with primitive input parsers, such
as C’s scanf and Basic’s input statements. It
forces exponential notation, instead of our stan-
dard abbreviated notation. Any numbers that
would ordinarily be printed without an exponent
are not changed.

Pack Remove extra spaces from the output to save
space at the expense of readability.

< Take the input from a file. The file name follows
in the same line.

> Direct the output to a file. The file name follows.
If the file already exists, it will ask permission to
delete the old one and replace it with a new one
with the same name.

>> Direct the output to a file. If the file already
exists, the new data is appended to it.

1.8. LICENSING 9

1.6 Getting help, and the Gnu-
cap user community

This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

Probably the best source of cur-
rent information is the web site:
http://www.gnu.org/software/gnucap. Here,
you will find information on the latest developments,
including other work related to gnucap, but not
strictly part of it.

There are four mailing lists of interest to Gnucap
users.

bug-gnucap This list is for bug reports and discus-
sion about bugs in gnucap.

help-gnucap This is a general user discussion list
for gnucap. Discussions about the use of gnucap,
and sharing of ideas, models, and libraries, are
all welcome here. Technical discussions should
be light weight and user oriented.

info-gnucap This list is for announcements about
gnucap. It is a moderated list. All postings come
from the administrator.

gnucap-devel This list is for technical discussions
relating to the development of gnucap. Techni-
cal discussions about simulator algorithms, mod-
eling, and interfacing are all welcome here.

The web site contains the archives of these lists,
and allows you to sign up for them.

1.7 How to contribute

There are a number of ways that you can contribute
to help make Gnucap a better system. Perhaps the
most important way to contribute is to write high-
quality code for solving new problems, and to make
your code freely available for others to use.

You can add significant value by developing mod-
els, even macro models, that can be distributed.

Converting Spice models, publicizing which ones al-
ready work, or documenting any features that Gnu-
cap needs to make it work, are all valuable contribu-
tions.

If you find Gnucap useful, consider providing ad-
ditional funding to continue its development. Even
a modest amount of additional funding could make
a significant difference in the amount of time that is
available for development and support.

If you cannot provide funding or contribute code,
you can still help make Gnucap better and more re-
liable by reporting any bugs you find and by offering
suggestions for ways to improve Gnucap.

If you are a teacher, you are making a significant
contribution simply by using free software in your
courses, and showing the students that they really do
have a choice in software. You can further the contri-
bution by encouraging student software projects that
can be released as free software. You can also fur-
ther the contribution by writing texts that use free
software in the coursework, providing an alternative
to those texts that promote closed source commercial
software.

If you are an academic researcher, you can con-
tribute by releasing your own software under GPL,
and collaborating with others who do. You can help
by using only open standards and avoiding propri-
etary languages such as the modeling languages of
some proprietary simulators.

If you are a commercial user, you can help by giv-
ing financial support or equipment to the develop-
ers. Often, (as is the case with Gnucap), the prin-
cipal developers are in the academic community, so
by supporting free software, you are also supporting
academic research and providing financial support for
students.

1.8 Licensing

GNU GENERAL PUBLIC LICENSE Version 2, June
1991

Copyright (C) 1989, 1991 Free Software Founda-
tion, Inc. 675 Mass Ave, Cambridge, MA 02139, USA
Everyone is permitted to copy and distribute verba-
tim copies of this license document, but changing it
is not allowed.

Preamble

10 CHAPTER 1. INTRODUCTION

The licenses for most software are designed to take
away your freedom to share and change it. By con-
trast, the GNU General Public License is intended
to guarantee your freedom to share and change free
software–to make sure the software is free for all its
users. This General Public License applies to most
of the Free Software Foundation’s software and to
any other program whose authors commit to using
it. (Some other Free Software Foundation software is
covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring
to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom
to distribute copies of free software (and charge for
this service if you wish), that you receive source code
or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and
that you know you can do these things.

To protect your rights, we need to make restric-
tions that forbid anyone to deny you these rights or
to ask you to surrender the rights. These restrictions
translate to certain responsibilities for you if you dis-
tribute copies of the software, or if you modify it.

For example, if you distribute copies of such a pro-
gram, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must
make sure that they, too, receive or can get the source
code. And you must show them these terms so they
know their rights.

We protect your rights with two steps: (1) copy-
right the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or
modify the software.

Also, for each author’s protection and ours, we
want to make certain that everyone understands that
there is no warranty for this free software. If the soft-
ware is modified by someone else and passed on, we
want its recipients to know that what they have is
not the original, so that any problems introduced by
others will not reflect on the original authors’ repu-
tations.

Finally, any free program is threatened constantly
by software patents. We wish to avoid the danger
that redistributors of a free program will individually
obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear
that any patent must be licensed for everyone’s free

use or not licensed at all.
The precise terms and conditions for copying, dis-

tribution and modification follow.
GNU GENERAL PUBLIC LICENSE TERMS

AND CONDITIONS FOR COPYING, DISTRIBU-
TION AND MODIFICATION

0. This License applies to any program or other
work which contains a notice placed by the copyright
holder saying it may be distributed under the terms
of this General Public License. The ”Program”, be-
low, refers to any such program or work, and a ”work
based on the Program” means either the Program or
any derivative work under copyright law: that is to
say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or trans-
lated into another language. (Hereinafter, translation
is included without limitation in the term ”modifica-
tion”.) Each licensee is addressed as ”you”.

Activities other than copying, distribution and
modification are not covered by this License; they are
outside its scope. The act of running the Program is
not restricted, and the output from the Program is
covered only if its contents constitute a work based
on the Program (independent of having been made by
running the Program). Whether that is true depends
on what the Program does.

1. You may copy and distribute verbatim copies
of the Program’s source code as you receive it, in
any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep in-
tact all the notices that refer to this License and to
the absence of any warranty; and give any other re-
cipients of the Program a copy of this License along
with the Program.

You may charge a fee for the physical act of trans-
ferring a copy, and you may at your option offer war-
ranty protection in exchange for a fee.

2. You may modify your copy or copies of the Pro-
gram or any portion of it, thus forming a work based
on the Program, and copy and distribute such modi-
fications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

a) You must cause the modified files to carry promi-
nent notices stating that you changed the files and the
date of any change.

b) You must cause any work that you distribute or
publish, that in whole or in part contains or is derived

1.8. LICENSING 11

from the Program or any part thereof, to be licensed
as a whole at no charge to all third parties under the
terms of this License.

c) If the modified program normally reads com-
mands interactively when run, you must cause it,
when started running for such interactive use in the
most ordinary way, to print or display an announce-
ment including an appropriate copyright notice and
a notice that there is no warranty (or else, saying
that you provide a warranty) and that users may re-
distribute the program under these conditions, and
telling the user how to view a copy of this License.
(Exception: if the Program itself is interactive but
does not normally print such an announcement, your
work based on the Program is not required to print
an announcement.)

These requirements apply to the modified work as
a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably
considered independent and separate works in them-
selves, then this License, and its terms, do not apply
to those sections when you distribute them as sepa-
rate works. But when you distribute the same sec-
tions as part of a whole which is a work based on
the Program, the distribution of the whole must be
on the terms of this License, whose permissions for
other licensees extend to the entire whole, and thus
to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim
rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right
to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not
based on the Program with the Program (or with a
work based on the Program) on a volume of a storage
or distribution medium does not bring the other work
under the scope of this License.

3. You may copy and distribute the Program (or a
work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2
above provided that you also do one of the following:

a) Accompany it with the complete corresponding
machine-readable source code, which must be dis-
tributed under the terms of Sections 1 and 2 above on
a medium customarily used for software interchange;
or,

b) Accompany it with a written offer, valid for

at least three years, to give any third party, for a
charge no more than your cost of physically perform-
ing source distribution, a complete machine-readable
copy of the corresponding source code, to be dis-
tributed under the terms of Sections 1 and 2 above on
a medium customarily used for software interchange;
or,

c) Accompany it with the information you received
as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncom-
mercial distribution and only if you received the pro-
gram in object code or executable form with such an
offer, in accord with Subsection b above.)

The source code for a work means the preferred
form of the work for making modifications to it. For
an executable work, complete source code means all
the source code for all modules it contains, plus any
associated interface definition files, plus the scripts
used to control compilation and installation of the ex-
ecutable. However, as a special exception, the source
code distributed need not include anything that is
normally distributed (in either source or binary form)
with the major components (compiler, kernel, and so
on) of the operating system on which the executable
runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made
by offering access to copy from a designated place,
then offering equivalent access to copy the source
code from the same place counts as distribution of
the source code, even though third parties are not
compelled to copy the source along with the object
code.

4. You may not copy, modify, sublicense, or dis-
tribute the Program except as expressly provided un-
der this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void,
and will automatically terminate your rights under
this License. However, parties who have received
copies, or rights, from you under this License will not
have their licenses terminated so long as such parties
remain in full compliance.

5. You are not required to accept this License, since
you have not signed it. However, nothing else grants
you permission to modify or distribute the Program
or its derivative works. These actions are prohib-
ited by law if you do not accept this License. There-
fore, by modifying or distributing the Program (or

12 CHAPTER 1. INTRODUCTION

any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms
and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any
work based on the Program), the recipient automat-
ically receives a license from the original licensor to
copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any
further restrictions on the recipients’ exercise of the
rights granted herein. You are not responsible for
enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or al-
legation of patent infringement or for any other rea-
son (not limited to patent issues), conditions are im-
posed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this Li-
cense, they do not excuse you from the conditions of
this License. If you cannot distribute so as to sat-
isfy simultaneously your obligations under this Li-
cense and any other pertinent obligations, then as a
consequence you may not distribute the Program at
all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those
who receive copies directly or indirectly through you,
then the only way you could satisfy both it and this
License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or un-
enforceable under any particular circumstance, the
balance of the section is intended to apply and the
section as a whole is intended to apply in other cir-
cumstances.

It is not the purpose of this section to induce you
to infringe any patents or other property right claims
or to contest validity of any such claims; this sec-
tion has the sole purpose of protecting the integrity
of the free software distribution system, which is im-
plemented by public license practices. Many people
have made generous contributions to the wide range
of software distributed through that system in re-
liance on consistent application of that system; it is
up to the author/donor to decide if he or she is will-
ing to distribute software through any other system
and a licensee cannot impose that choice.

This section is intended to make thoroughly clear
what is believed to be a consequence of the rest of
this License.

8. If the distribution and/or use of the Program
is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright
holder who places the Program under this License
may add an explicit geographical distribution limi-
tation excluding those countries, so that distribution
is permitted only in or among countries not thus ex-
cluded. In such case, this License incorporates the
limitation as if written in the body of this License.

9. The Free Software Foundation may publish re-
vised and/or new versions of the General Public Li-
cense from time to time. Such new versions will be
similar in spirit to the present version, but may differ
in detail to address new problems or concerns.

Each version is given a distinguishing version num-
ber. If the Program specifies a version number of this
License which applies to it and ”any later version”,
you have the option of following the terms and con-
ditions either of that version or of any later version
published by the Free Software Foundation. If the
Program does not specify a version number of this
License, you may choose any version ever published
by the Free Software Foundation.

10. If you wish to incorporate parts of the Program
into other free programs whose distribution condi-
tions are different, write to the author to ask for per-
mission. For software which is copyrighted by the
Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of pre-
serving the free status of all derivatives of our free
software and of promoting the sharing and reuse of
software generally.

NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED

FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PAR-
TIES PROVIDE THE PROGRAM ”AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF
THE PROGRAM IS WITH YOU. SHOULD THE

1.8. LICENSING 13

PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY
APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY
OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMIT-
TED ABOVE, BE LIABLE TO YOU FOR DAM-
AGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY
TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPER-
ATE WITH ANY OTHER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

END OF TERMS AND CONDITIONS
Appendix: How to Apply These Terms to Your

New Programs
If you develop a new program, and you want it

to be of the greatest possible use to the public, the
best way to achieve this is to make it free software
which everyone can redistribute and change under
these terms.

To do so, attach the following notices to the pro-
gram. It is safest to attach them to the start of each
source file to most effectively convey the exclusion of
warranty; and each file should have at least the ”copy-
right” line and a pointer to where the full notice is
found.

¡one line to give the program’s name and a brief
idea of what it does.¿ Copyright (C) 19yy ¡name of
author¿

This program is free software; you can redistribute
it and/or modify it under the terms of the GNU Gen-
eral Public License as published by the Free Software
Foundation; either version 2 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will
be useful, but WITHOUT ANY WARRANTY; with-
out even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more

details.
You should have received a copy of the GNU Gen-

eral Public License along with this program; if not,
write to the Free Software Foundation, Inc., 675 Mass
Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by
electronic and paper mail.

If the program is interactive, make it output a short
notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name
of author Gnomovision comes with ABSOLUTELY
NO WARRANTY; for details type ‘show w’. This is
free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show
c’ should show the appropriate parts of the General
Public License. Of course, the commands you use
may be called something other than ‘show w’ and
‘show c’; they could even be mouse-clicks or menu
items–whatever suits your program.

You should also get your employer (if you work
as a programmer) or your school, if any, to sign a
”copyright disclaimer” for the program, if necessary.
Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright in-
terest in the program ‘Gnomovision’ (which makes
passes at compilers) written by James Hacker.

¡signature of Ty Coon¿, 1 April 1989 Ty Coon,
President of Vice

This General Public License does not permit incor-
porating your program into proprietary programs. If
your program is a subroutine library, you may con-
sider it more useful to permit linking proprietary ap-
plications with the library. If this is what you want
to do, use the GNU Library General Public License
instead of this License.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Command descriptions

2.1 Command Summary

* Comment line.

! Pass a command to the operating system.

< Batch mode.

> Direct the “standard output” to a file.

AC Performs a small signal AC (frequency domain)
analysis. Sweeps frequency.

ALARM Select points in circuit check against limits.

ALTER Perform analyses in queue. Changes follow.
(Not implemented.)

BUILD Build a new circuit or change an existing one.

CHDIR Change current directory.

CLEAR Delete the entire circuit, titles, etc.

DC Performs a nonlinear DC analysis, for determin-
ing transfer characteristics. Sweeps DC input or
component values.

DELETE Delete a part, or group of parts.

DISTO SPICE command not implemented.

EDIT Edit the circuit description using your editor.

END Perform analyses in queue. New circuit follows.
(Implemented incorrectly.)

EXIT Exits the program. (Same as quit.)

FANOUT List by node number, the branches that con-
nect to each node.

FAULT Temporarily change a component.

FOURIER Transient analysis, with results in frequency
domain. (Different from SPICE.)

GENERATOR View and set the transient analysis func-
tion generator.

GET Get a circuit from a disk file. Deletes old one
first.

IC Set transient analysis initial conditions. (Not im-
plemented.)

INCLUDE Include a file from disk. Add it the what is
already in memory.

INSERT Insert a node number. (Make a gap.)

LIST List the circuit on the console.

LOG Save a record of commands.

MARK Mark this time point, so transient analysis will
restart here.

MERGE Get a file from disk. Add it the what is already
in memory.

MODIFY Change a value, node, etc. For very simple
changes.

NODESET Preset node voltages, to assist convergence.
(Not implemented.)

NOISE SPICE command not implemented.

OP Performs a nonlinear DC analysis, for determin-
ing quiescent operating conditions. Sweeps tem-
perature.

15

16 CHAPTER 2. COMMAND DESCRIPTIONS

OPTIONS View and set system options. (Same as set.)

PAUSE Wait for key hit, while in batch mode.

PLOT Select points in circuit (and their range) to plot.

PRINT Select which points in the circuit to print as
table.

QUIT Exits the program. (Same as exit.)

SAVE Save the circuit in a file.

SENS SPICE command not implemented.

STATUS Display resource usage, etc.

SWEEP Sweep a component. (Loop function.)

TEMP SPICE command not implemented.

TF SPICE command not implemented.

TITLE View and create the heading line for printouts
and files.

TRANSIENT Performs a nonlinear transient (time do-
main) analysis. Sweeps time.

UNFAULT Undo faults.

UNMARK Undo mark. Release transient start point.

WIDTH Set output width.

2.2 ! command

2.2.1 Syntax

! command

2.2.2 Purpose

Run a program, or escape to a shell.

2.2.3 Comments

Any command typed here will be passed to the sys-
tem for it to execute.

The bare command ! will spawn an interactive
shell. Exiting the shell will return.

2.2.4 Examples

! ls *.ckt Run the command ls *.ckt as if it
were a shell command.

! No arguments mean to spawn an interactive shell.

2.3 < command

2.3.1 Syntax

< filename
<< filename

2.3.2 Purpose

Run a simulation in batch mode. Gets the commands
and circuit from a disk file. << clears the old circuit,
first.

2.3.3 Comments

You can invoke the batch mode directly from the com-
mand that starts the program. The first command
line argument is considered to be an argument for
this command.

The file format is almost as you would type it on
the keyboard. Commands must be prefixed with a
dot, and circuit elements can be entered directly, as
if in build mode. This is compatible with Spice.

The log command makes a file as you work the
program, but the format is not correct for this com-
mand. To fix it, prefix commands with a dot, and
remove the build commands.

Any line that starts with * a comment line.
Any line that starts with . (dot) is a command.
Any line that starts with a letter is a component

to be added or changed.
A < command in the file transfers control to a new

file. Files can be nested.
A bare < in the file (or the end of the file) gives it

back to the console.
Unlike SPICE, commands are executed in order.

This can result in some surprises when using some
SPICE files. SPICE queues up commands, then exe-
cutes them in a predetermined order.

2.5. AC COMMAND 17

2.3.4 Examples

< thisone.ckt Activates batch mode, from the file
thisone.ckt, in the current directory.

< runit.bat Use the file runit.bat.

From the shell: on start up:

gnucap afile Start up the program. Start using the
file afile.ckt in batch mode, as if you entered
< afile as the first command.

gnucap <afile Start up the program. Start using
the file afile.ckt with commands as if you
typed them from the keyboard.

2.4 > command

2.4.1 Syntax

> file
>> file
>

2.4.2 Purpose

Saves a copy of all program output (except help) in
a file.

2.4.3 Comments

> creates a new file for this output. If the file already
exists, the old one is lost, and replaced by the new
one.
>> appends to an existing file, if it exists, otherwise

it creates one.
A bare > closes the file.

2.4.4 Examples

> run1 Save everything in a file run1 in the current
directory. If run1 already exists, the old one is
gone.

>> allof Save everything in a file allof. If allof
already exists, it is kept, and the new data is
added to the end.

> Close the file. Stop saving.

2.5 AC command

2.5.1 Syntax

AC {options ...} start stop stepsize {options
...}

2.5.2 Purpose

Performs a small signal, steady state, AC analysis.
Sweeps frequency.

2.5.3 Comments

The AC command does a linear analysis about an
operating point. It is absolutely necessary to do an
OP analysis first on any nonlinear circuit. Not doing
this is the equivalent of testing it with the power off.

Three parameters are normally needed for an AC
analysis: start frequency, stop frequency and step
size, in this order. If all of these are omitted, the
values from the most recent AC analysis are used.

If only one frequency is specified, a single point
analysis will be done.

If only a new step size is specified, the old start
and stop are kept and only the step size is changed.
This is indicated by a keyword: by, times, decade
or octave, or a symbol: + or *.

If the start frequency is zero, the program will still
do an AC analysis. The actual frequency can be con-
sidered to be the limit as the frequency approaches
zero. It is, therefore, still possible to have a non-zero
phase angle, but delays are not shown because they
may be infinite.

The nodes to look at must have been previously
selected by the print or plot command. This is
different fron Spice.

2.5.4 Options

+ stepsize Linear sweep. Add stepsize to get the next
step. Same as By.

* multiplier Log sweep. Multiply by multiplier to get
the next step.

> file Send results of analysis to file.

>> file Append results to file.

18 CHAPTER 2. COMMAND DESCRIPTIONS

By stepsize Linear sweep. Add stepsize to get the
next step. Same as +.

Decade steps Log sweep. Use steps steps per decade.

NOPlot Suppress plotting.

Octave steps Log sweep. Use steps steps per octave.

PLot Graphic output, when plotting is normally off.

Print Send results to printer.

Quiet Suppress console output.

TEmperature degrees Temperature, degrees C.

TImes multiplier Log sweep. Multiply by multiplier
to get the next step.

2.5.5 Examples

ac 10m A single point AC analysis at 10 mHz.

ac 1000 3000 100 Sweep from 1000 Hz to 3000 Hz
in 100 Hz steps.

ac 1000 3000 Octave Sweep from 1000 Hz to 3000
Hz in octave steps. Since the sweep cannot end
at 3000 Hz, in this case, the last step will really
be 4000 Hz.

ac by 250 Keep the same limits as before, but use
250 Hz steps. In this case, it means to sweep
from 1000 to 3000 Hz, because that it what it
was the last time.

ac 5000 1000 -250 You can sweep downward, if
you want. Remember that the increment would
be negative.

ac 20 20k *2 Double the frequency to get the next
step.

ac 20k 20 *.5 You can do a log sweep downward,
too. A multiplier of less than one moves it down.

ac Do the same AC sweep again.

ac >afile Save the results in the file afile. The
file will look just like the screen. It will have
all probe points. It will be a plot, if plotting is
enabled. It will have the numbers in abbreviated
notation. (10 nanovolts is 10.n.)

2.6 ALARM command

2.6.1 Syntax

ALArm
ALArm mode points
ALArm mode + points
ALArm mode - points
ALArm mode CLEAR

2.6.2 Purpose

Select points in the circuit to check against user de-
fined limits.

2.6.3 Comments

The ‘alarm’ command selects points in the circuit to
check against limits. There is no output unless the
limits are exceeded. If the limits are exceeded a the
value is printed.

There are separate lists of probe points for each
type of analysis.

To list the points, use the bare command ‘alarm’.
Syntax for each point is parameter(node)(limits),

parameter(componentlabel)(limits), or parame-
ter(index)(limits). Some require a dummy index.

For more information on the data available see the
print command.

You can add to or delete from an existing list by
prefixing with + or -. alarm ac + v(3) adds v(3)
to the existing set of AC probes. alarm ac - q(c5)
removes q(c5) from the list. You can use the wildcard
characters * and ? when deleting.

2.6.4 Examples

alarm ac vm(12)(0,5) vm(13)(-5,5) Check mag-
nitude of the voltage at node 12 against a range
of 0 to 5, and node 13 against a range of -5 to 5
for AC analysis. Print a warning when the limits
are exceeded.

alarm op id(m*)(-100n,100n) Check current in
all mosfets. In op analysis, print a warning for
any that are outside the range of -100 to +100
nanoamps. The range goes both positive and
negative so it is valid for both N and P channel
fets.

2.9. CHDIR COMMAND 19

alarm tran v(r83)(0,5) p(r83)(0,1u) Check
the voltage and power of R83 in the next
transient analysis. The voltage range is 0 to 5.
The power range is 0 to 1 microwatt. Print a
warning when the range is exceeded.

alarm List all the probes for all modes.

alarm dc Display the DC alarm list.

alarm ac CLear Clear the AC list.

2.7 ALTER command

The Spice Alter command is not implemented. Sim-
ilar functionality is available from the sweep com-
mand.

2.8 BUILD command

2.8.1 Syntax

Build {line}

2.8.2 Purpose

Builds a new circuit, or replaces lines in an existing
one.

2.8.3 Comments

Build Lets you enter the circuit from the keyboard.
The prompt changes to > to show that the program
is in the build mode.

At this point, type in the circuit components in
standard (Spice type) netlist format.

Component labels must be unique. If not, the old
one is modified according to the new data, keeping
old values where no new ones were specified.

Ordinarily, components are added to the end of the
list. To insert at a particular place, specify the label
to insert in front of. Example: Build R77 will cause
new items to be added before R77, instead of at the
end.

In either case, components being changed or re-
placed do not change their location in the list.

If it is necessary to start over, delete all or clear
will erase the entire circuit in memory.

To exit this mode, enter a blank line.

2.8.4 Examples

build Build a circuit. Add to the end of the list.
This will add to the circuit without erasing any-
thing. It will continue until you exit or memory
fills up.

b This is the same as the previous example. Only
the first letter of the ‘Build’ is necessary.

build R33 Insert new items in front of R33.

2.9 CHDIR command

2.9.1 Syntax

ChDir {path}
CD {path}

2.9.2 Purpose

Changes or displays the current directory name.

2.9.3 Comments

Change the current directory to that specified by
path. See your system manual for complete syntax.

If no argument is given the current directory is dis-
played.

2.9.4 Examples

cd ../ckt Change the current working directory to
../ckt.

cd Show the current working directory name.

2.10 CLEAR command

2.10.1 Syntax

CLEAR

2.10.2 Purpose

Deletes the entire circuit, and blanks the title.

20 CHAPTER 2. COMMAND DESCRIPTIONS

2.10.3 Comments

The entire word clear is required.
Clear is similar to, but a little more drastic than

delete all.
After deleting anything, there is no way to get it

back.
See also: delete command.

2.10.4 Examples

clear Delete the entire circuit.

2.11 DC command

2.11.1 Syntax

DC start stop stepsize {options ...}
DC label start stop stepsize {options ...}

2.11.2 Purpose

Performs a nonlinear DC steady state analysis, and
sweeps the signal input, or a component value.

2.11.3 Status

Nesting of sweeps is not supported. (SPICE supports
two levels of nesting.)

2.11.4 Comments

The nodes to look at must have been previously se-
lected by the print or plot command.

If there are numeric arguments, without a part la-
bel, they represent a ramp from the generator func-
tion. They are the start value, stop value and step
size, in order. They are saved between commands, so
no arguments will repeat the previous sweep.

A single parameter represents a single input volt-
age. Two parameters instruct the computer to ana-
lyze for those two points only.

In some cases, you will get one more step outside
the specified range of inputs due to internal rounding
errors. The last input may be beyond the end point.

This command also sets up a movable operating
point for subsequent AC analysis, which can be helpful
in distortion analysis.

The program will sweep any simple component, in-
cluding resistors, capacitors, and controlled sources.
SPICE sweeps only fixed sources (types V and I).

2.11.5 Options

* multiplier Log sweep. Multiply the input by mul-
tiplier to get the next step. Do not pass zero
volts!!

> file Send results of analysis to file.

>> file Append results to file.

BY stepsize Linear sweep. Add stepsize to get the
next step.

Continue Use the last step of a OP, DC or Transient
analysis as the first guess.

Decade steps Log sweep. Use steps steps per decade.

LOop Repeat the sweep, backwards.

NOPlot Suppress plotting.

PLot Graphic output, when plotting is normally off.

Print Send results to printer.

Quiet Suppress console output.

REverse Sweep in the opposite direction.

TEmperature degrees Temperature, degrees C.

Times multiplier Log sweep. Multiply the input by
multiplier to get the next step. Do not pass zero
volts!!

TRace n Show extended information during solution.
Must be followed by one of the following:

Off No extended trace information (default,
override .opt)

Warnings Show extended warnings

Iterations Show every iteration.

Verbose Show extended diagnostics.

2.13. DISTO COMMAND 21

2.11.6 Examples

dc 1 Do a single point DC signal simulation, with ‘1
volt’ input.

dc -10 15 1 Sweep the circuit input from -10 to
+15 in steps of 1. (usually volts.) Do a DC
transfer simulation at each step.

dc With no parameters, it uses the same ones as the
last time. In this case, from -10 to 15 in 1 volt
steps.

dc 20 0 -2 You can sweep downward, by asking for
a negative increment. Sometimes, this will result
in better convergence, or even different results!
(For example, in the case of a bi-stable circuit.)

dc Since the last time used the input option, go
back one more to find what the sweep param-
eters were. In this case, downward from 20 to
0 in steps of 2. (Because we did it 2 commands
ago.)

dc -2 2 .1 loop After the sweep, do it again in the
opposite direction. In this case, the sweep is -2
to +2 in steps of .1. After it gets to +2, it will
go back, and sweep from +2 to -2 in steps of -.1.
The plot will be superimposed on the up sweep.
This way, you can see hysteresis in the circuit.

dc temperature 75 Simulate at 75 degrees, this
time. Since we didn’t specify new sweep param-
eters, do the same as last time. (Without the
loop.)

2.12 DELETE command

2.12.1 Syntax

DELete label ...
DELete ALL

2.12.2 Purpose

Remove a line, or a group of lines, from the circuit
description.

2.12.3 Comments

To delete a part, by label, enter the label. (Example
‘DEL R15’.) Wildcards ‘*’ and ‘?’ are allowed, in
which case, all that match are deleted.

To delete the entire circuit, the entire word ALL
must be entered. (Example ‘DEL ALL’.)

After deleting anything, there is usually no way to
get it back, but if a fault had been applied (see fault
command) restore may have surprising results.

2.12.4 Examples

delete all Delete the entire circuit, but save the
title.

del R12 Delete R12.

del R12 C3 Delete R12 and C3.

del R* Delete all resistors. (Also, any models and
subcircuits starting with R.)

2.13 DISTO command

The Spice disto command is not implemented. Sim-
ilar functionality is not available.

2.14 EDIT command

2.14.1 Syntax

Edit
Edit file

2.14.2 Purpose

Use your editor to change the circuit.

2.14.3 Comments

The edit command runs your editor on a copy of the
circuit in memory, then reloads it.
Edit file runs your editor on the specified file.
If you are only changing a component value, the

modify command may be easier to use.
The program uses the EDITOR environment variable

to find the editor to use. The command fails if there
is no EDITOR defined.

22 CHAPTER 2. COMMAND DESCRIPTIONS

2.14.4 Examples

edit Brings up your editor on the circuit.

edit foo Edits the file foo in your current directory.

2.15 END command

When run in batch mode from the shell, the END com-
mand cleans up and exits the program.

In script mode (< command) it ends the script and
returns to the program prompt.

In interactive mode it exits the program.

2.16 EXIT command

2.16.1 Syntax

EXIt

2.16.2 Purpose

Terminates the program.

2.16.3 Comments

‘Quit’ also works.
Be sure you have saved everything you want to!

2.17 FANOUT command

2.17.1 Syntax

FANout {nodes}

2.17.2 Purpose

Lists connections to each node.

2.17.3 Comments

Fanout lists the line number and label of each part
connected to each node. If both ends of a part are
connected the same place, it is listed twice.

For a partial list, just specify the numbers. A num-
ber alone (17) says this branch alone. A trailing dash
(23-) says from here to the end. A leading dash (-33)
says from the start to here. Two numbers (9 13)
specify a range.

2.17.4 Examples

fanout Lists all the nodes in the circuit, with their
connections.

fanout 99 List parts connecting to node 99.

fanout 0 List the connections to node 0. (There
must be at least one, unless you are editing a
model.)

fanout 78- List connections to nodes 78 and up.

fanout 124 127 List connections to nodes 124, 125,
126, 127.

2.18 FAULT command

2.18.1 Syntax

FAult partlabel=value ...

2.18.2 Purpose

Temporarily change a component value.

2.18.3 Comments

This command quickly changes the value of a com-
ponent, usually with the intention that you will not
want to save it.

If you apply this command to a nonlinear or oth-
erwise strange part, it becomes ordinary and linear
until the fault is removed.

It is an error to fault a model call.
If several components have the same label, the fault

value applies to all of them. (They will all have the
same value.)

The unfault command restores the old values.

2.18.4 Example

fault R66=1k R66 now has a value of 1k, regardless
of what it was before.

fault C12=220p L1=1u C12 is 220 pf and L1 is 1
uH, for now.

unfault Clears all faults. It is back to what it was
before.

2.19. FOURIER COMMAND 23

2.19 FOURIER command

2.19.1 Syntax

Fourier start stop stepsize {options ...}

2.19.2 Purpose

Performs a nonlinear time domain (transient) analy-
sis, but displays the results in the frequency domain.

Start, stop, and stepsize are frequencies.

2.19.3 Comments

This command is slightly different and more flexible
than the SPICE counterpart. SPICE always gives
you the fundamental and 9 harmonics. Gnucap will
do the same if you only specify one frequency. SPICE
has the probes on the same line. Gnucap requires you
to specify the probes with the print command.

SPICE uses the last piece of a transient that was
already done. Gnucap does its own transient analy-
sis, continuing from where the most recent one left
off, and choosing the step size to match the Fourier
Transform to be done. Because of this the Gnucap
Fourier analysis is much more accurate than SPICE.

The nodes to look at must have been previously
selected by the print or plot command.

Three parameters are normally needed for a Fourier
analysis: start frequency, stop frequency and step
size, in this order.

If the start frequency is omitted it is assumed to be
0. The two remaining parameters are stop and step,
such that stop > step.

If only one frequency is specified, it is assumed to
be step size, which is equivalent to the fundamen-
tal frequency. The start frequency is zero and the
stop frequency is set according the harmonics option
(from the options command. The default is 9 har-
monics.

If two frequencies are specified, they are stop and
step. The order doesn’t matter since stop is always
larger than step.

Actually, this command does a nonlinear time do-
main analysis, then performs a Fourier transform on
the data to get the frequency data. The transient
analysis parameters (start, stop, step) are determined
by the program as necessary to produce the desired
spectral results. The internal time steps are selected

to match the Fourier points, so there is no interpola-
tion done.

The underlying transient analysis begins where the
previous one left off. If you specify the ”cold” option,
it begins at time = 0. Often repeating a run will
improve the accuracy by giving more time for initial
transients to settle out.

See also: Transient command.

2.19.4 Options

> file Send results of analysis to file.

>> file Append results to file.

Cold Zero initial conditions. Cold start from power-
up.

Quiet Suppress console output.

SKip count Force at least count internal transient
time steps for each one used.

STiff Use a different integration method, that will
suppress overshoot when the step size is too
small.

TEmperature degrees Temperature, degrees C.

TRACe n Show extended information during solution.
Must be followed by one of the following:

Off No extended trace information (default,
override .opt)

Warnings Show extended warnings

Alltime Show all accepted internal time steps.

Rejected Show all internal time steps including
rejected steps.

Iterations Show every iteration.

Verbose Show extended diagnostics.

2.19.5 Examples

fourier 1Meg Analyze the spectrum assuming a
fundamental frequency of 1 mHz. Use the
harmonics option to determine how many har-
monics (usually 9) to display.

24 CHAPTER 2. COMMAND DESCRIPTIONS

fourier 40 20k 20 Analyze the spectrum from 40
Hz to 20 kHz in 20 Hz steps. This will result in
a transient analysis with 25 micro-second steps.
(1 / 40k). It will run for .05 second. (1 / 20).

fourier 0 20k 20 Similar to the previous example,
but show the DC and 20 Hz terms, also.

fourier No parameters mean use the same ones as
the last time. In this case: from 0 to 20 kHz, in
20 Hz steps.

fourier Skip 10 Do 10 transient steps internally
for every step that is used. In this case it means
to internally step at 2.5 micro-second, or 10 steps
for every one actually used.

fourier Cold Restart at time = 0. This will show
the spectrum of the power-on transient.

2.20 GENERATOR command

2.20.1 Syntax

Generator {option-name=value ...}

2.20.2 Purpose

Sets up an input waveform for transient and
Fourier analysis. Emulates a laboratory type func-
tion generator.

2.20.3 Comments

This command sets up a singal source that is concep-
tually separate from the circuit. To use it, make the
value of a component ”generator(1)”, or substitute a
scale factor for the parameter.

The SPICE style input functions also work, but are
considered to be part of the circuit, instead of part of
the test equipment.

The parameters available are designed to emulate
the controls on a function generator. There are ac-
tually two generators here: sine wave and pulse. If
both are on (by setting non-zero parameters) the sine
wave is modulated by the pulse, but either can be
used alone.

Unless you change it, it is a unit-step function at
time 0. The purpose of the command is to change it.

This command does not affect AC or DC analysis
in any way. It is only for transient and Fourier
analysis. In AC analysis, the input signal is always a
sine wave at the analysis frequency.

Typical usage is the name of the control followed
by its value, or just plain Generator to display the
present values.

The actual time when switching takes place is am-
biguous by one time step. If precise time switching is
necessary, use the Skip option on the transient anal-
ysis command, to force more resolution. This ambi-
guity can usually be avoided by specifying finite rise
and fall times.

2.20.4 Parameters

Frequency The frequency of the sine wave generator
for a transient analysis. The sine wave is mod-
ulated by the pulse generator. A frequency of
zero puts the pulse generator on line directly.

Amplitude The overall amplitude of the pulse and
sine wave. A scale factor. It applies to every-
thing except the offset and init values.

Phase The phase of the sine wave, at the instant it
is first turned on.

MAx The amplitude of the pulse, when it is ‘on’.
(During the width time) If the sine wave is on
(frequency not zero) this is the amplitude of the
sine wave during the first part of the period. The
max is scaled by ampl.

MIn The amplitude of the pulse, when it is ‘off’. (Af-
ter it falls, but before the next period begins.)
Although we have called these min and max,
there is no requirement that max be larger than
min. If the sine wave is on, this is its amplitude
during the second part of the period. The min
is scaled by ampl.

Offset The DC offset applied to the entire signal, at
all times after the initial delay. The offset is not
scaled by ampl.

Init The initial value of the pulse generator output.
It will have this value starting at time 0, until
Delay time has elapsed. It will never return to
this value, unless you restart at time 0.

2.21. GET COMMAND 25

Rise The rise time, or the time it takes to go from
MIn to MAx, or for the first rise, Init to MAx.
The rise is linear.

Fall The fall time. (The time required to go from
MAx back to MIn.)

Delay The waiting time before the first rise.

Width The length of time the output of the generator
has the value Max. A width of zero means that
the output remains high for the remainder of the
period. If you really want a width of zero, use a
very small number, less than the step size.

Period The time for repetition of the pulse. It must
be greater than the sum of rise + fall + width.
A period of zero means that the signal is not
periodic and so will not repeat.

2.20.5 Examples

The generator command ...

gen Display the present settings.

gen Freq=1k Sets the sine wave to 1 kHz. All other
parameters are as they were before.

gen Freq=0 Turns off the sine wave, leaving only the
pulse.

gen Ampl=0 Sets the amplitude to zero, which means
the circuit has no input, except for possibly a DC
offset.

gen Period=.001 Freq=1m Sets the period back to
1 millisecond. Applies 1 mHz modulation to the
pulse, resulting in a pulsed sine wave. In this
case, a 100 microsecond 10 volt burst, repeating
every millisecond. Between bursts, you will get
2.5 volts, with reversed phase. The old values,
in this case from 2 lines back (above) are kept.
(Ampl 5 Rise 10u Fall 10u ...)

gen Freq=60 Phase=90 Delay=.1 The sine wave
frequency is 60 Hertz. Its phase is 90 degrees
when it turns on, at time .1 seconds. It turns on
sharply at the peak.

A component using it ...

V12 1 0 generator(1) Use the generator as the cir-
cuit input through this voltage source. The DC
and AC values are 0.

V12 1 0 tran generator(1) ac 10 dc 5 Same as
before, except that the AC value is 10 and DC
value is 5.

Rinput 1 0 tran generator(1) Unlike SPICE,
the functions can be used on other components.
The resistance varies in time according to the
”generator”.

2.21 GET command

2.21.1 Syntax

GET filename

2.21.2 Purpose

Gets an existing circuit file, after clearing memory.

2.21.3 Comments

The first comment line of the file being read is taken
as the ‘title’. See the title command.

Comments in the circuit file are stored, unless they
start with *+ in which case they are thrown away.

‘Dot cards’ are set up, but not executed. This
means that variables and options are changed, but
simulation commands are not actually done. As
an example, the options command is actually per-
formed, since it only sets up variables. The ac card
is not performed, but its parameters are stored, so
that a plain ac command will perform the analysis
specified in the file.

Any circuit already in memory will be erased before
loading the new circuit.

2.21.4 Examples

get amp.ckt Get the circuit file amp.ckt from the
current directory.

get /usr/foo/ckt/amp.ckt Get the file amp.ckt
from the /usr/foo/ckt directory.

get npn.mod Get the file npn.mod.

26 CHAPTER 2. COMMAND DESCRIPTIONS

2.22 IC command

The Spice IC command is not implemented. Similar
functionality is not available.

2.23 INSERT command

2.23.1 Syntax

INsert node
INsert node, count

2.23.2 Purpose

Open up node numbers inside a circuit.

2.23.3 Comments

To open up an internal node, enter insert followed
by the number and how many. All node numbers
higher than the first number will be raised by the
second. The second (how many) is optional. If omit-
ted, 1 will be assumed.

2.23.4 Examples

insert 8 3 Insert 3 nodes before node 8. Adds 3
nodes (8,9,10) with no connections. Old node
numbers 8 and higher have 3 added to them to
make room. Old node 8 is now 11, 9 is now 12,
10 is now 13, 11 is 14, etc.

insert 6 Insert one node at 6. Old nodes 6 and
higher are incremented by 1. Old node 6 is now
7, 7 is 8, etc.

2.24 LIST command

2.24.1 Syntax

List {label ...}
List {label - label}

2.24.2 Purpose

Lists the circuit in memory.

2.24.3 Comments

Plain List will list the whole circuit on the console.
List with a component label asks for that one only.

Wildcards are supported: ? matches any character,
once. * matches zero or more of any character.

For several components, list them.
For a range, specify two labels separated by a dash.

2.24.4 Examples

list List the entire circuit to the console.

list R11 Show the component R11.

list D12 - C5 List the part of the netlist from M12
to C5, inclusive. D12 must be before C5 in the
list.

list D* C* List all diodes and capacitors.

2.25 LOG command

2.25.1 Syntax

LOg file
LOg >> file
LOg

2.25.2 Purpose

Saves a copy of your keyboard entries in a file.

2.25.3 Comments

The ‘>>’ option appends to an existing file, if it exists,
otherwise it creates one.

Files can be nested. If you open one while another
is already open, both will contain all the information.

A bare LOg closes the file. Because of this, the last
line of this file is always LOg. Ordinarily, this will not
be of any consequence, but if a log file is open when
you use this file as command input, this will close it.
If more than one LOg file is open, they will be closed
in the reverse of the order in which they were opened,
maintaining nesting.

See also: ‘>’ and ‘<’ commands.

2.27. MERGE COMMAND 27

2.25.4 Bugs

The file is an exact copy of what you type, so it is
suitable for gnucap <file from the shell. It is NOT
suitable for the < command in gnucap or the Spice-
like mode gnucap file without <.

2.25.5 Examples

log today Save the commands in a file today in the
current directory. If today already exists, the
old one is gone.

log >> doit Save the commands in a file doit. If
doit already exists, it is kept, and the new data
is added to the end.

log runit.bat Use the file runit.bat.

log Close the file. Stop saving.

2.26 MARK command

2.26.1 Syntax

MArk

2.26.2 Purpose

Remember circuit voltages and currents.

2.26.3 Comments

After the mark command, the transient and
fourier analysis will continue from the values that
were kept by the mark command, instead of progress-
ing every time.

This allows reruns from the same starting point,
which may be at any time, not necessarily 0.

2.26.4 Examples

transient 0 1 .01 A transient analysis starting at
zero, running until 1 second, with step size .01
seconds. After this run, the clock is at 1 second.

mark Remember the time, voltages, currents, etc.

transient Another transient analysis. It continues
from 1 second, to 2 seconds. (It spans 1 second,
as before.) This command was not affected by
the mark command.

transient This will do exactly the same as the last
one. From 1 second to 2 seconds. If it were not
for mark, it would have started from 2 seconds.

transient 1.5 .001 Try again with smaller steps.
Again, it starts at 1 second.

unmark Release the effect of mark.

transient Exactly the same as the last time, as if
we didn’t unmark. (1 to 1.5 seconds.)

transient This one continues from where the last
one left off: at 1.5 seconds. From now on, time
will move forward.

2.27 MERGE command

2.27.1 Syntax

MErge filename

2.27.2 Purpose

Gets an existing circuit file, without clearing memory.

2.27.3 Comments

The first comment line of the file being read is the
new title, and replaces the existing title.

Comments in the circuit file are stored, unless they
start with *+ in which case they are thrown away.

‘Dot cards’ are set up, but not executed. This
means that variables and options are changed, but
simulation commands are not actually done. As
an example, the options command is actually per-
formed, since it only sets up variables. The ac com-
mand is not performed, but its parameters are stored,
so that a plain ac command will perform the analysis
specified in the file.

Any circuit already in memory is kept. New ele-
ments with duplicate labels replace the old ones. New
elements that are not duplicates are added to the end
of the list, as if the files were appended.

28 CHAPTER 2. COMMAND DESCRIPTIONS

2.27.4 Examples

merge amp.ckt Get the circuit file amp.ckt from the
current directory. Use it to change the circuit in
memory.

merge npn.mod Include the file npn.mod.

2.28 MODIFY command

2.28.1 Syntax

MOdify partlabel=value ...

2.28.2 Purpose

Quickly change a component value.

2.28.3 Comments

This command quickly changes the value of a com-
ponent. It is restricted to simply changing the value.

If several components have the same label or if
wildcard characters are used, all are changed.

2.28.4 Example

modify R66=1k R66 now has a value of 1k, regard-
less of what it was before.

modify C12=220p L1=1u C12 is 220 pf and L1 is 1
uH.

mod R*=22k All resistors are now 22k.

2.29 NODESET command

The Spice NODESET command is not implemented.
Similar functionality is not available.

2.30 NOISE command

The Spice NOIse command is not implemented. Sim-
ilar functionality is not available.

2.31 OP command

2.31.1 Syntax

OP start stop stepsize {options ...}

2.31.2 Purpose

Performs a nonlinear DC steady state analysis, with
no input. If a temperature range is given, it sweeps
the temperature.

2.31.3 Comments

There are substantial extensions beyond the capabil-
ities of the SPICE op command.

If there are numeric arguments, they represent a
temperature sweep. They are the start and stop tem-
peratures in degrees Celsius, and the step size, in or-
der. They are saved between commands, so no argu-
ments will repeat the previous sweep.

This command will use the op probe set, instead of
automatically printing all nodes and source currents,
so you must do ”print op” before running op.
We did it this way because we believe that printing
everything all the time is usually unnecessary clutter.
All of the information available from SPICE and more
is available here. See the print command and the
device descriptions for more details.

A single parameter represents a single temperature.
Two parameters instruct the computer to analyze for
those two points only.

This command also sets up the quiescent point for
subsequent AC analysis. It is necessary to do this for
nonlinear circuits. The last step in the sweep deter-
mines the quiescent point for the AC analysis.

2.31.4 Options

* multiplier Log sweep. Multiply the absolute tem-
perature by multiplier to get the next step. The
fact that it is offset to absolute zero may make
the step sizes look strange.

> file Send results of analysis to file.

>> file Append results to file.

BY stepsize Linear sweep. Add stepsize to get the
next step.

2.32. OPTIONS COMMAND 29

Continue Use the last step of a OP, DC or Transient
analysis as the first guess.

Input volts Apply volts input to the circuit, instead
of zero.

LOop Repeat the sweep, backwards.

PLot Graphic output, when plotting is normally off.

Print Send results to printer.

Quiet Suppress console output.

REverse Sweep in the opposite direction.

TAble Tabular output. Override default plot.

TEmperature degrees Temperature, degrees C. Over-
ride the sweep.

TImes multiplier Log sweep. Multiply the absolute
temperature by multiplier to get the next step.

TRace n Show extended information during solution.
Must be followed by one of the following:

Off No extended trace information (default,
override .opt)

Warnings Show extended warnings

Iterations Show every iteration.

Verbose Show extended diagnostics.

2.31.5 Examples

op 27 Do a DC operating point simulation at tem-
perature 27 degrees Celsius.

op -50 200 25 Sweep the temperature from -50 to
200 in 25 degree steps. Do a DC operating point
simulation at each step.

op With no parameters, it uses the same ones as the
last time. In this case, from -50 to 200 in 25
degree steps.

op 200 -50 -25 You can sweep downward, by ask-
ing for a negative increment.

op Input 2.3 Apply an input to the circuit of 2.3
volts. This overrides the default of no input.

op TEmperature 75 Simulate at 75 degrees, this
time. This isn’t remembered for next time.

op Since the last time used the TEmperature option,
go back one more to find what the sweep pa-
rameters were. In this case, downward from 200
to -50 in 25 degree steps. (Because we did it 3
commands ago.)

2.32 OPTIONS command

2.32.1 Syntax

OPTions
OPTions option-name value ...

2.32.2 Purpose

Sets options, iteration parameters, global data.

2.32.3 Comments

Typical usage is the name of the item to set followed
by the value.

The bare command ‘OPTions’ displays the values.
These options control the simulation by specifying

how to handle marginal circumstances, how long to
wait for convergence, etc.

Most of the SPICE options are supported, more
have been added.

2.32.4 Parameters

ACCT Turns on accounting. When enabled, print the
CPU time used after each command, and a sum-
mary on exit in batch more. This does not affect
accounting done by the status command.

NOACCT Turns off accounting. (Not in SPICE.)

LIST Turns on echo of files read by get and merge
commands, and in batch mode. (SPICE option
accepted but not implemented.)

NOLIST Turns off list option. (Not in SPICE.)

MOD Enable printout of model parameters. (Ac-
cepted, but not implemented, to complement
NOMOD.)

30 CHAPTER 2. COMMAND DESCRIPTIONS

NOMOD Suppress printout of model parameters.
(SPICE option accepted but not implemented.)

PAGE Enable page ejects at the beginning of simula-
tion runs. (Accepted, but not implemented, to
complement NOPAGE.)

NOPAGE Turn off page ejects. (SPICE option ac-
cepted but not implemented.)

NODE Enable printing of the node table. (SPICE op-
tion accepted but not implemented.)

NONODE Disable printing of the node table. (Ac-
cepted, but not implemented, to complement
NODE.)

OPTS Enable printing of option values on every op-
tions command.

NOOPTS Disable automatic printing of option values.
Option values are only printed on a null options
command.

GMIN = x Minimum conductance allowed by the pro-
gram. (Default = 1e-12 or 1 picomho.) Every
node must have a net minimum conductance of
GMIN to ground. If effective open circuits are
found during the solution process (leading to a
singular matrix) a conductance of GMIN is forced
to ground, after printing an ”open circuit” error
message.

RELTOL = x Relative error tolerance allowed. (De-
fault =.001 or .1%.) If the ratio of successive
values in iteration are within RELTOL of one, this
value is considered to have converged.

ABSTOL = x Absolute error tolerance allowed. (De-
fault = 1e-12) If successive values in iteration are
within ABSTOL of each other, this value is consid-
ered to have converged.

VNTOL = x Absolute voltage error required to force
model re-evaluation. (Default = 1e-12 or 1 mi-
crovolt.) If the voltage at the terminals of a
model is within VNTOL of the previous iteration,
the model is not re-evaluated. The old values are
used directly.

TRTOL = x Transient error “tolerance”. (Default =
7.) This parameter is an estimate of the factor

by which the program overestimates the actual
truncation error.

CHGTOL = x Charge tolerance. (Default = 1e-14) It
is used in step size control in transient analysis.

PIVTOL = x Pivot tolerance. (Default = 1e-13)
SPICE option accepted but not implemented.

PIVREL = x Pivot ratio. (Default = 1e-3) SPICE op-
tion accepted but not implemented.

NUMDGT = x Number of significant digits to print for
analysis results. (Default = 5.) It is silently
limited to 3 to 20.

TNOM = x Nominal temperature. (Default = 27◦ C.)
All components have their nominal value at this
temperature.

ITL1 = x DC iteration limit. (Default = 100.) Sets
the maximum number of iterations in a DC, OP,
or initial transient analysis allowed before stop-
ping and reporting that it did not converge.

ITL2 = x DC transfer curve iteration limit. (Default
= 50.) SPICE option accepted but not imple-
mented. Use ITL1 instead.

ITL3 = x Lower transient iteration limit. (Default =
4.) If the number of iterations is more than ITL3
the step size will not increase beyond its present
size. Otherwise, it can grow by trstepgrow.

ITL4 = x Upper transient iteration limit. (Default
= 10.) Sets the maximum number of iterations
on a step in transient analysis. If the circuit
fails to converge in this many iterations the step
size is reduced (by option trstepshrink), time is
backed up, and the calculation is repeated.

ITL5 = x Transient analysis total iteration limit.
(Default = 5000.) SPICE option accepted but
not implemented. Actual behavior is the same
as ITL5 = 0, in SPICE, which omits this test.

ITL6 = x Source stepping iteration limit. (Default
= 0.) SPICE option accepted but not imple-
mented. Source stepping is not available.

ITL7 = x Worst case analysis iteration limit. (De-
fault = 1.) Sets the maximum number of itera-
tions for the individual element trials in a DC or

2.32. OPTIONS COMMAND 31

bias worst case analysis. If more iterations than
this are necessary, the program silently goes on
to the next step, as if nothing was wrong, which
is usually the case.

ITL8 = x Convergence diagnostic iteration thresh-
old. (Default = 100.) If the iteration count
on a step exceeds ITL8 diagnostic messages are
printed in an attempt to aid the user in solving
the convergence problem.

CPTIME = x Total CPU job time limit. (Default =
30000.) SPICE option accepted but not imple-
mented. There is no limit imposed.

LIMTIM = x CPU time reserved for plotting. (De-
fault = 2.) SPICE option accepted but not im-
plemented.

LIMPTS = x Max number of points printed. (Default
= 201.) SPICE option accepted but not imple-
mented.

LVLCOD = x Matrix solution and allocation method.
(Default = 2, generate machine language.)
SPICE option not implemented.

LVLTIM = x Time step control method. (Default =
2, truncation error.) SPICE option not imple-
mented.

METHOD = x Integration method. (Default =
TRAPezoidal.) Possible values are:

EULER backward Euler, unless forced to other

EULERONLY backward Euler only

TRAP usually trap, but Euler where better

TRAPONLY always trapezoid

DEFL = x MOSFET default channel length in me-
ters. (Default = 100u.)

DEFW = x MOSFET default channel width in meters.
(Default = 100u.)

DEFAD = x MOSFET default drain diffusion area in
square meters. (Default = 0.)

DEFAS = x MOSFET default source diffusion area in
square meters. (Default = 0.)

SEED = x Seed used by the random number gen-
erator. (Default = 1.) (ECA-2 equivalent =
Random.) (Not available in SPICE.) The same
random numbers will be used every time, deter-
mined by this seed number. Setting this to zero
is a special case, causing each run to start from
a random point.

WCZERO = x Worst case zero window. (Default = 1e-
9) (Not available in SPICE.) Sets a window for
the difference in a DC or bias worst case analy-
sis. Differences less than this are assumed to be
zero, for purposes of setting direction flags. This
prevents cluttering up the screen with very small
numbers that are essentially zero.

DAMPMAX = x Normal Newton damping factor. (De-
fault = 1.) Sets the damping factor for iteration
by damped Newton’s method, used when all is
well. It must be between 0 and 1, as close to
1 as possible and still achieve convergence. The
useful range is from .9 to 1. Setting DAMPMAX too
low will probably cause convergence to a non-
sense result.

DAMPMIN = x Newton damping factor in problem
cases. (Default = .5) Sets the damping factor
for iteration by damped Newton’s method, used
when there are problems. It must be between
0 and 1, and is usually set somewhat less than
DAMPMAX. The useful range is from .5 to .9. Set-
ting it lower than .5 may cause convergence to a
nonsense result. Aside from that, a lower value
(but less than DAMPMAX) tends to improve robust-
ness at the expense of convergence speed.

DAMPSTrategy = x Damping strategy. (Default =
0) The actual damping factor to use is deter-
mined by heuristics. Normally the damping fac-
tor is DAMPMAX. It is reduced to DAMPMIN when
certain conditions occur, then it drifts back up
on subsequent iterations. This parameter turns
the various heuristics on or off. The number to
use is the sum of the following flags.

1 the second iteration on any voltage or time
step. (usually helps robustness, but always
increases iteration count.)

32 CHAPTER 2. COMMAND DESCRIPTIONS

2 if the voltage at any nonlinear node exceeds
the range determined by VMIN, VMAX, and
LIMIT. (usually not desirable.)

4 if any device limiting algorithm is activated.
(usually not desirable.)

10 when any device crosses a region boundary.
(usually desirable and has little cost.)

20 when a FET or BJT is reversed. (usually
helps robustness. sometimes increases iter-
ation count.)

FLOOR = x Effective zero value. (Default = 1e-21)
Results values less than FLOOR are shown as zero.
Other small numbers are rounded to the nearest
FLOOR.

VFLOOR = x Effective zero value for voltage probes.
(Default = 1e-15) Results values less than
VFLOOR are shown as zero. Other small numbers
are rounded to the nearest VFLOOR.

TEMPAMB = x Simulation temperature. (Default =
27◦ C.) Sets the ambient temperature, in degrees
Celsius. This is the temperature at which the
simulation takes place, unless changed by some
other command.

Short = x Resistance of voltage source or short.
(Default = 1e-7 or 10 µΩ.) Sets the default resis-
tance of voltage sources. In some cases, induc-
tors are replaced by resistors, if so, this is the
value. It is also the resistance used to replace
short circuits anywhere they are not allowed and
the program finds one.

TRansits = x Mixed mode transition count. (De-
fault = 2) Sets the number of “good” transitions
for a supposedly digital signal to be accepted as
digital.

IN = x Input width. (Default = 80.) Sets the last
column read from each line of input. Columns
past this are ignored. This option is present
only for SPICE compatibility, through the width
command, which is an alias for options.

OUT = x Output width. (Default = 80.) Sets the
output print width, for tables and character
graphics.

XDivisions = x X axis divisions. (Default = 4) Sets
the number of divisions on the X axis for plot-
ting.

YDivisions = x Y axis divisions. (Default = 4) Sets
the number of divisions on the Y axis for plot-
ting.

ORder = x Equation ordering. (Default = auto.)
Determines how external node numbers are
mapped to internal numbers. The values are
FORward, REVerse, and AUTo.

MODe = x Simulation mode selection. (Default =
mixed.) Values are ANAlog, DIGital, and MIXed.
In analog mode, logic elements (type U) are re-
placed by their subcircuits as if they were type
X. In digital mode, logic elements are simulated
as digital regardless of whether the signals are
proper or not, as in traditional mixed-mode sim-
ulation. In mixed mode, logic elements may be
simulated as analog or digital depending on the
signals present.

BYPass Bypass model evaluation if appropriate. If
the last two iterations indicate that an element
is converged or dormant, do not evaluate it but
use its old values directly. (Default)

VBYpass Check only voltage to bypass model evalu-
ation. This produces a faster but possibly less
accurate simulation.

NOBYpass Do not bypass model evaluation.

LUBypass Bypass parts of LU decomposition if ap-
propriate. If only a few elements of the matrix
were changed solve only those parts of the LU
matrix that depend on them. (Default)

NOLUbypass Do not bypass parts of LU decomposi-
tion. Solve the entire LU matrix whenever a ma-
trix solution is called for regardless of whether it
is actually needed.

INCmode Incrementally update the matrix. Instead
of rebuilding the matrix on every iteration, keep
as much of the old matrix as possible and make
incremental changes. (Default)

2.33. PAUSE COMMAND 33

NOIncmode Do not incrementally update the matrix.
This eliminates a possible cause of roundoff error
at the expense of a slower simulation.

TRACELoad Use a queue to only load changed ele-
ments to the matrix. This results in faster load-
ing and has no known drawbacks. (Default)

NOTRACELoad Do not use a queue to only load
changed elements to the matrix. Instead, load
all elements, even if they are unchanged or zero.
This is always slower, and is forced if ”noinc-
mode”.

LIMIT = x Internal differential branch voltage limit.
(Default = 1e10, essentially disabled.) All circuit
branch voltages may be limited to ±x to aid in
convergence. This is intended as a convergence
aid only. It may or may not help.

VMIN = x Negative node voltage limit. (Default =
-30) All node voltages may be limited to −x to
aid in convergence and prevent numeric overflow.
This is intended as a convergence aid only. It
may or may not help.

VMAX = x Positive node voltage limit. (Default =
30) All node voltages may be limited to +x to
aid in convergence and prevent numeric overflow.
This is intended as a convergence aid only. It
may or may not help.

DTMIn = x Minimum time step. (Default = 1e-12.)
The smallest internal time step in transient anal-
ysis. The transient command dtmin option
and the dtratio option override it if it is big-
ger.

DTRatio = x The ratio between minimum and max-
imum time step. (Default = 1e9).

RSTray Include series resistance in device models.
This creates internal nodes and results in a sig-
nificant speed and memory penalty. It also
makes convergence characteristics worse.

NORSTray Do not include series resistance in de-
vice models. This results in faster simulations
and better numerical accuracy at the expense
of model accuracy. Differences between rstray
and norstray have been observed to be insignifi-
cant most of the time. Some popular commercial

versions of SPICE do not implement series resis-
tance at all, so norstray may be more consistent
with other simulators.(Default)

CSTray Include capacitance in device models. This
may create internal nodes and result in a signif-
icant speed and memory penalty. It also may
make convergence characteristics worse. (De-
fault)

NOCSTray Do not include capacitance in device mod-
els. This results in faster simulations and
better numerical accuracy at the expense of
model accuracy. Differences between cstray and
nocstray are usually significant, since often the
strays are the dominant reactive elements.

Harmonics = x Harmonics in Fourier analysis. (De-
fault = 9) The number of harmonics to display
in a Fourier analysis, unless specified otherwise.

TRSTEPGrow = x The maximum internal step size
growth in transient analysis. (Default = 2.)

TRSTEPShrink = x The amount to decrease the
transient step size by when convergence fails.
(Default = 8.)

TRReject = x Transient error rejection threshold.
(Default = .5) Controls how bad the truncation
error must be to reject a time step. A value of
.5 means that if the step reqested is smaller than
.5 times the step size used, the current step will
be rejected. If the new step is .8 times the old
step size it will be adjusted but the step just
calculated will not be rejected.

2.32.5 Examples

options Display the present settings.

options itl1=50 Allows 50 iterations in a dc or op
analysis.

2.33 PAUSE command

2.33.1 Syntax

PAuse comment

34 CHAPTER 2. COMMAND DESCRIPTIONS

2.33.2 Purpose

Suspend batch mode. Wait for the user to hit a key.

2.33.3 Status

This command does not work on all systems, due to
buffering of console i/o.

2.33.4 Comments

Prints Continue? and waits for a key hit. Type ‘n’,
‘N’, escape or control-c to terminate the batch mode.
Type anything else to continue.

Any comment is ignored.

2.33.5 Examples

pause Try more gain

pause These both work the same. Ask to continue,
wait for a key hit, then go on.

2.34 PLOT command

2.34.1 Syntax

PLot
PLot mode points
PLot mode + points
PLot mode - points
PLot mode CLEAR

2.34.2 Purpose

Select points in the circuit for graphic output. Select
graphic output.

2.34.3 Status

The plotting leaves something to be desired. Only
two signals can be plotted at a time. The output file
is corrupt when plotting is on.

2.34.4 Comments

The ‘plot’ command selects where to look at the cir-
cuit, or where to hook the oscilloscope probe.

There are separate lists of probe points for each
type of analysis.

To list the probe points, use the bare command
‘plot’.

Syntax for each point is parameter(node)(limits),
parameter(componentlabel)(limits), or parame-
ter(index)(limits). Some require a dummy index.

For more information on the data available see the
print command.

You must set the scaling. If you do not, the default
range is fixed at -5 to 5. Gnucap cannot auto-scale
because it generates the plot during simulation, so
the necessary information is not available yet. Spice
can auto-scale only because it waits for the simulation
to complete before producing any output.
Plot uses the same variables as print. See the

print command for a list of what is available.
The options plot and noplot on any analysis com-

mand turn plotting on and off a single run. The plot
command turns plotting on and tabular output off.
The print command turns plotting off and tabular
output on.

You can add to or delete from an existing list by
prefixing with + or -. plot ac + v(3) adds v(3)
to the existing set of AC probes. plot ac - q(c5)
removes q(c5) from the list. You can use the wildcard
characters * and ? when deleting.

Plotting is limited to 2 items.

2.34.5 Examples

plot ac vm(12)(0,5) vm(13)(-5,5) The magni-
tude of the voltage at node 12 with a range of 0
to 5, and node 13 with a range of -5 to 5 for AC
analysis.

plot dc v(r26) The voltage across R26 for DC
analysis. Since there is no range, default values
will be used.

plot tran v(r83)(0,5) p(r83)(0,1u) Plot the
voltage and power of R83 in the next transient
analysis. The voltage scale is 0 to 5. The power
scale is 0 to 1 microwatt.

plot List all the probes for all modes.

plot dc Display the DC plot list.

plot ac CLear Clear the AC list.

2.35. PRINT COMMAND 35

2.35 PRINT command

2.35.1 Syntax

PRint
PRint mode points
PRint mode + points
PRint mode - points
PRint mode CLEAR

2.35.2 Purpose

Select points in the circuit for tabular output. Select
tabular output.

2.35.3 Comments

The ‘print’ command selects where to look at the
circuit, or where to hook the voltmeter (ammeter,
watt meter, ohm meter, etc.) probe.

There are separate lists of probe points for each
type of analysis.

To list the probe points, use the bare command
‘print’.

On start-up, probes are not set. You must do the
command ‘print op v(nodes)’ or put ‘.print op
v(nodes)’ in the circuit file to get any output from
the op command.

Syntax for each point is parameter(node), param-
eter(componentlabel), or parameter(index). Some re-
quire a dummy index.

You can access components in subcircuits by
connecting the names with dots. For example:
R56.X67.Xone is R56 in X67 in Xone. Some built-in
elements, including diodes, transistors, and mosfets,
contain subcircuits with internal elements. Cgd.M12
is the gate to drain capacitor of mosfet M12.

If the component does not exist, you will get an
error message. If the component exists but the pa-
rameter is not valid for that type, there will be no
error message but the value printed will be obviously
bogus.

The options plot and noplot on any analysis com-
mand turn plotting on and off a single run. The plot
command turns plotting on and tabular output off.
The print command turns plotting off and tabular
output on.

You can add to or delete from an existing list by
prefixing with + or -. print ac + v(3) adds v(3)

to the existing set of AC probes. print ac - q(c5)
removes q(c5) from the list. You can use the wildcard
characters * and ? when deleting.

For AC analysis, by adding a suffix letter to the
parameter, you can get the magnitude M, phase P, real
part R, or imaginary part I. Adding DB gives the value
in decibels, relative to 1. For example, VRDB(R13)
gives you the real part of the voltage across R13, in
decibels.

2.35.4 Node probes

Several parameters are available at each node.

All modes

V Voltage.

All except Transient

Z Impedance looking into the node.

Transient, DC, OP only

Logic A numeric interpretation of the logic value at
the node. The value is displayed encoded in a
number of the form a.bc where a is the logic state:
0 = logic 0, 1 = rising, 2 = falling, 3 = logic 1.
b is an indication of the quality of the digital
signal. 0 is a fully valid logic signal. Nonzero
indicates it does not meet the criteria for logic
simulation. c indicates how the node was calcu-
lated: 0 indicates logic simulation. 1 indicates
analog simulation of a logic device. 2 indicates
analog simulation of analog devices.

2.35.5 Status probes

There are several status variables that can be probed.

All modes

Temperature(0) The simulation temperature in de-
grees Celsius.

TIme(0) The current time in a transient analysis. In
AC analysis it shows the time at which the bias
point was set, 0 if it was set in a DC or OP
analysis, or -1 if it is the bias was not set (power
off).

36 CHAPTER 2. COMMAND DESCRIPTIONS

Transient, DC, OP only

GEnerator The output of the “signal generator”. In
a transient analysis, it shows the output of the
signal generator, as set up by the generator
command. In a DC analysis, it shows the DC
input voltage (not the power supply). In an OP
analysis, it shows the DC input, normally zero.

ITer(0) The number of iterations needed for conver-
gence for this printed step including any hidden
steps.

ITer(1) The number of iterations needed for con-
vergence for this printed step not including any
hidden steps.

ITer(2) The total number of iterations needed since
startup including check passes.

Control(0) A number indicating why the simulator
chose this time to simulate at.

1 The user requested it. One of the steps in a
sweep.

2 A discrete event. An element required a solu-
tion at this time.

3 The effect of the “skip” parameter.

4 The iteration count exceeded ITL4 so the last
step was rejected and is being redone at a
smaller time step.

5 The iteration count exceeded ITL3 so the time
interval is the same as it was last time.

6 Determined by local truncation error or some
other device dependent approximation in
hopes of controlling accuracy.

7,8 The step size was limited to twice the pre-
vious step size.

9 The step size was reduced to half the interval
to an event to avoid a tiny next step.

10 + x The previous step was rejected.

20 + x A zero time step was replaced by mrt.

30 + x The required step size less than mrt, so
it was replaced by mrt.

Control(1) The number internal time steps. (1 if all
steps are printed. One more than the number of
hidden steps.)

2.35.6 Element probes

Each element type has several parameters that can be
probed. In general, the form is Parameter(element).
Wild cards are allowed in element names to allow
probing the same parameter of a group of elements.

For components in a subcircuit, the names are con-
nected with dots. For example R12.X13 is R12 in the
subcircuit X13.

Most two node elements (capacitors, inductors, re-
sistors, sources) and four terminal elements (con-
trolled sources) have at least the following parameters
available. Others are available for some elements.

All modes

V Branch voltage. The first node in the net list is
assumed positive. This is the same as “output
voltage”.

Vout Output voltage. The voltage across the “out-
put” terminals.

VIN Input voltage. The voltage across the “input”
terminals. For two terminal elements, input and
output voltages are the same.

I Branch current. It flows into the first node in the
net list, out of the second.

P Branch power. Positive power indicates dissipa-
tion. Negative power indicates that the part is
supplying power. Its value is the same as (PD -
PS). In AC analysis, it is the real part only.

NV Nominal value. In most cases, this is just the
value which is constant, but it can vary for in-
ternal elements of complex devices.

EV The effective value of the part, in its units. If the
part is ordinary, it will just show its value, but
if it is time variant or nonlinear, it shows what
it is now.

R Resistance. The effective resistance of the part,
in ohms. In AC analysis, shows the magnitude
of the self impedance. In OP, DC or TRansient
analysis, shows its incremental resistance. In
TRansient analysis, it shows the effective Z-
domain resistance of inductors and capacitors.

Y Admittance. 1/R.

2.36. QUIT COMMAND 37

All except Transient

Z Impedance at a port. The port impedance seen
looking into the circuit across the branch. It does
not include the part itself. In transient analy-
sis, it shows the effective Z-domain impedance,
which is a meaningless number if there are ca-
pacitors or inductors in the circuit.

ZRAW Impedance at a port, raw. This is the same as
“Z” except that it includes the part itself.

Transient, DC, OP only

These parameters are available in addition to the
above.

PD Branch power dissipated. The power dissipated
in the part. It is always positive and does not
include power sourced.

PS Branch power sourced. The power sourced by the
part. It is always positive and does not consider
its own dissipation.

F The result of evaluating the function related to
the part. It is the voltage across a resistor, the
charge stored in a capacitor, the flux in an in-
ductor, etc.

INput The “input” of the device. It is the current
through a resistor or inductor, the voltage across
a capacitor or admittance, etc. It is the value
used to evaluate nonlinearities.

IOffset The offset current in the device. The cur-
rent through a nonlinear device can be consid-
ered to have two parts: a passive part and an
offset.

IPassive The passive part of the current.

AC only

These parameters are available in addition to the
above. In addition to those listed here, you can add
a suffix (M, P, R, I and DB) for magnitude, phase,
real part, imaginary part, and decibels, to any valid
probe. Some of them have a special meaning, which
is listed here. Negative phase is capacitive. Positive
phase is inductive.

PI Reactive (imaginary) power, volt-amps reactive.

PIDB Decibels relative to 1 va reactive.

PM Volt amps, complex power.

PMDB Decibels relative to 1 va.

PP Power phase (angle between voltage and current).

2.35.7 Examples

print ac v(12) v(13) v(14) The voltage at
nodes 12, 13, and 14 for AC analysis.

print dc v(r26) The voltage across R26, for DC
analysis.

print tran v(r83) p(r83) Voltage and power of
R83, for transient analysis.

print dc i(c8) p(r5) z(r5) The current through
C8, power dissipated in R5, and the impedance
seen looking into the circuit across R5.

print op v(nodes) The voltage at all nodes for the
op command.

print List all the probes, for all modes.

print op Display the OP probe list.

print ac clear Clear the AC list.

2.36 QUIT command

2.36.1 Syntax

Quit

2.36.2 Purpose

Terminates the program.

2.36.3 Comments

‘exit’ also works.
Be sure you have saved everything you want to!

38 CHAPTER 2. COMMAND DESCRIPTIONS

2.37 SAVE command

2.37.1 Syntax

SAve filename {options ...}

2.37.2 Purpose

Saves the circuit on the disk.

2.37.3 Comments

The file is in an ASCII format, so the list may be
used as part of a report. It is believed to be compat-
ible with other simulators such as Berkeley Spice to
the extent that the capabilities are the same. Com-
patibility with commercial Spice derivatives may be a
problem because they all have proprietary extensions
and are incompatible with each other.

If the file name specified already exists, the old
file is deleted and replaced by a new file of the same
name, after asking you for permission.

You can save a part of a circuit. See the list
command for more details.

2.37.4 Examples

save works.ckt Save the circuit in the file
works.ckt, in the current directory.

save Save the circuit. Since you did not specify a file
name, it will ask for one.

save partof.ckt R* Save a partial circuit, just the
resistors, to the file partof.ckt. (See the List
command.)

save /client/sim/ckt/no33 You can specify a
path name.

2.38 SENS command

The Spice SENS command is not implemented. Simi-
lar functionality is not available.

2.39 STATUS command

2.39.1 Syntax

STatus

2.39.2 Purpose

Shows information on how the system resources are
being utilized.

2.40 SWEEP command

2.40.1 Syntax

SWeep {stepcount} partlabel=range ...

2.40.2 Purpose

Sweep a component (or group of components) over a
range. Set up a loop for iteration.

2.40.3 Comments

This command begins a loop which will sweep a com-
ponent or group of components.

When this command is given, the only apparent
actions will be a change in the prompt from ‘-->’ to
‘>>>’, and some disk action.

The different prompt means that commands are
not executed immediately, but are stored in a tempo-
rary file.

The bare command will repeat the same command
sequence as the last time sweep was run, and not
prompt for anything else.

Additional components can be swept at the same
time by entering a ‘FAult’ command at the ‘>>>’
prompt. The ‘fault’ behaves differently here: It ac-
cepts a range, which is the sweep limits.

The ‘go’ command will end the entry sequence, and
make it all happen. After this, the values are re-
stored. (Also, all faults are restored, as if by the
‘restore’ command.)

All commands can be used in this mode. Of course,
some of them are not really useful (quit) because
they work as usual.

Only linear, ordinary parts can be swept. (No semi-
conductor devices, or elements using behavioral mod-
eling.) The tolerance remains unchanged. If you at-
tempt to sweep a nonlinear or otherwise strange part,
it becomes ordinary and linear during the sweep.

2.41. TEMP COMMAND 39

2.40.4 Example

-->sweep 5 R14=1,100k R15=100k,1
>>>list
>>>ac 500 2k oct
>>>go

This sequence of commands says to simultaneously
sweep R14 and R15 in 5 steps, in opposite directions,
list the circuit and do an AC analysis for each step.

Assuming the circuit was:

R14 1 0 50k
R15 2 0 50k

The result of this sequence would be:

R14 1 0 1
R15 2 0 100k

an AC analysis

R14 1 0 25.75k
R15 2 0 75.25k

an AC analysis

R14 1 0 50.5k
R15 2 0 50.5k

an AC analysis

R14 1 0 75.25k
R15 2 0 25.75k

an AC analysis

R14 1 0 100k
R15 2 0 1

an AC analysis
After all this is done, the circuit is restored, so list

would show:

R14 1 0 50k
R15 2 0 50k

You could accomplish the same thing by entering
fault commands at the ‘>>>’ prompt.

-->sweep 5
>>>fault R14=1, 100k
>>>fault R15=100k, 1
>>>list
>>>ac 500 2k oct
>>>go

2.41 TEMP command

The Spice TEmp command is not implemented. Simi-
lar functionality is available by sweeping the op com-
mand.

2.42 TF command

The Spice TF command is not implemented. Similar
functionality is not available.

2.43 TITLE command

2.43.1 Syntax

TItle
TItle a line of text

2.43.2 Purpose

View and create the heading line for printouts and
files.

2.43.3 Comments

There is a header line at the beginning of every file,
to help you identify it in the future. This command
sets up what it says. It also sets up a heading for
printouts and graphs.

When you use the ‘get’ command to bring in a
new circuit, it replaces the title with the one in the
file. The ‘title’ command lets you change it, for the
next time it is written out.

2.43.4 Examples

title This is a test. Sets the file heading to
‘This is a test.’ In the future, all files writ-
ten will have ‘This is a test.’ as their first
line.

title Displays the file heading. In this case, it prints
‘This is a test.’

40 CHAPTER 2. COMMAND DESCRIPTIONS

2.44 TRANSIENT command

2.44.1 Syntax

Transient start stop stepsize {options ...}
Transient stepsize stop start {options ...}

2.44.2 Purpose

Performs a nonlinear time domain (transient) analy-
sis.

2.44.3 Comments

The nodes to look at must have been previously se-
lected by the Print or Plot command.

Three parameters are normally needed for a Tran-
sient analysis: start time, stop time and step size, in
this order. The SPICE order (step size, stop, start)
is also acceptable. An optional fourth parameter is
the maximum internal time step.

If all of these are omitted, the simulation will con-
tinue from where the most recent one left off, with the
same step size, unless the circuit topology has been
changed. It will run for the same length of time as
the previous run.

Do not use a step size too large as this will result
in errors in the results. If you suspect that the results
are not accurate, try a larger argument to ‘Skip’. This
will force a smaller internal step size. If the results
are close to the same, they can be trusted. If not,
try a still larger ‘Skip’ argument until they appear to
match close enough.

The most obvious error of this type is aliasing. You
must select sample frequency at least twice the high-
est signal frequency that exists anywhere in the cir-
cuit. This frequency can be very high, when you use
the default step function as input. The signal gener-
ator does not have any filtering.

2.44.4 Options

> file Send results of analysis to file.

>> file Append results to file.

Cold Zero initial conditions. Cold start from power-
up.

DTMIn = x Minimum time step. (Default = from
options) The smallest internal time step in tran-
sient analysis. The transient command dtmin
option and the dtratio option override it if it is
bigger.

DTRatio = x The ratio between minimum and max-
imum time step. (Default = from options).

NOPlot Suppress plotting.

PLot Graphic output, when plotting is otherwise off.

Quiet Suppress console output.

Skip count Force at least count simulation steps for
each one displayed. If the output is a table or
ASCII plot, the extra steps are hidden.

TEmperature degrees Temperature, degrees C.

TRace n Show extended information during solution.
Must be followed by one of the following:

Off No extended trace information (default,
override .opt)

Warnings Show extended warnings

Alltime Show all accepted internal time steps.

Rejected Show all internal time steps including
rejected steps.

Iterations Show every iteration.

Verbose Show extended diagnostics.

UIC Use initial conditions. Use the values specified
with the IC = options on the various elements.

2.44.5 Examples

transient 0 100u 10n Start at time 0, stop after
100 micro-seconds. Simulate using 10 nanosec-
ond steps.

transient No parameters mean to continue from the
last run. In this case it means to step from 100
us to 200 us in 10 ns steps. (The same step size
and run length, but offset to start where the last
one stopped.

2.46. UNMARK COMMAND 41

transient skip 10 Do 10 extra steps internally for
every step that would be done otherwise. In this
case it means to internally step at 1 nanosecond.
If the output is in tabular form, the extra steps
are hidden.

transient 0 Start over at time = 0. Keep the same
step size and run length.

transient cold Zero initial conditions. This will
show the power-on transient.

transient >arun Save the results of this run in the
file arun.

2.45 UNFAULT command

2.45.1 Syntax

UNFault

2.45.2 Purpose

Undo any action from fault commands.

2.45.3 Comments

This command reverses the action of all fault com-
mands.

It will also clean up any side effects of an aborted
sweep command.
Unfault is automatically invoked on any clear

command.
If you change the circuit in any other way, unfault

will bring back the old on top of the changes. This
can bring on some surprises.

2.45.4 Example

fault R66=1k R66 now has a value of 1k, regardless
of what it was before.

unfault Clears all faults. In this case, R66 has its
old value again.

unfault can bring on surprises. Consider this se-
quence ...

V1 1 0 ac 1
C3 1 2 1u
R4 2 0 10k

fault C3=100p C3 is 100 picofarads, for now.

modify C3=220p C3 is 220 pf, for now. It will be
restored.

modify R4=1k R4 is 1k. It will not be restored.

restore C3 back to 1 uf, but R4 still 1k.

2.46 UNMARK command

2.46.1 Syntax

UNMark

2.46.2 Purpose

Forget remembered circuit voltages and currents.
Undo the ‘mark’ command.

2.46.3 Comments

Allow time to proceed. It has been held back by the
‘mark’ command.

2.46.4 Examples

transient 0 1 .01 A transient analysis starting at
zero, running until 1 second, with step size .01
seconds. After this run, the clock is at 1 second.

mark Remember the time, voltages, currents, etc.

transient Another transient analysis. It continues
from 1 second, to 2 seconds. (It spans 1 second,
as before.) This command was not affected by
the mark command.

transient This will do exactly the same as the last
one. From 1 second to 2 seconds. If it were not
for mark, it would have started from 2 seconds.

transient 1.5 .001 Try again with smaller steps.
Again, it starts at 1 second.

unmark Release the effect of mark.

transient Exactly the same as the last time, as if
we didn’t unmark. (1 to 1.5 seconds.)

transient This one continues from where the last
one left off: at 1.5 seconds. From now on, time
will move forward.

42 CHAPTER 2. COMMAND DESCRIPTIONS

2.47 WIDTH command

2.47.1 Syntax

Width {IN=value} {OUT=value}

2.47.2 Purpose

Set input and output width.

2.47.3 Comments

The ‘width’ command is the same as the ‘options’
command. It is provided for SPICE compatibility.
SPICE uses width to set two parameters: in and
out, which we set with the options command.

Chapter 3

Circuit description

3.1 Summary

To describe a circuit, you must provide a ‘netlist’.
The netlist is simply a list of the components with
their connections and values. The format is essen-
tially the same as the standard SPICE format.

Before doing this, number the nodes on your
schematic. (A node is a place where parts connect
together.) Then, each part gets a line in the netlist
(circuit description). In its simplest form, which you
will use most of the time, it is just the type, such as
‘R’ for resistor, or a label, like ‘R47’, followed by the
two nodes it connects to, then its value.

Example: ‘R29 6 8 22k’ is a 22k resistor between
nodes 6 and 8.

Node 0 is used as a reference for all calculations
and is assumed to have a voltage of zero. (This is
the ground, earth or common node.) Nodes must
be nonnegative integers, but need not be numbered
sequentially.

There should be a DC path through the circuit to
node 0 from every node that is actually used. The cir-
cuit cannot contain a cutset of current sources and/or
capacitors. If either of these cases occurs, it will
be discovered during analysis. The program will at-
tempt to correct the error, issue an ‘open circuit’ error
message and continue. This is rarely a problem with
real circuits. Most circuits have such a path, however
indirect.

Semiconductor devices require both a device state-
ment, and a .model statement (or “card”). The de-
vice statement, described in the Circuit description
chapter, defines individual devices as variations from
a prototype, as is required for different devices on the
same substrate. The model statement, described in

this chapter, defines process dependent parameters,
which usually apply to all devices on a substrate.

The .model card syntax is:

.model mname type {args}

Mname is the model name, which elements will use
to refer to this model. Type is one of several types of
built-in models. Args is a list of the parameters, of
the form name=value.

D Diode model

NMOS N-channel MOSFET model

PMOS P-channel MOSFET model

LOGIC Logic family description

SW Voltage controlled switch

CSW Current controlled switch

C Semiconductor capacitor

R Semiconductor resistor

TABLE y/x table of values

3.2 C: Capacitor

3.2.1 Syntax

Cxxxxxxx n+ n– value
Cxxxxxxx n+ n– expression
Cxxxxxxx n+ n– value {IC=initial-voltage}
Cxxxxxxx n+ n– model {L=length} {W=width}
{TEMP=temperature} {IC=initial-voltage}

.CAPacitor label n+ n– expression

43

44 CHAPTER 3. CIRCUIT DESCRIPTION

3.2.2 Purpose

Capacitor, or general charge storage element.

3.2.3 Probes

The following probes (Transient, DC, and OP analy-
sis) are available in addition to those available for all
basic elements.

DT Time step. The internal time step used for this
device for numerical integration. It is not neces-
sarily the same as the global time step.

TIME Time. The time of the most recent calculation
of this device. It is not necessarily the same as
the global time.

TIMEOLD The time of the previous calculation of this
device. It is not necessarily the same as the
global time.

TIMEFuture The latest recommended time for the
next sample, as determined by this device. The
actual time will probably be sooner than this.

CHarge The charge stored in this capacitor.

Q The same as Charge.

Capacitance The effective capacitance of this de-
vice. For a fixed capacitor, it is constant. It
will vary if this device is nonlinear.

DQDT The time derivative of charge. Hopefully this is
the same as current, but it is calculated a differ-
ent way and can be used as an accuracy check.

DQ The change in charge compared to the previous
sample. Its primary use is in debugging models
and numerical problems.

3.2.4 Comments

N+ and n– are the positive and negative element
nodes, respectively. Value is the capacitance in
Farads.

The (optional) initial condition is the initial (time
= 0) value of the capacitor voltage (in Volts). Note
that the initial conditions (if any) apply only if the
UIC option is specified on the transient command.

You may specify the value in one of three forms:

1. A simple value. This is the capacitance in
Farads.

2. An expression, as described in the behavioral
modeling chapter. The expression can specify
the charge as a function of voltage, or the capac-
itance as a function of time.

3. A model, which calculates the capacitance as
a function of length and width, referencing a
.model statement of type C. This is compatible
with the Spice-3 “semiconductor capacitor”.

3.2.5 Model statement

A model statement may be used,, with model type C
or Cap. The parameters are:

CJ = x Junction bottom capacitance. (Farads / me-
ter squared). (Default = 0.)

CJSW = x Junction sidewall capacitance. (Farads /
meter). (Default = 0.)

DEFW = x Default width. (meters). (Default = 1e-6)

NARROW = x Narrowing due to side etching. (me-
ters). (Default = 0.)

TC1 = x First order temperature coefficient. (Farads
/ degree C). (Default = 0.) (Not in Spice.)

TC2 = x Second order temperature coefficient.
(Farads / degree C squared). (Default = 0.)
(Not in Spice.)

TNOM = x Parameter measurement temperature.
(degrees C.). (Default = 27.) (Not in Spice.)

Capacitance is computed by the formula:

capacitance = CJ * (L - NARROW) * (W - NARROW)
+ 2 * CJSW * (L + L - 2 * NARROW)

After the nominal value is calculated, it is adjusted
for temperature by the formula:

value *= (1 + TC1 * (T-T0) + TC2 * (T-T0)^2)

3.4. D: DIODE 45

3.3 Trans-capacitor

3.3.1 Syntax

.TCAPacitor label n+ n– nc+ nc– expres-
sion

.TCAPacitor label n+ n– nc+ nc– value
{IV=initial-voltage}

.TCAPacitor label n+ n– model {L=length}
{W=width} {IC=initial-voltage}

3.3.2 Purpose

Trans-capacitor, or charge transfer device.

3.3.3 Probes

All probes that apply to ordinary capacitors also ap-
ply here.

3.3.4 Comments

N+ and n– are the positive and negative element
nodes, respectively. Nc+ and nc– are the positive
and negative controlling nodes, respectively.

This device places a charge between the output
nodes that depends on the voltage on its input nodes.
If you parallel the input with the output, it becomes
an ordinary capacitor. While the use of this device
may appear straightforward, be careful. It is easy to
use it in an unstable way.

All options, expressions, models, and probes that
apply to ordinary capacitors can also be used here.

It is used internally in some transistor models.

3.4 D: Diode

3.4.1 Syntax

Dxxxxxxx n+ n– mname {area} {args}
.DIOde xxxxxxx n+ n– mname {area} {args}

3.4.2 Purpose

Junction diode.

3.4.3 Comments

N+ and n– are the positive and negative element
nodes, respectively. Mname is the model name. Area
is the area factor. If the area factor is omitted, a
value of 1.0 is assumed. Args is a list of additional
arguments. The parameters available are a superset
of those available in SPICE.

A diode can also use a MOSFET model (type NMOS
or PMOS) to represent the equivalent of the source-
bulk or drain-bulk diodes.

When the element is printed out, by a list or save
command, the the computed values of IS, RS, CJ,
and CJSW are printed as a comment if they were not
explicitly entered.

3.4.4 Element Parameters

Area = x Area factor. (Default = 1.0) If optional
parameters IS, RS, and CJO are not specified, the
.model value is multiplied by area to get the
actual value.

Perim = x Perimeter factor. (Default = 1.0) If
optional parameter CJSW is not specified, the
.model value is multiplied by perim to get the
actual value.

IC = x Initial condition. The initial voltage to use
in transient analysis, if the UIC option is speci-
fied. Default: don’t use initial condition. This is
presently ignored, but accepted for compatibil-
ity.

OFF Start iterating with this diode off, in DC analy-
sis.

IS = x Saturation current. This overrides IS in the
.model, and is not affected by area. Default:
use IS from .model * area.

RS = x Ohmic (series) resistance. This overrides RS
in the .model, and is not affected by area. De-
fault: use RS from .model * area. This is
presently ignored, but accepted for compatibil-
ity.

CJ = x Zero-bias junction capacitance. This over-
rides CJ in the .model, and is not affected by
area. Default: use CJ from .model * area.

46 CHAPTER 3. CIRCUIT DESCRIPTION

CJSW = x Zero-bias sidewall capacitance. This over-
rides CJSW in the .model, and is not affected by
perim. Default: use CJSW from .model * perim.

GParallel = x Parallel conductance. This over-
rides GParallel in the .model, and is not af-
fected by area. Default: use GParallel from
.model * area.

3.4.5 Model Parameters

IS = x Normalized saturation current. (Amperes).
(Default = 1.0e-14) IS is multiplied by the area
in the element statement to get the actual satu-
ration current. It may be overridden by specify-
ing IS in the element statement.

RS = x Normalized ohmic resistance. (Ohms) (De-
fault = 0.) RS is multiplied by the area in the
element statement to get the actual ohmic re-
sistance. It may be overridden by specifying RS
in the element statement. RS is accepted, and
silently ignored, for compatibility, but not im-
plemented.

N = x Emission coefficient. (Default = 1.0) In ECA-
2 the default value was 2.

TT = x Transit time. (Default = 0.) The diffusion
capacitance is given by: cd = TTgd where gd is
the diode conductance.

VJ = x Junction potential. (Default = 1.0) Used in
computation of capacitance. For compatibility
with older versions of SPICE, PB is accepted as
an alias for VJ.

CJo = x Normalized zero-bias depletion capaci-
tance. (Default = 0.) CJo is multiplied by the
area in the element statement to get the actual
zero-bias capacitance. It may be overridden by
specifying CJ in the element statement.

Mj = x Grading coefficient. (Default = 0.5)

PBSw = x Sidewall junction potential. (Default =
PB)

CJSw = x Normalized zero-bias sidewall capacitance.
(Default = 0.) CJSw is multiplied by the perime-
ter in the element statement to get the actual

zero-bias capacitance. It may be overridden by
specifying CJSW in the element statement.

MJSw = x Sidewall grading coefficient. (Default =
0.33)

EG = x Activation energy. (electron Volts) (Default
= 1.11, silicon.) For other types of diodes, use:

1.11 ev. Silicon (default value)
0.69 ev. Schottky barrier
0.67 ev. Germanium
1.43 ev. GaAs
2.26 ev. GaP

XTI = x Saturation current temperature exponent.
(Default = 3.0) For Schottky barrier, use 2.0.

KF = x Flicker noise coefficient. (Default = 0.)
SPICE parameter accepted but not imple-
mented.

AF = x Flicker noise exponent. (Default = 1.0)
SPICE parameter accepted but not imple-
mented.

FC = x Coefficient for forward bias depletion capac-
itance formula. (Default = 0.5)

BV = x Reverse breakdown voltage. (Default =
∞.) SPICE parameter accepted but not imple-
mented.

IBV = x Current at breakdown voltage. (Default =
1 ma.) SPICE parameter accepted but not im-
plemented.

GParallel = x Parallel conductance. (Default = 0.)

3.4.6 Probes

Vd Voltage. The first node (anode) is assumed posi-
tive.

Id Total current. It flows into the first node (anode),
out of the second (cathode). I(Dxxxx) is the
same as IJ(Dxxxx) + IC(Dxxxx).

IJ Junction current. The current through the junc-
tion. IJ(Dxxxx) is the same as I(Yj.Dxxxx).

IC Capacitor current. The current through the
parallel capacitor. IC(Dxxxx) is the same as
I(Cj.Dxxxx).

3.5. E: VOLTAGE CONTROLLED VOLTAGE SOURCE 47

P Power. P(Dxxxx) is the same as PJ(Dxxxx) +
PC(Dxxxx).

PD Power dissipated. The power dissipated as heat.
It is always positive and does not include power
sourced. It should be the same as P because the
diode is passive.

PS Power sourced. The power sourced by the part. It
is always positive and does not consider its own
dissipation. It should be 0 because the diode is
passive.

PJ Junction power. PJ(Dxxxx) is the same as
P(Yj.Dxxxx).

PC Capacitor power. PC(Dxxxx) is the same as
P(Cj.Dxxxx).

Capacitance Effective capacitance. C(Dxxxx) is the
same as Capacitance(Cj.Dxxxx).

Req Effective resistance. R(Dxxxx) is the same as
R(Yj.Dxxxx).

Z Impedance at a port. The port impedance seen
looking into the circuit across the branch. It does
not include the part itself. In transient analy-
sis, it shows the effective Z-domain impedance,
which is a meaningless number if there are ca-
pacitors or inductors in the circuit. (DC only)

ZRAW Impedance at a port, raw. This is the same as
“Z” except that it includes the part itself. (DC
only)

REgion Region code. A numeric code that represents
the region it is operating in. +1 = forward, -1 =
reversed, 0 = unknown, -2 = assumed off.

All parameters of the internal elements Yj and Cj
are available. To access them, concatenate the labels
for the internal element with the diode, separated by
a dot. Yj.D6 is the admittance (Yj) element of the
diode D6.

In this release, there are no probes available in AC
analysis except for the internal elements.

The general element probes do not apply to
diodes.

3.5 E: Voltage Controlled Volt-
age Source

3.5.1 Syntax

Exxxxxxx n+ n– nc+ nc– value
Exxxxxxx n+ n– nc+ nc– expression
.VCVS label n+ n– nc+ nc– expression

3.5.2 Purpose

Voltage controlled voltage source, or voltage gain
block.

3.5.3 Comments

N+ and n– are the positive and negative element
(output) nodes, respectively. Nc+ and nc– are the
positive and negative controlling nodes, respectively.
Value is the voltage gain.

3.6 F: Current Controlled Cur-
rent Source

3.6.1 Syntax

Fxxxxxxx n+ n– ce value
Fxxxxxxx n+ n– ce expression
.CCCS label n+ n– ce expression

3.6.2 Purpose

Current controlled current source, or current gain
block.

3.6.3 Comments

N+ and n– are the positive and negative element
(output) nodes, respectively. Current flow is from
the positive node, through the source, to the negative
node. Ce is the name of an element through which the
controlling current flows. The direction of positive
controlling current is from the positive node, through
the element, to the negative node of ce. Value is the
transconductance in mhos.

The controlling element can be any simple two ter-
minal element. Unlike SPICE, it does not need to be
a voltage source.

48 CHAPTER 3. CIRCUIT DESCRIPTION

3.7 G: Voltage Controlled Cur-
rent Source

3.7.1 Syntax

Gxxxxxxx n+ n– nc+ nc– value
Gxxxxxxx n+ n– nc+ nc– expression
.VCCS label n+ n– nc+ nc– expression

3.7.2 Purpose

Voltage controlled current source, or transconduc-
tance block.

3.7.3 Comments

N+ and n– are the positive and negative element
(output) nodes, respectively. Current flow is from
the positive node, through the source, to the nega-
tive node. Nc+ and nc– are the positive and negative
controlling nodes, respectively. Value is the transcon-
ductance in mhos.

The letter G can also be used to select the vccap,
vcr, and vcg devices using a syntax compatible with
some other simulators.

3.8 Voltage Controlled Capaci-
tor

3.8.1 Syntax

Preferred syntax:
.VCCAP label n+ n– nc+ nc– expression
Alternate syntax:
Gxxxxxxx n+ n– VCCAP nc+ nc– expres-

sion

3.8.2 Purpose

Voltage controlled capacitor.

3.8.3 Probes

All probes that apply to ordinary capacitors also ap-
ply here.

3.8.4 Comments

N+ and n– are the positive and negative element
(output) nodes, respectively. Nc+ and nc– are the
positive and negative controlling nodes, respectively.
Value is the transfactor in Farads per volt.

The simulator will faithfully give you a negative
capacitor if it seems appropriate. Usually, this part is
used with a behavioral modeling function, like PWL,
which allows you to specify a table of capacitance vs.
voltage.

3.9 Voltage Controlled Admit-
tance

3.9.1 Syntax

Preferred syntax:
.VCG label n+ n– nc+ nc– expression
Alternate syntax:
Gxxxxxxx n+ n– VCG nc+ nc– expression

3.9.2 Purpose

Voltage controlled admittance.

3.9.3 Comments

N+ and n– are the positive and negative element
(output) nodes, respectively. Nc+ and nc– are the
positive and negative controlling nodes, respectively.
Value is the transfactor in mhos per volt.

The simulator will faithfully give you a negative ad-
mittance if it seems appropriate. Usually, this part is
used with a behavioral modeling function, like PWL,
which allows you to specify a table of admittance vs.
voltage.

3.10 Voltage Controlled Resis-
tor

3.10.1 Syntax

Preferred syntax:
.VCR label n+ n– nc+ nc– expression
Alternate syntax:
Gxxxxxxx n+ n– VCR nc+ nc– expression

3.12. I: INDEPENDENT CURRENT SOURCE 49

3.10.2 Purpose

Voltage controlled resistor.

3.10.3 Comments

N+ and n– are the positive and negative element
(output) nodes, respectively. Nc+ and nc– are the
positive and negative controlling nodes, respectively.
Value is the transfactor in ohms per volt.

The simulator will faithfully give you a negative
resistor if it seems appropriate. Usually, this part is
used with a behavioral modeling function, like PWL,
which allows you to specify a table of resistance vs.
voltage.

3.11 H: Current Controlled
Voltage Source

3.11.1 Syntax

Hxxxxxxx n+ n– ce value
Hxxxxxxx n+ n– ce expression
.CCVS label n+ n– ce expression

3.11.2 Purpose

Current controlled voltage source, or transresistance
block.

3.11.3 Comments

N+ and n– are the positive and negative element
(output) nodes, respectively. Ce is the name of an
element through which the controlling current flows.
The direction of positive controlling current is from
the positive node, through the element, to the nega-
tive node of ce. Value is the transresistance in Ohms.

The controlling element can be any simple two ter-
minal element. Unlike SPICE, it does not need to be
a voltage source.

3.12 I: Independent Current
Source

3.12.1 Syntax

Ixxxxxxx n+ n– value
Ixxxxxxx n+ n– expression
.ISOurce label n+ n– expression

3.12.2 Purpose

Independent current source.

3.12.3 Comments

N+ and n– are the positive and negative element
nodes, respectively. Positive current flow is from the
positive node, through the source, to the negative
node. Value is the current in Amperes.

All of the SPICE time dependent functions (pulse,
sin, exp, pwl, and sffm are supported. An additional
function generator emulates a laboratory type func-
tion generator, for a more convenient signal input to
the circuit.

3.13 J: Junction Field-Effect
Transistor

3.13.1 Syntax

Jxxxxxxx nd ng ns mname {area} {args}

3.13.2 Purpose

Junction Field Effect Transistor.

3.13.3 Comments

Not implemented. Plans are to implement it as in
SPICE.

3.14 K: Coupled (Mutual) In-
ductors

3.14.1 Syntax

Kxxxxxxx Lyyyyyyy Lzzzzzzz value

50 CHAPTER 3. CIRCUIT DESCRIPTION

.MUTual inductor label Lyyyyyyy Lzzzzzzz
value

3.14.2 Purpose

Coupled mutual inductance.

3.14.3 Comments

K couples two inductors. The value is the coefficient
of coupling. Using the dot convention, place a dot on
the first node of each inductor.

The coefficient of coupling is given by K = Mij√
LiLj

.

3.14.4 Bugs

This release does not support multiple coupled induc-
tors.

3.15 L: Inductor

3.15.1 Syntax

Lxxxxxxx n+ n– value
Lxxxxxxx n+ n– expression
Lxxxxxxx n+ n– value {II=initial-current}
.INDuctor label n+ n– expression

3.15.2 Purpose

Inductor, or general flux storage element.

3.15.3 Probes

The following probes are available in addition to
those available for all basic elements.

DT Time step. The internal time step used for this
device for numerical integration. It is not neces-
sarily the same as the global time step.

TIME Time. The time of the most recent calculation
of this device. It is not necessarily the same as
the global time.

TIMEOLD The time of the previous calculation of this
device. It is not necessarily the same as the
global time.

3.15.4 Comments

N+ and n– are the positive and negative element
nodes, respectively. Value is the inductance in Hen-
ries.

The (optional) initial condition is the initial (time
= 0) value of the inductor current (in Amperes). Note
that the initial conditions (if any) apply only if the
UIC option is specified on the transient command.

3.16 M: MOSFET

3.16.1 Syntax

Mxxxxxxx nd ng ns nb mname {args}
Mxxxxxxx nd ng ns nb mname {width/length}
{args}

.MOSfet label nd ng ns nb mname {args}

.MOSfet label nd ng ns nb mname
{width/length} {args}

3.16.2 Purpose

MOSFET.

3.16.3 Comments

Nd, ng, ns, and nb are the drain, gate, source, and
bulk (substrate) nodes, respectively. Mname is the
model name.

Length and width are the drawn channel length and
width, in microns. Note that the notation W/L has
units of microns, but the same parameters, in the
argument list (W and L) have units of meters. All
other dimensions are in meters.

The options rstray and norstray determines
whether or not series resistances are included.
rstray is the default. Experience has shown that
the effect of series resistance is often not significant,
it can significantly degrade the simulation time, and
it often increases roundoff errors. rstray is the de-
fault for Spice compatibility, and because it usually is
significant for the BJT model. Norstray is the equiv-
alent of setting the model parameters rd, rs, and rsh
all to zero.

Entering a parameter value of 0 is not the same
as not specifying it. This behavior is not compati-
ble with SPICE. In SPICE, a value of 0 is often in-

3.16. M: MOSFET 51

terpreted as not specified, with the result being to
calculate it some other way. If you want it to be
calculated, don’t specify it.

Another subtle difference from SPICE is that Gnu-
cap may omit some unnecessary parts of the model,
which may affect some reported values. It should not
affect any voltages or currents. For example, if the
gate and drain are tied, Cgs will be omitted from the
model, so the printed value for Cgdovl and Cgd will
be 0, which will disagree with SPICE. It doesn’t mat-
ter because a shorted capacitor can store no charge.

Levels 1, 2, 3, 4, 5, 6, 7 are implemented.

3.16.4 Element Parameters

Basic Spice compatible parameters

L = x Drawn channel length. (Default = DEFL pa-
rameter from options. DEFL default = 100µ)

W = x Drawn channel width. (Default = DEFW pa-
rameter from options. DEFW default = 100µ)

AD = x Area of drain diffusion. (Default = DEFAD
parameter from options. DEFAD default = 0)

AS = x Area of source diffusion. (Default = DEFAS
parameter from options. DEFAS default = 0)

PD = x Perimeter of drain junction. (Default = 0.)

PS = x Perimeter of source junction. (Default = 0.)

NRD = x Number of squares of drain diffusion. (De-
fault = 1.)

NRS = x Number of squares of source diffusion. (De-
fault = 1.)

3.16.5 Model Parameters

Basic selection – required for all models

LEVEL = x Model index. (Default = 1) Selects which
of several models to use. The choices supported
are 1-7, corresponding to Spice 3f5.

Extended control (not in Spice) – all models

CMODEL = x Capacitance model selector (Default =
1 for level 4,5,7. Default = 2 for level 1,2,3. De-
fault = 3 for level 6.) The only valid values are
1, 2 and 3. 2 selects Meyer capacitance calcula-
tions compatible with Spice 2. 3 selects Meyer’s
model compatible with Spice 3. 1 selects not to
use Meyer’s model.

Binning (not in Spice) – all models

Gnucap supports “binning”. You can specify any
number of models as a family. These models must
have the selection parameters WMAX, WMIN, LMAX, and
LMIN.

To use “binning”, define a set of models with the
same name, except for a numeric extension, begin-
ning at 1. The models must be numbered consecu-
tively. For example, you might have a set of models:
NM3U.1, NM3U.2, NM3U.3, NM3U.4, NM3U.5, NM3U.6.
For the device, you would specify the model NM3U.
The first model meeting the requirements that length
is between LMIN and LMAX, and width is between WMIN
and WMAX will be used. They will be tried in numeri-
cal order.

If there is a gap in the numbering, only those below
the gap will be used. If you want a specific model
from a set, disabling binning, you can specify its full
name.

WMAX = x Maximum width. (Default = Infinity.)
The maximum device width that may be used
with this model.

WMIN = x Maximum width. (Default = 0.) The min-
imum device width that may be used with this
model.

LMAX = x Maximum length. (Default = Infinity.)
The maximum device length that may be used
with this model.

LMIN = x Maximum length. (Default = 0.) The
minimum device length that may be used with
this model.

Substrate coupling – all models

IS = x Bulk junction saturation current. If not in-
put, it is calculated from JS. If both are input, a

52 CHAPTER 3. CIRCUIT DESCRIPTION

warning is issued, and the calculated value (from
JS) is used, if AD and AS are also input. If neither
IS or JS is input, a default value of 1e-14 is used.

JS = x Bulk junction saturation current per square-
meter of junction area. May be used to calculate
IS. If a conflict exists, a warning is issued.

FC = x Coefficient for forward bias depletion capac-
itance formula. (Default = 0.5)

PB = x Bulk junction potential. (Default = 0.8)

CJ = x Zero bias bulk junction bottom capacitance
per square-meter of junction area. If not input,
but NSUB is, it is calculated, otherwise a default
value of 0 is used.

MJ = x Bulk junction bottom grading coefficient.
(Default = 0.5)

PBSW = x Sidewall Bulk junction potential. (Default
= PB)

CJSW = x Zero bias bulk junction sidewall capaci-
tance per meter of junction perimeter. (Default
= 0.)

MJSW = x Bulk junction sidewall grading coefficient.
(Default = 0.33)

Strays – all models

RSH = x Drain and source diffusion sheet resistance.
If not input, use RS and RD directly. If a conflict
exists, a warning is issued. The resistance is only
used if the option rstray is set.

RD = x Drain ohmic resistance (unscaled). If RS is
input, the default value of RD is 0. If RD and
RS are both not input, and RSH is input, they
are calculated from RSH. If any conflict exists,
a warning is issued, indicating the action taken,
which is believed to be compatible with SPICE.
The resistance is only used if the option rstray
is set.

RS = x Source ohmic resistance (unscaled). If RD is
input, the default value of RS is 0. If RD and
RS are both not input, and RSH is input, they
are calculated from RSH. If any conflict exists,
a warning is issued, indicating the action taken,

which is believed to be compatible with SPICE.
The resistance is only used if the option rstray
is set.

CBD = x Zero bias B-D junction capacitance (un-
scaled). If CBD is not specified, it is calculated
from CJ.

CBS = x Zero bias B-S junction capacitance (un-
scaled). If CBS is not specified, it is calculated
from CJ.

CGSO = x Gate-source overlap capacitance, per
channel width. (Default = 0.)

CGDO = x Gate-drain overlap capacitance, per chan-
nel width. (Default = 0.)

CGBO = x Gate-bulk overlap capacitance, per chan-
nel length. (Default = 0.)

Accepted and ignored – all models

KF = x Flicker noise coefficient. SPICE parameter
accepted but not implemented.

AF = x Flicker noise exponent. SPICE parameter
accepted but not implemented.

Level 1,2,3,6 shared parameters

VTO = x Zero bias threshold voltage. If not input,
but NSUB is, it is calculated, otherwise a default
value of 0 is used.

KP = x Transconductance parameter. If not input,
it is calculated by UO * COX.

GAMMA = x Bulk threshold parameter. If not input,
but NSUB is, it is calculated, otherwise a default
value of 0 is used.

PHI = x Surface potential. If not input, but NSUB is,
it is calculated, otherwise a default value of 0.6 is
used. A warning is issued if the calculated value
is less than 0.1, in which case 0.1 is used.

LAMBDA = x Channel length modulation. If not in-
put, it is calculated dynamically during simu-
lation. If the value input is larger than 0.2, a
warning is issued, but no correction is made. (ac-
cepted but ignored for level 3)

3.16. M: MOSFET 53

TOX = x Oxide thickness. (meters) (Default = 1e-7)

NSUB = x Substrate doping. (atoms / cm3) Used in
calculation of VTO, GAMMA, PHI, and CJ. If not
input, default values are used.

NSS = x Surface state density. (atoms / cm2) (De-
fault = 0.) Used, with NSUB in calculation of
VTO.

XJ = x Metallurgical junction depth. (meters) Used
to calculate short channel effects. If not input,
do not model short channel effects, effectively
defaults to 0.

LD = x Lateral diffusion. (Default = 0.) Effective
channel length is reduced by 2 * LD.

UO = x Surface mobility. (cm2/V-s) (Default =
600.)

DELTA = x Width effect on threshold voltage. (De-
fault = 0.) (Level 2 and 3 only.)

TPG = x Type of gate material. (Default = 1.)

+1 opposite to substrate
–1 same as substrate
0 Aluminum

Level 1

The Level 1 model has no additional parameters.

Level 2

NFS = x Fast surface state density. (atoms / cm2)
Used in modeling sub-threshold effects. If not
input, do not model sub-threshold effects.

VMAX = x Maximum drift velocity of carriers. (m/s)
Used in calculating vdsat, and lambda. If not
input, use a different method. VMAX does not
always work, if the method fails, the alternate
method is used and the warning “Baum’s theory
rejected” is issued if the error threshold is set to
debug or worse.

NEFF = x Total channel charge (fixed and mobile)
coefficient. (Default = 1.) Used in internal cal-
culation of lambda.

UCRIT = x Critical field for mobility degradation.
(V/cm) (Default = 1e4)

UEXP = x Critical field exponent in mobility degra-
dation. If not input, do not model mobility
degradation, effectively defaulting to 0.

UTRA = x Transverse field coefficient. SPICE pa-
rameter accepted but not implemented. It is also
not implemented in most versions of SPICE.

Level 3

NFS = x Fast surface state density. (atoms / cm2)
Same as Level 2.

VMAX = x Maximum drift velocity of carriers. (m/s)
Used in calculating vdsat. If not input, use a
different method.

THETA = x Mobility modulation.

ETA = x Static feedback.

KAPPA = x Saturation field vector.

Level 6

KV = x Saturation voltage factor.

NV = x Saturation voltage coefficient.

KC = x Saturation current factor.

NC = x Saturation current coefficient.

NVTH = x Threshold voltage coefficient.

PS = x Sat. current modification par.

GAMMA1 = x Bulk threshold parameter 1.

SIGMA = x Static feedback effect par.

LAMBDA1 = x Channel length modulation parame-
ter. 1.

54 CHAPTER 3. CIRCUIT DESCRIPTION

Level 4, 5, 7, 8 (BSIM models) general com-
ments

The BSIM models have additional parameters for
length, width, and product (length * width) depen-
dency. To get the name, prefix the listed parameter
with L, W, or P, respectively. Spice supports the “P”
parameter only for BSIM3, but Gnucap supports it
for all 3 models. For example, VFB is the basic pa-
rameter with units of Volts, and LVFB, WVFB, and
PVFB also exist. The units of LVFB and WVFB are
Volts * micron. The units of PVFB are Volts * mi-
cron * micron. The real parameter is calculated by
P = P0 +PL/L+PW /W +PP /(L∗W), where L and
W are the effective length and width in microns.

The parameter s are not listed here, but they are
the same as Spice 3f5, with the same defaults.

The “levels” are the same as Spice.

4 BSIM 1.

5 BSIM 2.

7 BSIM 3v3.1.

The following are reserved for future use:

8 BSIM 3v3.2.

9 BSIM-SOI.

10 BSIM 4.

3.16.6 Probes

VDS Drain-source voltage.

VGS Gate-source voltage.

VBS Bulk-source voltage.

VDSInt Drain-source internal voltage.

VGSInt Gate-source internal voltage.

VBSInt Bulk-source internal voltage.

VGD Gate-drain voltage.

VBD Bulk-drain voltage.

VSD Source-drain voltage.

VDM Drain-midpoint voltage.

VGM Gate-midpoint voltage.

VBM Bulk-midpoint voltage.

VSM Source-midpoint voltage.

VDG Drain-gate voltage.

VBG Bulk-gate voltage.

VSG Source-gate voltage.

VDB Drain-bulk voltage.

VGB Gate-bulk voltage.

VSB Source-bulk voltage.

VD Drain-ground voltage.

VG Gate-ground voltage.

VB Bulk-ground voltage.

VS Source-ground voltage.

Id Drain current.

IS Source current.

IG Gate current.

IB Bulk current.

CGSO Gate-source overlap capacitance.

CGDO Gate-drain overlap capacitance.

CGBO Gate-bulk overlap capacitance.

CGSm Gate-source Meyer capacitance.

CGDm Gate-drain Meyer capacitance.

CGBm Gate-bulk Meyer capacitance.

CGST Gate-source total capacitance.

CGDT Gate-drain total capacitance.

CGBT Gate-bulk total capacitance.

CBD Bulk-drain junction capacitance.

CBS Bulk-source junction capacitance.

CGATE Nominal gate capacitance.

3.17. Q: BIPOLAR JUNCTION TRANSISTOR 55

GM Transconductance.

GDS Drain-source conductance.

GMB Body effect transconductance.

VDSAT Saturation voltage.

VTH Threshold voltage.

IDS Drain-source current, not including strays.

IDSTray Drain current due to strays.

IError Estimated drain current error bound.

P Power.

PD Power dissipated. The power dissipated as heat.
It is always positive and does not include power
sourced. It should be the same as P because the
mosfet cannot generate energy.

PS Power sourced. The power sourced by the part. It
is always positive and does not consider its own
dissipation. It should be 0 because the mosfet
cannot generate energy.

REgion Region code. A numeric code that represents
the region it is operating in. The number is the
sum of several factors. A negative code indicates
the source and drain are reversed.

1 Active. (Not cut off.)

2 Not sub-threshold.

4 Saturated.

10 Source to bulk is forward biased.

20 Drain to bulk is forward biased.

40 Punch through.

All parameters of the internal elements (Ids, Gmr,
Gmf, Yds, Gmbr, Gmbf, Cgb, Cgd, Cgs, Dsb, Ddb,
Rd, Rs) are available. To access them, concatenate
the labels for the internal element with this device,
separated by a dot. Cgd.M6 is the gate to drain ca-
pacitance of M6.

In this release, there are no probes available in AC
analysis except for the internal elements.

3.17 Q: Bipolar Junction Tran-
sistor

3.17.1 Syntax

Qxxxxxxx nc nb ne ns mname {area} {args}
.BJT label nc nb ne ns mname {area} {args}

3.17.2 Purpose

Bipolar junction transistor,

3.17.3 Comments

Nc, nb, ne, and ns are the collector, base, emitter, and
substrate nodes, respectively. Mname is the model
name.

Area is a unit-less multiplier for the area.
The options rstray and norstray determines

whether or not series resistances are included.
rstray is the default. Norstray is the equivalent
of setting the model parameters rc, re, and rb all to
zero.

Entering a parameter value of 0 is not the same
as not specifying it. This behavior is not compati-
ble with SPICE. In SPICE, a value of 0 is often in-
terpreted as not specified, with the result being to
calculate it some other way. If you want it to be
calculated, don’t specify it.

Another subtle difference from SPICE is that Gnu-
cap may omit some unnecessary parts of the model,
which may affect some reported values. It should not
affect any voltages or currents. For example, if the
gate and drain are tied, Cgs will be omitted from the
model, so the printed value for Cgdovl and Cgd will
be 0, which will disagree with SPICE. It doesn’t mat-
ter because a shorted capacitor can store no charge.

3.17.4 Element Parameters

Basic Spice compatible parameters

Area = x Junction area. (Default = 1) This is a
scaling parameter, with no relevant actual units.

OFF (Default = not specified) If this word is specified,
the initial guess will assume the device is off.

TEMP = x Junction temperature. (Default = the
global temperature.)

56 CHAPTER 3. CIRCUIT DESCRIPTION

ICVBE = x Initial condition, Vbe. (Default = NA)
Use this as the initial condition, when the UIC
option is specified. The syntax is different from
Spice, but the function is the same.

ICVCE = x Initial condition, Vce. (Default = NA)
Use this as the initial condition, when the UIC
option is specified. The syntax is different from
Spice, but the function is the same.

3.17.5 Model Parameters

IS = x Transport saturation Current per area. (De-
fault = 1e-16)

BF = x Ideal maximum forward beta. (Default =
100)

NF = x Forward current emission coefficient. (De-
fault = 1)

VAF = x Forward Early voltage. (Default = Infinite)
Alternate name is VA.

IKF = x Forward beta roll-off corner current. (De-
fault = Infinite)

ISE = x B-E leakage saturation current. (Default =
c2 * is)

C2 = x B-E leakage scale factor. (Default = 0)

NE = x B-E leakage emission coefficient. (Default =
1.5)

BR = x Ideal maximum reverse beta. (Default = 1)

NR = x Reverse current emission coefficient. (De-
fault = 1)

VAR = x Reverse Early voltage. (Default = Infinite)
Alternate name is VB.

IKR = x Reverse beta roll-off corner current. (De-
fault = Infinite)

ISC = x B-C leakage saturation current. (Default =
c4 * is)

C4 = x B-C leakage scale factor. (Default = 0)

NC = x B-C leakage emission coefficient. (Default =
2)

RB = x Zero bias base resistance. (Default = 0)

IRB = x Current for base resistance=(rb+rbm)/2”.
(Default = Infinite) Current where base resis-
tance falls halfway to its minimum value.

RBM = x Minimum base resistance at high current.
(Default = rb)

RE = x Emitter resistance. (Default = 0)

RC = x Collector resistance. (Default = 0)

CJE = x Zero bias B-E depletion capacitance. (De-
fault = 0)

VJE = x B-E built in potential. (Default = .75) Al-
ternate name is PE.

MJE = x B-E junction grading coefficient. (Default
= .33) Alternate name is ME.

TF = x Ideal forward transit time. (Default = 0)

XTF = x Coefficient for bias dependence of TF. (De-
fault = 0)

VTF = x Voltage giving VBC dependence of TF.
(Default = Infinite)

ITF = x High current dependence of TF. (Default =
0)

PTF = x Excess phase at freq=1.0/(TF*2PI) Hz.
(Default = 0)

CJC = x Zero bias B-C depletion capacitance. (De-
fault = 0)

VJC = x B-C built in potential. (Default = .75) Al-
ternate name is PC.

MJC = x B-C junction grading coefficient. (Default
= .33) Alternate name is MJ.

XCJC = x Fraction of B-C capacitance connected to
internal base node. (Default = 1)

TR = x Ideal reverse transit time. (Default = 0)

CJS = x Zero bias C-S capacitance. (Default = 0)
Alternate name is CCS.

VJS = x Substrate junction built in potential. (De-
fault = .75) Alternate name is PS.

3.17. Q: BIPOLAR JUNCTION TRANSISTOR 57

MJS = x Substrate junction grading coefficient. (De-
fault = 0) Alternate name is MS.

XTB = x Forward and reverse beta temperature ex-
ponent. (Default = 0)

EG = x Energy gap for IS temperature dependency.
(Default = 1.11)

XTI = x Temperature exponent for effect on IS. (De-
fault = 3)

FC = x Coefficient for forward-bias depletion capac-
itance formula. (Default = .5)

TNOM = x Parameter measurement temperature,
Celsius. (Default = 27)

3.17.6 Probes

VBEInt Base-emitter internal voltage.

VBCInt Base-collector internal voltage.

VBXInt External base to internal base voltage.

VCSInt Collector-substrate internal voltage.

VBS Base-substrate voltage.

VBE Base-emitter voltage.

VBC Base-collector voltage.

VCS Collector-substrate voltage.

VCB Collector-base voltage.

VCE Collector-emitter voltage.

VES Emitter-substrate voltage.

VEB Emitter-base voltage.

VEC Emitter-collector voltage.

VB Base-ground voltage.

VC Collector-ground voltage.

VE Emitter-ground voltage.

VS Substrate-ground voltage.

VBI Internal Base-ground voltage.

VCI Internal Collector-ground voltage.

VEI Internal Emitter-ground voltage.

ICE Collector-emitter current.

ICEOffset Offset part of ICE.

GO Output (collector-emitter) conductance.

GM Transconductance.

IPI Base-emitter current.

IPIOffset Offset part of IPI.

GPI Base-emitter conductance.

IMU Base-collector current.

IMUOffset Offset part of IMU.

GMU Base-collector conductance.

IB Base current.

GX Conductance of base spreading resistance.

RX Base spreading resistance.

IC Collector current.

IE Emitter current.

QBX External Base-collector charge.

CQBX External Base-collector capacitance.

CBX External Base-collector capacitance (CQBX).

QBC Internal Base-collector charge.

CQBC Internal Base-collector capacitance.

CBC Internal Base-collector capacitance (CQBC).

CMU Internal Base-collector capacitance (CQBC).

QCS Collector-substrate charge.

CQCS Collector-substrate capacitance.

CCS Collector-substrate capacitance (CQCS).

QBE Base-emitter charge.

CQBE Base-emitter capacitance.

58 CHAPTER 3. CIRCUIT DESCRIPTION

CBE Base-emitter capacitance. (CQBE).

CPI Base-emitter capacitance. (CQBE).

P Power.

PD Power dissipated. The power dissipated as heat.
It is always positive and does not include power
sourced. It should be the same as P because
transistors cannot generate energy.

PS Power sourced. The power sourced by the part. It
is always positive and does not consider its own
dissipation. It should be 0 because transistors
cannot generate energy.

All parameters of the internal elements (Ice, Ipi,
Imu, Rc, Re, Yb, Cbx, Cbc, Ccs, Cbe) are available.
To access them, concatenate the labels for the in-
ternal element with this device, separated by a dot.
Cbe.Q6 is the base to emitter capacitance of Q6.

In this release, there are no probes available in AC
analysis except for the internal elements.

3.18 R: Resistor

3.18.1 Syntax

Rxxxxxxx n+ n– value
Rxxxxxxx n+ n– expression
Rxxxxxxx n+ n– model {L=length} {W=width}
{TEMP=temperature}

.RESistor label n+ n– expression

3.18.2 Purpose

Resistor, or general current controlled dissipative el-
ement.

3.18.3 Comments

N+ and n– are the positive and negative element
nodes, respectively. Value is the resistance in Ohms.

The resistor (type R) differs from the admittance
(type Y) in that the resistor is a current controlled
element, and the conductance is a voltage controlled
element, in addition to the obvious use of conduc-
tance (1/R) instead of resistance.

You may specify the value in one of three forms:

1. A simple value. This is the resistance in Ohms.

2. An expression, as described in the behavioral
modeling chapter. The expression can specify
the voltage as a function of current, or the resis-
tance as a function of time.

3. A model, which calculates the resistance as
a function of length and width, referencing a
.model statement of type R. This is compatible
with the Spice-3 “semiconductor resistor”.

3.18.4 Model statement

A model statement may be used,, with model type R
or Res. The parameters are:

RSH = x Sheet resistance. (Ohms / square). (Re-
quired)

CJSW = x Junction sidewall capacitance. (Farads /
meter). (Default = 0.)

DEFW = x Default width. (meters). (Default = 1e-6)

NARROW = x Narrowing due to side etching. (me-
ters). (Default = 0.)

TC1 = x First order temperature coefficient. (Farads
/ degree C). (Default = 0.)

TC2 = x Second order temperature coefficient.
(Farads / degree C squared). (Default = 0.)

TNOM = x Parameter measurement temperature.
(degrees C.). (Default = 27.)

Resistance is computed by the formula:

resistance = RSH * (L - NARROW) / (W - NARROW)

After the nominal value is calculated, it is adjusted
for temperature by the formula:

value *= (1 + TC1 * (T-T0) + TC2 * (T-T0)^2)

3.19 S: Voltage Controlled
Switch

3.19.1 Syntax

Sxxxxxxx n+ n– nc+ nc– mname {ic}
.VSWitch label n+ n– nc+ nc– mname {ic}

3.21. U: LOGIC DEVICE 59

3.19.2 Purpose

Voltage controlled switch.

3.19.3 Comments

N+ and n– are the positive and negative element
nodes, respectively. Nc+ and nc– are the control-
ling nodes. Mname is the model name. A switch is a
resistor between n+ and n–. The value of the resistor
is determined by the state of the switch.

The resistance between n+ and n– will be RON
when the controlling voltage (between nc+ and nc–
) is above VT + VH. The resistance will be ROFF
when the controlling voltage is below VT - VH. When
the controlling voltage is between VT - VH and VT
+ VH, the resistance will retain its prior value.

You may specify ON or OFF to indicate the initial
state of the switch when the controlling voltage is in
the hysteresis region.
RON and ROFF must have finite positive values.

3.19.4 Model Parameters

VT = x Threshold voltage. (Default = 0.)

VH = x Hysteresis voltage. (Default = 0.)

RON = x On resistance. (Default = 1.)

ROFF = x Off resistance. (Default = 1e12)

3.20 T: Transmission Line

3.20.1 Syntax

Txxxxxxx n1+ n1– n2+ n2– {args}
.TLIne xxxxxxx n1+ n1– n2+ n2– {args}

3.20.2 Purpose

Lossless transmission line.

3.20.3 Comments

N1+ and n1– are the nodes at one end. N2+ and n2–
are the nodes at the other end.

The parameters TD, Freq, and NL determine the
length of the line. Either TD or Freq and NL must
be specified. If only Freq is specified, NL is assumed

to be .25. The other will be calculated based on the
one you specify. If you specify too much, Freq and
NL dominate, and a warning is issued.

3.20.4 Element Parameters

Z0 = x Characteristic impedance. (Default = 50.)

TD = x Time delay.

Freq = x Frequency for NL.

NL = x Number of wavelengths at Freq.

3.21 U: Logic Device

3.21.1 Syntax

Uxxxxxxx out gnd vdd enable in1 in2 ... fam-
ily gatetype

3.21.2 Purpose

Logic element for mixed or logic mode simulation.

3.21.3 Comments

A sample 2 input nand gate might be: U102 5 0 34
34 2 3 cmos nand. The input pins are connected to
nodes 2 and 3. The output is at node 5. Node 34 is
the power supply.

The logic element behaves differently depending on
the options analog, mixed, or digital. You set one
of these with the options command. Analog mode
substitutes a subcircuit for the gate for full analog
simulation. Digital mode simulates the gate as a
digital device as in an event driven gate level logic
simulator. Mixed mode applies heuristics to decide
whether to use analog or digital for each gate.

In analog mode the logic (U) device is almost the
same as a subcircuit (X). The subcircuit is user de-
fined for each gate type used. A .subckt defines the
analog equivalent of a logic element. The name of
the subcircuit is made by concatenating the family,
gatetype, and the number of inputs. For example, if
the family is cmos and the gatetype is nand and it has
two inputs, the name of the subcircuit is cmosnand2.
So, the gate in the first paragraph becomes equivalent
to: X 5 0 34 34 2 3 cmosnand2. You then need to

60 CHAPTER 3. CIRCUIT DESCRIPTION

define the subcircuit using the standard .subckt no-
tation. You can probe the internal elements the same
as an ordinary subcircuit.

The digital mode uses simple boolean expressions
to compute the output, just like a gate level logic sim-
ulator. In this case the output is computed by L(5)
= not(L(2) and L(3)) where L(2) is the logic state
at node 2. The simulator exploits latency so it will
only compute the output if one of the inputs changes.
The output actually changes after a delay, specified
in the .model statement. There are no conversions
between digital and analog where gates connect to-
gether. There will be an automatic conversion from
analog to digital for any input that is driven by an
analog device. There will be an automatic conversion
from digital to analog for any output that drives an
analog device. These conversions will only be done if
they are needed. You can probe the analog value at
any node. The probe will automatically request the
conversion if it needs it. There is no internal subcir-
cuit so it is an error to probe the internal elements.

The mixed mode is a combination of analog and
digital modes on a gate by gate basis. Some gates
will be analog. Some will be digital. This will change
as the simulation runs based on the quality of the
signals. You need to specify a .subckt as you do
for the analog mode, but the simulator may not use
it. You can usually not probe the elements inside the
subcircuit because they come and go.

3.21.4 Element Parameters

Family refers to the logic family .model statement.
Gatetype is the type of logic gate:

AND

NAND

OR

NOR

XOR

INV

3.21.5 Model Parameters

Parameters used in digital mode

DElay = x Propagation delay. (Seconds) (Default
= 1e-9) The propagation delay of a simple gate
when simulated in logic mode.

Parameters used in conversion both ways

VMAx = x Nominal logic 1. (Volts) (Default = 5.)
The nominal value for a logic 1.

VMIn = x Nominal logic 0. (Volts) (Default = 0.)
The nominal value for a logic 0.

Unknown = x Nominal logic unknown. (Volts) (De-
fault = (vmax+vmin)/2) The output voltage for
a logic unknown. In a real circuit, this voltage
is unknown, but a simulator needs something, so
here it is.

Digital to Analog conversion

RIse = x Rise time. (Seconds) (Default = delay / 2)
The nominal rise time of a logic signal. This will
be the rise time when a logic signal is converted
to analog.

FAll = x Fall time. (Seconds) (Default = delay / 2)
The nominal fall time of a logic signal. This will
be the fall time when a logic signal is converted
to analog.

RS = x Series resistance, strong. (Ohms) (Default
= 100.) The resistance in series with the output
when a logic gate drives analog circuitry.

RW = x Series resistance, weak. (Ohms) (Default =
1e9) The output resistance in a high impedance
state.

Analog to Digital conversion

THH = x Threshold high. (Unitless) (Default = .75)
The threshold for the input to cross from tran-
sition to high expressed as a fraction of the dif-
ference between high and low values. (Low = 0.
High = 1.)

3.23. W: CURRENT CONTROLLED SWITCH 61

THL = x Threshold low. (Unitless) (Default = .25)
The threshold for the input to cross from tran-
sition to low expressed as a fraction of the dif-
ference between high and low values. (Low = 0.
High = 1.)

Mode decision parameters

MR = x Margin rising. (Unitless) (Default = 5) How
much worse than nominal the analog input rise
time can be and still be accepted as clean enough
for logic simulation.

MF = x Margin falling. (Unitless) (Default = 5) How
much worse than nominal the analog input fall
time can be and still be accepted as clean enough
for logic simulation.

OVer = x Overshoot limit. (Unitless) (Default = .1)
How much overshoot can a signal have and still
be accepted as clean enough for logic simulation,
expressed as a fraction of the difference between
high and low values. (Low = 0. High = 1.)

3.21.6 Probes

V Output voltage.

In this release, there are no probes available in AC
analysis except for the internal elements. Internal el-
ements in the analog model are available, but they
come and go so they may be unreliable. More pa-
rameters will be added.

You can probe the logic value at any node. See the
print command for details.

3.22 V: Independent Voltage
Source

3.22.1 Syntax

Vxxxxxxx n+ n– value
Vxxxxxxx n+ n– expression
.VSOurce label n+ n– expression

3.22.2 Purpose

Independent voltage source.

3.22.3 Comments

N+ and n– are the positive and negative element
nodes, respectively. Value is the voltage in Volts.

All of the SPICE time dependent functions (pulse,
sin, exp, pwl, and sffm are supported. An additional
function generator emulates a laboratory type func-
tion generator, for a more convenient signal input to
the circuit.

3.23 W: Current Controlled
Switch

3.23.1 Syntax

Wxxxxxxx n+ n– ce mname {ic}
.ISWitch label n+ n– ce mname {ic}

3.23.2 Purpose

Current controlled switch.

3.23.3 Comments

N+ and n– are the positive and negative element
nodes, respectively. Ce is the name of an element
through which the controlling current flows. Mname
is the model name. A switch is a resistor between n+
and n–. The value of the resistor is determined by
the state of the switch.

The resistance between n+ and n– will be RON
when the controlling current (through ce) is above IT
+ IH. The resistance will be ROFF when the control-
ling current is below IT - IH. When the controlling
current is between IT - IH and IT + IH, the resistance
will retain its prior value.

You may specify ON or OFF to indicate the initial
state of the switch when the controlling current is in
the hysteresis region.
RON and ROFF must have finite positive values.
The controlling element can be any simple two ter-

minal element. Unlike SPICE, it does not need to be
a voltage source.

3.23.4 Model Parameters

IT = x Threshold current. (Default = 0.)

62 CHAPTER 3. CIRCUIT DESCRIPTION

IH = x Hysteresis current. (Default = 0.)

RON = x On resistance. (Default = 1.)

ROFF = x Off resistance. (Default = 1e12)

3.24 X: Subcircuit Call

3.24.1 Syntax

Xxxxxxxx n1 {n2 n3 ...} subname

3.24.2 Purpose

Subcircuit call

3.24.3 Comments

Subcircuits are used by specifying pseudo-elements
beginning with X, followed by the connection nodes.

3.24.4 Probes

Vx Port (terminal node) voltage. x is which port to
probe. 1 is the first node in the ”X” statement,
2 is the second, and so on.

P Power. The sum of the power probes for all the
internal elements.

PD Power dissipated. The total power dissipated as
heat.

PS Power sourced. The total power generated.

In this release, there are no probes available in AC
analysis except for the internal elements. More pa-
rameters will be added. Internal elements can be
probed by concatenating the internal part label with
the subcircuit label. R5.X7 is R5 inside X7.

3.25 Y: Admittance

3.25.1 Syntax

Yxxxxxxx n+ n– value
Yxxxxxxx n+ n– expression
.ADMittance label n+ n– expression

3.25.2 Purpose

Admittance, or general voltage controlled dissipative
element.

3.25.3 Comments

N+ and n– are the positive and negative element
nodes, respectively. Value is the admittance in Mhos.

The resistor (type R) differs from the admittance
(type Y) in that the resistor is a current controlled
element, and the conductance is a voltage controlled
element, in addition to the obvious use of conduc-
tance (1/R) instead of resistance.

Chapter 4

Behavioral modeling

Gnucap behavioral modeling is in a state of tran-
sition, so this is subject to change in a future release.

Basically, all simple components can have a be-
havioral description, with syntax designed as an ex-
tension of the Spice time dependent sources. They
are not necessarily physically realizeable. Some only
work on particular types of analysis, or over a small
range of values. Some can be used together, some
cannot.

In general, all simple components are considered to
have simple transformations. A function returns one
parameter as a function of one other, as an extension
of their linear behavior.

Linear behavior:

Capacitor q = Cv

Inductor φ = Li

Resistor v = Ir

Admittance i = Y v

VCVS vo = Evi

VCCS io = Gvi

CCVS vo = Eii

CCCS io = Gii

Sources are defined as functions of time:

Voltage source v = f(t)

Current source i = f(t)

For behavioral modeling / nonlinear values, replace
the constant times input by an arbitrary function:

Capacitor q = f(v)

Inductor φ = f(i)

Resistor v = f(r)

Admittance i = f(v)

VCVS vo = f(vi)

VCCS io = f(vi)

CCVS vo = f(ii)

CCCS io = f(ii)

Conditionals

AC AC analysis only.

DC DC (steady state) value.

OP OP analysis.

TRAN Transient analysis.

FOUR Fourier analysis only.

ELSE Anything not listed.

ALL All modes.

Functions

COMPLEX Complex (re, im) value.

EXP Spice Exp source. (time dependent value).

FIT Fit a curve with splines.

GENERATOR Value from Generator command.

63

64 CHAPTER 4. BEHAVIORAL MODELING

POLY Polynomial (Spice style).

POSY Posynomial (Like poly, non-integer powers).

PULSE Spice Pulse source. (time dependent value).

PWL Piece-wise linear.

SFFM Spice Frequency Modulation (time dependent
value).

SIN Spice Sin source. (time dependent value).

TANH Hyperbolic tangent xfer function.

Model Functions

TABLE Fit a curve with splines.

Cap Spice semiconductor “capacitor” model.

Res Spice semiconductor “resistor” model.

4.1 Conditionals

Gnucap behavioral modeling conditionals are an ex-
tension of the “AC” and “DC” Spice source parame-
ters.

The extensions ...

1. There are more choices, including an “else”.

2. They apply to all elements (primitive compo-
nents).

3. Each section can contain functions and options.

The following are available:

AC AC analysis only.

DC DC (steady state) value.

OP OP analysis.

TRAN Transient analysis.

FOUR Fourier analysis only.

ELSE Anything not listed.

ALL Anything not listed.

A value or function with no conditional keyword is
equivalent to ALL. For SPICE compatibility, use only
DC, AC, or nothing.

They are interpreted like a “switch” statement. In
case of a conflict, the last one applies. A set of prece-
dence rules applies when some keys are missing. It is
SPICE compatible, to the extent the features overlap.

OP analysis OP, DC, ALL, TRAN, 0

DC analysis DC, ALL, OP, TRAN, 0

Transient analysis TRAN, ALL, DC, OP, 0

Fourier analysis FOUR, TRAN, ALL, DC, OP, 0

AC analysis, fixed sources AC, 0

AC analysis, other elements AC, ALL, 0

4.1.1 Examples

V12 1 0 AC 1 DC 3 This voltage source has a value
of 1 for AC analysis, 3 for DC. OP, Transient,
and Fourier inherit the DC value.

R44 2 3 OP 1 ELSE 1g This resistor has a value of
1 ohm for the “OP” analysis, 1 gig-ohm for any-
thing else. This might be useful as the feedback
resistor on an op-amp. Set it to 1 ohm to set the
operating point, then 1 gig to measure its open
loop characteristics, hiding the fact that the op-
amp would probably saturate if it was really left
open loop.

4.2 Functions

Gnucap behavioral modeling functions are an exten-
sion of the Spice source time dependent values.

4.2.1 The extensions

They apply to all elements (primitive components).
All accept either Spice compatible order dependent

parameters, or easier keyword=value notation.
The syntax is identical for all supported compo-

nents.

4.2. FUNCTIONS 65

4.2.2 Fixed sources

Time dependent functions are voltage or current as a
function of time. They are mostly Spice compatible,
with extensions.

Nonlinear transfer functions use time as the inde-
pendent variable. Some may not make sense, but
they are there anyway.

4.2.3 Capacitors and inductors

Time dependent functions are capacitance or induc-
tance as a function of time. They are voltage/current
conserving, not charge/flux conserving.

Nonlinear transfer functions are charge or flux as
a function of input (voltage or current). Charge and
flux are conserved, and can be probed.

4.2.4 Resistors and conductances

Time dependent functions are resistance or conduc-
tance as a function of time.

Nonlinear transfer functions are current or voltage
as a function of input (voltage or current). Resistors
define voltage as a function of current. Conductances
define current as a function of voltage.

4.2.5 Controlled sources

Time dependent functions are gain (v/v, transcon-
ductance, etc) function of time.

Nonlinear transfer functions are output (voltage or
current) as a function of input (voltage or current).

4.2.6 Available functions

COMPLEX Complex (re, im) value.

EXP Spice Exp source. (time dependent value).

FIT Fit a curve with splines.

GENERATOR Value from Generator command.

POLY Polynomial (Spice style).

POSY Posynomial (Like poly, non-integer powers).

PULSE Spice Pulse source. (time dependent value).

PWL Piece-wise linear.

SFFM Spice Frequency Modulation (time dependent
value).

SIN Spice Sin source. (time dependent value).

TANH Hyperbolic tangent transfer function.

In addition, you may name a “function” defined
by a .model statement. The following .model types
may be used here:

TABLE Fit a curve with splines.

Cap Spice semiconductor “capacitor” model.

Res Spice semiconductor “resistor” model.

4.2.7 Parameters that apply to all
functions

These parameters are available with all functions.
Some may not make sense in some cases, but they
are available anyway.

Bandwidth = x AC analysis bandwidth. (Default =
infinity.) The transfer function is frequency de-
pendent, with a 3 DB point at this frequency.
There is frequency dependent phase shift ranging
from 0 degrees at low frequencies to 90 degrees
at high frequencies. The phase shift is 45 de-
grees at the specified frequency. AC ANALYSIS
ONLY.

Delay = x AC analysis delay. (Default = 0.) The
signal is delayed by x seconds, effectively by a
frequency dependent phase shift. AC ANALY-
SIS ONLY.

Phase = x AC analysis phase. (Default = 0.) A
fixed phase shift is applied. This is primarily
intended for sources, but applies to all elements.
AC ANALYSIS ONLY.

IOffset = x Input offset. (Default = 0.) A DC
offset is added to the “input” of the element,
before evaluating the function.

OOffset = x Output offset. (Default = 0.) A DC
offset is added to the “output” of the element,
after evaluating the function.

66 CHAPTER 4. BEHAVIORAL MODELING

Scale = x Transfer function scale factor. (Default
= 1.) The transfer function is multiplied by a
constant.

TNOM = x Nominal temperature. (Default = .option
TNOM) The nominal values apply at this tem-
perature.

TC1 = x First order temperature coefficient. (De-
fault = 0.)

TC2 = x Second order temperature coefficient. (De-
fault = 0.)

IC = x Initial condition. An initial value, to force at
time=0. The actual parameter applied depends
on the component. (Capacitor voltage, inductor
current. All others ignore it.) You must use the
“UIC” option for it to be used.

Temperature adjustments and scaling use the fol-
lowing formula:

value *= _scale * (1 + _tc1*tempdiff
+ _tc2*tempdiff*tempdiff)

where tempdiff is t - tnom.

4.3 COMPLEX: Complex value

4.3.1 Syntax

COMPLEX realpart imaginarypart options

4.3.2 Purpose

Complex component value, using a real and imagi-
nary part. AC only.

4.3.3 Comments

Strictly, this adds no functionality over the polar op-
tion on any function, except notational convenience.

4.3.4 Example

V12 2 0 complex 1,2 A voltage source with a value
of 1 + j2 volts.

4.4 EXP: Exponential time de-
pendent value

4.4.1 Syntax

EXP args
EXP iv pv td1 tau1 td2 tau2 period

4.4.2 Purpose

The component value is an exponential function of
time.

4.4.3 Comments

For voltage and current sources, this is the same as
the Spice EXP function, with some extensions.

The shape of the waveform is described by the fol-
lowing algorithm:

ev = _iv;
for (reltime=time; reltime>=0; reltime-=_period){
if (reltime > _td1){
ev += (_pv - _iv)

* (1. - Exp(-(reltime-_td1)/_tau1));
}
if (reltime > _td2){
ev += (_iv - _pv)

* (1. - Exp(-(reltime-_td2)/_tau2));
}

}

4.4.4 Parameters

IV = x Initial value. (required)

PV = x Pulsed value. (required)

TD1 = x Rise time delay. (Default = 0.)

TAU1 = x Rise time constant. (Default = 0.)

TD2 = x Fall time delay. (Default = 0.)

TAU2 = x Fall time constant. (Default = 0.)

Period = x Repeat period. (Default = infinity.)

4.5. FIT: FIT A CURVE 67

4.5 FIT: Fit a curve

4.5.1 Syntax

FIT x1,y1 x2,y2 ... args

4.5.2 Purpose

Fits a set of data using piecewise polynomials, or
splines.

4.5.3 Comments

This function fits a set of piecewise polynomials to a
set of data.

For capacitors, this function defines charge as a
function of voltage. For inductors, it defines flux as
a function of current.

For fixed sources, it defines voltage or current as a
function of time.

The values of x must be in increasing order.
If order is 1, it is the same as PWL. If order is 3,

it will use cubic splines. The result and its first two
derivatives are continuous.

Outside the specified range, it uses linear extrap-
olation. The behavior depends on the parameters
below and above. The value of below or above is the
derivative to use, which is a resistance for resistors,
voltage gain for a VCVS, and so on. If it is not spec-
ified, the value is automatically determined.

The properties are determined by the value of or-
der.

Order = 3 (cubic splines)

The default is to use “natural” splines, which sets the
second derivative to zero at the boundary. If a value
of below or above is specified, “clamped” splines will
be used. In any case, there will be a smooth transition
at the boundaries. When using “clamped” splines,
the second derivative may have a discontinuity at the
boundaries

Order = 2 (quadratic splines)

By default, the derivative at the upper end is deter-
mined by the slope of the last segment. This is also
the derivative above the range. Below the range, the
derivative determined at the lower bound is used. It

is recommended that only one of below and above be
specified. If both are specified, the splines are deter-
mined using above, and there will be a discontinuity
in the derivative at the lower bound.

Order = 1 (piecewise linear interploation)

For first order (linear) interpolation, the default slope
outside the range is the extension of the slope in the
end segments. The parameters below and above have
no effect inside the range.

Order = 0 (piecewise constant interploation)

The resulting value is constant over the interval, and
has discontinuities at the specified points. The pa-
rameters below and above are ignored. The slope is
always 0.

4.5.4 Parameters

Order = x The order of the polynomial to fit, within
the supplied data. (Default = 3) Legal values are
0, 1, 2, and 3, only.

Below = x The value of the derivative to use below
or before the specified range.

Above = x The value of the derivative to use above
or after the specified range.

4.5.5 Example

C1 2 0 fit -5,-5u 0,0 1,1u 4,2u 5,2u order=1
This “capacitor” stores 5 microcoulombs at -5
volts (negative, corresponding to the negative
voltage, as expected). The charge varies linearly
to 0 at 0 volts, acting like a 1 microfarad ca-
pacitor. (C = dq/dv). This continues to 1 volt.
The 0,0 point could have been left out. The
charge increases only to 2 microcoulombs at 4
volts, for an incremental capacitance of 1u/3 or
.3333 microfarads. The same charge at 5 volts
indicates that it saturates at 2 microcoulombs.
For negative voltages, the slope continues.

68 CHAPTER 4. BEHAVIORAL MODELING

4.6 GENERATOR: Signal Genera-
tor time dependent value

4.6.1 Syntax

GENERATOR scale

4.6.2 Purpose

The component “value” is dependent on a “signal
generator”, manipulated by the “generator” com-
mand.

4.6.3 Comments

For transient analysis, the “value” is determined by
a signal generator, which is considered to be external
to the circuit and part of the test bench. See the
“generator” command for more information.

For AC analysis, the value here is the amplitude.
Strictly, all of the functionality and more is avail-

able through the Spice-like behavioral modeling func-
tions, but this one provides a user interface closer to
the function generator that an analog designer would
use on a real bench. It is mainly used for interactive
operation.

It also provides backward compatibility with pre-
decessors to Gnucap, which used a different netlist
format.

4.7 POLY: Polynomial nonlinear
transfer function

4.7.1 Syntax

POLY c0 c1 c2 c3 ...
POLY c0 c1 c2 c3 ... args

4.7.2 Purpose

Defines a transfer function by a one dimensional poly-
nomial.

4.7.3 Comments

For capacitors, this function defines charge as a func-
tion of voltage. For inductors, it defines flux as a

function of current. If you have the coefficients defin-
ing capacitance or inductance, prepending a “0” to
the list will turn it into the correct form for Gnucap.

For fixed sources, it defines voltage or current as a
polynomial function of time.

The transfer function is defined by:

out = c0 + (c1*in) + (c2*in^2) +

4.7.4 Parameters

MIN = x Minimum output value (clipping). (Default
= -infinity.)

MAX = x Maximum output value (clipping). (De-
fault = infinity)

ABS Absolute value, truth value. (Default = false).
If set to true, the result will be always positive.

4.8 POSY: Polynomial with non-
integer powers

4.8.1 Syntax

POSY c1,p1 c2,p2 ...
POSY c1,p1 c2,p2 ... args

4.8.2 Purpose

Defines a transfer function by a one dimensional
“posynomial”, like a polynomial, except that the
powers are arbitrary, and usually non-integer.

4.8.3 Comments

There is no corresponding capability in any SPICE
that I know of.

For capacitors, this function defines charge as a
function of voltage. For inductors, it defines flux as
a function of current.

For fixed sources, it defines voltage or current as a
function of time.

Normal use of this function required positive input
(voltage or current). The result is zero if the input is
negative. Raising a negative number to a non-integer
power would produce a complex result, which implies
a non-causal result, which cannot be represented in a
traditional transient analysis.

4.10. PWL: PIECEWISE LINEAR FUNCTION 69

The transfer function is defined by:

if (in >= 0){
out = (c1*in^p1) + (c2*in^p2) +

}else{
out = 0.

}

4.8.4 Parameters

MIN = x Minimum output value (clipping). (Default
= -infinity.)

MAX = x Maximum output value (clipping). (De-
fault = infinity)

ABS Absolute value, truth value. (Default = false).
If set to true, the result will be always positive.

ODD Make odd function, truth value. (Default =
false). If set to true, negative values of x will
be evaluated as out = -f(-x), giving odd symme-
try.

EVEN Make even function, truth value. (Default =
false). If set to true, negative values of x will be
evaluated as out = f(-x), giving even symmetry.

4.8.5 Example

E1 2 0 1 0 posy 1 .5 The output of E1 is the
square root of its input.

4.9 PULSE: Pulsed time depen-
dent value

4.9.1 Syntax

PULSE args
PULSE iv pv delay rise fall width period

4.9.2 Purpose

The component value is a pulsed function of time.

4.9.3 Comments

For voltage and current sources, this is the same as
the Spice PULSE function, with some extensions.

The shape of a single pulse is described by the fol-
lowing algorithm:

if (time > _delay+_rise+_width+_fall){
// past pulse
ev = _iv;

}else if (time > _delay+_rise+_width){
// falling
interp=(time-(_delay+_rise+_width))/_fall;
ev = _pv + interp * (_iv - _pv);

}else if (time > _delay+_rise){
// pulsed value
ev = _pv;

}else if (time > _delay){
// rising
interp = (time - _delay) / _rise;
ev = _iv + interp * (_pv - _iv);

}else{
// initial value
ev = _iv;

}

4.9.4 Parameters

IV = x Initial value. (required)

PV = x Pulsed value. (required)

DELAY = x Rise time delay, seconds. (Default = 0.)

RISE = x Rise time, seconds. (Default = 0.)

FALL = x Fall time, seconds. (Default = 0.)

WIDTH = x Pulse width, seconds. (Default = 0.)

PERIOD = x Repeat period, seconds. (Default = in-
finity.)

4.10 PWL: Piecewise linear func-
tion

4.10.1 Syntax

PWL x1,y1 x2,y2 ...

70 CHAPTER 4. BEHAVIORAL MODELING

4.10.2 Purpose

Defines a piecewise linear transfer function or time
dependent value.

4.10.3 Comments

This is similar to, but not exactly the same as, the
Berkeley SPICE PWL for fixed sources.

For capacitors, this function defines charge as a
function of voltage. For inductors, it defines flux as
a function of current.

For fixed sources, it defines voltage or current as a
function of time.

The values of x must be in increasing order.
Outside the specified range, the behavior depends

on the type of element. For fixed sources, the output
(voltage or current) is constant at the end value. This
is compatible with SPICE. For other types, the last
segment is extended linearly. If you want it to flatten,
specify an extra point so the slope of the last segment
is flat.

4.10.4 Parameters

There are no additional parameters, beyond those
that apply to all.

4.10.5 Example

C1 2 0 pwl -5,-5u 0,0 1,1u 4,2u 5,2u This
“capacitor” stores 5 microcoulombs at -5 volts
(negative, corresponding to the negative voltage,
as expected. The charge varies linearly to 0 at
0 volts, acting like a 1 microfarad capacitor.
(C = dq/dv). This continues to 1 volt. The
0,0 point could have been left out. The charge
increases only to 2 microcoulombs at 4 volts,
for an incremental capacitance of 1u/3 or
.3333 microfarads. The same charge at 5 volts
indicates that it saturates at 2 microcoulombs.
For negative voltages, the slope continues.

4.11 SFFM: Frequency Modula-
tion time dependent value

4.11.1 Syntax

SFFM args
SFFM offset amplitude carrier modindex sig-

nal

4.11.2 Purpose

The component value is a sinusoid, frequency modu-
lated by another sinusoid.

4.11.3 Comments

For voltage and current sources, this is the same as
the Spice SFFM function, with some extensions.

The shape of the waveform is described by the fol-
lowing equations:

mod = (_modindex * sin(2*PI*_signal*time));
ev = _offset + _amplitude

* sin(2*PI*_carrier*time + mod);

4.11.4 Parameters

Offset = x Output offset. (Default = 0.)

Amplitude = x Amplitude. (Default = 1.)

Carrier = x Carrier frequency, Hz. (required)

Modindex = x Modulation index. (required)

Signal = x Signal frequency. (required)

4.12 SIN: Sinusoidal time de-
pendent value

4.12.1 Syntax

SIN args
SIN offset amplitude frequency delay damp-

ing

4.12.2 Purpose

The component value is a sinusoidal function of time,
with optional exponential decay.

4.14. .MODEL TABLE: FIT A CURVE 71

4.12.3 Comments

For voltage and current sources, this is the same as
the Spice SIN function, with some extensions.

It generates either a steady sinusoid, or a damped
sinusoid.

If delay and damping are both zero, you get a
steady sine wave at the specified frequency. Other-
wise, you get a damped pulsed sine wave, starting
after delay and damping out with a time constant of
1/damping.

The shape of the waveform is described by the fol-
lowing algorithm:

reltime = time - _delay
if (reltime > 0.){
ev = _amplitude * sin(2*PI*_freq*reltime);
if (_damping != 0.){

ev *= exp(-reltime*_damping);
}
ev += _offset;

}else{
ev = _offset;

}

4.12.4 Parameters

Offset = x DC offset. (Default = 0.)

Amplitude = x Peak amplitude. (Default = 1.)

Frequency = x Frequency, Hz. (required)

Delay = x Turn on delay, seconds. (Default = 0.)

Damping = x Damping factor, 1/seconds. (Default
= 0.)

4.13 TANH: Hyperbolic tangent
transfer function

4.13.1 Syntax

TANH gain limit
TANH args

4.13.2 Purpose

Defines a hyperbolic tangent, or soft limiting, transfer
function.

4.13.3 Comments

There is no corresponding capability in any SPICE
that I know of, but you can get close with POLY.

For capacitors, this function defines charge as a
function of voltage. For inductors, it defines flux as
a function of current.

For fixed sources, it defines voltage or current as a
function of time, which is probably not useful.

This function describes a hyperbolic tangent trans-
fer function similar to what you get with a single stage
push-pull amplifier, or a simple CMOS inverter act-
ing as an amplifier.

4.13.4 Parameters

GAIN = x The small signal gain at 0 bias. (Required)

LIMIT = x Maximum output value (soft clipping).
(Required)

4.13.5 Example

E1 2 0 1 0 tanh gain=-10 limit=2 ioffset=2.5 ooffset=2.5
This gain block has a small signal gain of -10.
The input is centered around 2.5 volts. The
output is also centered at 2.5 volts. It “clips”
softly at 2 volts above and below the output
center, or at .5 volts (2.5 − 2) and 4.5 volts
(2.5 + 2).

4.14 .model TABLE: Fit a curve

4.14.1 Syntax

.model name TABLE x1,y1 x2,y2 ... args

4.14.2 Purpose

Fits a table of data using piecewise polynomials, or
splines.

4.14.3 Comments

This function fits a set of piecewise polynomials to a
set of data.

It differs from the FIT function in that the TABLE
form uses a .model statement containing the actual

72 CHAPTER 4. BEHAVIORAL MODELING

data, while the FIT form has all of the data on the
instance line.

See the comments section of FIT for more detail on
the options.

4.14.4 Parameters

Order = x The order of the polynomial to fit, within
the supplied data. (Default = 3) Legal values are
0, 1, 2, and 3, only.

Below = x The value of the derivative to use below
or before the specified range.

Above = x The value of the derivative to use above
or after the specified range.

4.14.5 Example

.model nlcap -5,-5u 0,0 1,1u 4,2u 5,2u order=1
C1 2 0 nlcap

This “capacitor” stores 5 microcoulombs at -5 volts
(negative, corresponding to the negative voltage, as
expected). The charge varies linearly to 0 at 0 volts,
acting like a 1 microfarad capacitor. (C = dq/dv).
This continues to 1 volt. The 0,0 point could have
been left out. The charge increases only to 2 micro-
coulombs at 4 volts, for an incremental capacitance
of 1u/3 or .3333 microfarads. The same charge at 5
volts indicates that it saturates at 2 microcoulombs.
For negative voltages, the slope continues. See the
example under FIT for a comparison.

Chapter 5

Installation

5.1 The easy way

For this version, you can use either the GNU style
”configure;make” style build process, or the old ACS
style. If it works for you, use the GNU style.

For the GNU style build, just type ”./configure”
then ”make” from the project’s root directory. This
will configure both the model compiler and the sim-
ulator, and then build the model compiler first, then
use it to build the simulator. That should be all that
is needed. You do not to read any further.

5.2 If that doesn’t work

This version requires a two-step build. First you build
the model compiler, then you build the simulator.
You can usually get away with only building the sim-
ulator.

So .. cd to modelgen, type make (as below) then
go back down and cd to src, type make (as below)

If it fails, go into its build directory (the one con-
taining the .o files) and manually create a symbolic
link to the model compiler.

”Type make” really means
Usually, you can just type ”make”. This will make

a ”release” version, with optimization on and extra
debug code out. It will build in the O subdirectory.
This assumes you have g++ in a reasonable configu-
ration.

To make a ”debug” version (slow, with additional
error checking), type ”make debug”. If you have a
recent g++ compiler, this should build it in the O-
DEBUG subdirectory.

If your compiler is not g=++, but called by ”CC”,
try ”make CC”. This is believed to work with some

compilers. Some of them do not implement the full
language, so they cannot be used. Try it. There is a
special one ”sun4-CC” for a Sun running Solaris with
the most recent version of Sun’s compiler. It will not
work with older versions.

To make a ”release” version for a particular sys-
tem, type make followed by your system type, such
as ”make linux”. This will build it in a subdirectory
(in this case LINUX). With this method, you can
build for multiple systems in the same directory.

Look at ”Makefile” for a list of supported systems,
and clues of how to do it on others. Most of them
have not been tried in years.

If it doesn’t work, edit only a ”Make2.*” file, and
possibly md.h or md.cc. All nonportabilities are con-
fined to these files.

It does require a recent and proper C++ compiler
with a proper library, including STL. Gnu compil-
ers older than 2.8 will probably not work. Anything
else that old will also probably not work. Any high
quality C++ compiler available today should work.

To install
Just move or copy the executable to where you

want it.

5.3 Details, custom compila-
tion

Read this section if you have problems or want to
know more. It is not necessary most of the time.

Most of the development of Gnucap was done on a
PC running Linux. I have also compiled it success-
fully on several other systems, listed at the end of
this file. Other users have ported it to several other

73

74 CHAPTER 5. INSTALLATION

systems. Some of the files are included in the distri-
bution. They may not have been tested in the latest
release. It should compile with any “standard” C++
compiler. It should produce no warnings when com-
piled with the switches in the supplied makefiles and
g++, except those due to the system supplied header
files being defective. It requires templates, but not
exceptions.

All source files are in the src and modelgen direc-
tories. I use subdirectories for the .o files each sup-
ported machine. This makes it possible to install it
on several different machines all sharing the same file
system.

To avoid maintaining multiple versions of Make-
files, I have broken them up to parts that must be
concatenated: Make1.*, Make2.*, Make3.*. In gen-
eral, to make a Makefile for your system, cat one of
each. See the Makefile for details. I have automated
this for some systems. Just “make your-machine”,
if it is one that is supported. In some cases, the
Makefile will compile both a “release” and “debug”
version. In these cases, type “make your-machine-
release” or “make your-machine-debug” depending
on which you want. This will make the appropriate
Makefile, cd to where the .o’s go and run make from
there. For porting information for specific machines,
read its Make2.* file.

I assume that make will follow “VPATH” to find
the sources. This system makes it possible to manage
several platforms on a single file system which may
be NFS mounted to all the supported machines. If
your make does not support VPATH, there are three
options. The preferred method on unix based systems
is to cd to where the .o’s go and type ln -s ../*.cc
../*.h .. (The command ends with a dot.) This will
set up links so the Makefiles will work as intended.
In some cases we have set up the Makefile to do this
automatically. The second method, which may be
needed on systems that don’t have symbolic links is
to copy the .c and .h files to satisfy make. The third
option, where you have only one computer, is to move
the machine specific Makefile to the src directory and
run make from there.

If you have g++ on a unix type system that is not
directly supported, try to compile it by just typing
make. In most cases this will do it, but you may get
a few warnings. If it doesn’t work, look in the file
md.h for hints. Just plain make will build a guess at

a release version, assuming a Linux-like system with
GNU tools.

If you want a development version with additional
debugging enabled, type make debug. This results in
a significant speed penalty.

Then make the installation version, select the ma-
chine you have from the make file and make that.
The machine specific versions will build in their own
directory, have debugging code disabled, and options
are set for best speed. The general purpose make g++
builds a version that is optimized as much as it can
be in the general case.

If you have a cfront-type compiler, called CC, and
your system is not directly supported, try it first by
typing make CC. Again, you may get a few warnings
but it should work. Look in the file md.h for hints, if
it doesn’t work, or if the warnings look serious.

Since C++ is an evolving language, there are some
known portability problems. All of them are due to
compilers that do not implement the standard cor-
rectly. Since the problems will go away in time, I
have chosen either not to burden the code with them,
except where a few mainstream systems fail. All de-
pendencies should be confined to the two files md.h
and md.cc, if possible.

Here are some possible problems that are no longer
supported:

bool The C++ language includes a type bool, which
is not implemented in older compilers. Older
compilers just use int, and fake it with a
typedef or #define, neither of which work cor-
rectly.

Here are some problems that you will need to deal
with creatively:

missing files or functions Another cause of a port
to fail is missing header files or missing function
prototypes. Sometimes missing functions can be
a problem. The solution to these problems is
to supply what is missing. The md * files exist
for this purpose. You should make a copy of
the appropriate Make2. file, patch it to define
something to identify the system, then patch the
md.h and md.cc as appropriate. You should not
use any #ifdef’s except in these file.

bad header files In some cases, the header files
that come with the system or compiler are de-

5.3. DETAILS, CUSTOM COMPILATION 75

fective and generate warnings without anything
wrong with the program being compiled. This
slips by in the distribution because most devel-
opers compile with warnings off. Usually, these
can be ignored.

Here are some problems that have work-arounds:

const C++ uses an abstract notion of constant,
meaning that the external appearance of an ob-
ject declared const must not change, but there
can be internal changes like reference counters.
The keyword mutable means that a member
variable can change even if it is declared const.
As a work around, we use CONST, which is
either defined to nothing or const. For any
good compiler, the line #define CONST const
will give correct behavior. For a bad compiler,
the line #define CONST will turn it off. There is
no harm in treating all compilers as “bad” except
for the loss of compile diagnostics.

complex The evolving standard shows complex
to be a template class, so instead of having
a type complex, there is complex<double>,
complex<float>, and so on. Older compil-
ers have only complex. The line typedef
std::complex<double> COMPLEX; in md.h
works for a correct compiler. You may need to
change it of an older one.

template instantiation There are three common
ways to instantiate templates in common use.
Unfortunately, they are incompatible and none
of the methods are available in all compilers.
Gnucap requires templates, so will not work with
many older compilers.

Link time The entire program is compiled and
linked without templates, resulting in some
unresolved externals. The files defining the
templates are compiled again to fill the
need. This is the preferred way, if you have
it. It is supported by CFRONT deriva-
tives such as the Sun CC compiler. Define
LINK TEMPLATES to force it.

Compile time All parts of templates must be
compiled as if in-line, requiring all code to
be in the .h file, or included by the .h file.

Header files must include .cc files. The du-
plicates are supposed to be thrown away by
the linker. This is the only style supported
by Borland 3.1 or 4.0. It is supported in-
efficiently by the GNU compiler starting at
version 2.6. Since no mainstream compiler
requires this, and it is inefficient, it is no
longer supported.

manual Templates must be instantiated man-
ually. This is the preferred way for the
GNU and Microsoft compilers. It is a nui-
sance, but it generates the best code. De-
fine MANUAL TEMPLATES to force it.

template resolution The second inconsistency
with templates is how the type matching is re-
solved. Some compilers require an exact match.
Some will make trivial conversions, such as int
to const int. The language definition allows
for templates to be “specialized” by providing
a specific implementation for a specific type,
resorting to the template for others. Some
compilers (Sun) do not support this. Since
this is common, there are work arounds in the
code for it in the simulator but not the model
compiler. If you want to compile the model
compiler, you will need to get a better C++
compiler.

The files starting with plot contain plotting drivers
are generally bogus.

There should be NO non-portable code anywhere
but the md * files. If a fix is absolutely necessary
elsewhere, #define some symbol in md.h and refer to
it elsewhere. Then consider it to be temporary.

76 CHAPTER 5. INSTALLATION

Chapter 6

Adding models

Gnucap has three distinct styles of adding models:

Model Compiler is the easiest way to add models,
but the least flexible. The model compiler gener-
ates .cc and .h files using the enhanced subcircuit
mode. It is possible to develop models with al-
most no knowledge of the simulator internals. In
most cases, this is the preferred way. The stan-
dard MOSFET and diode models are done this
way.

Enhanced subcircuit is less efficient than prim-
itive but has other advantages that make it
preferable to primitive when you can use it. The
model is defined as a combination of equations
and topology. The AC and pole-zero code is in-
herited from a base class, so you don’t need to
to it. You need to understand the simulator’s
internals, and it is not likely to be portable to
other simulators.

Primitive should be used only when absolutely nec-
essary. If it is done correctly, it will result in the
fastest execution, but you need to do everything.
It requires thorough knowledge of the simulator
internals, including how Gnucap is different from
other simulators. If you miss some of the de-
tails, it is possible that your model will work but
slow down the simulator significantly. Most of
the primitive devices (resistors, sources) are done
this way. A few device types that have special
considerations, like gates and transmission lines,
are also done this way.

6.1 Using the model compiler

This section is a first cut at documentation. If you
actually want to install a model, please ask for more
information. Your questions will help me write the
more complete documentation. (aldavis@ieee.org)

To create a model using this method, you create
one file, with the extension .model. A separate pro-
gram, modelgen processes this file to generate the
appropriate .cc and .h files. The resulting files are
equivalent to the subcircuit method of creating mod-
els.

There are two primary sections, device and model.
Most models have both, but a device can use several
different models as long as they are derived from a
common base and designed to work together. It is
standard practice to share like this. For example, all
of the MOS models use the same device section.

Any model can inherit from another model, thus
reducing the need for repetition when code or param-
eters are the same in different models, and allowing
several to use the same device section.

This model compiler has restrictions that will be
removed in future releases. Not all device types can
be fully done with it, due to missing features. Often,
it is necessary to finish the job manually. In this re-
lease (0.30), the diode fully uses it, but not the way
I want to. The MOSFET uses the cc direct to fin-
ish the job. Two functions do tr and tr needs eval
must be provided this way. Code placed here is sim-
ply copied out.

As a general rule, when using the name = value
form, the value is delimited by whitespace, or possibly
other tokens. If you want blanks in the value string,
put it in quotes. It is recommended to quote any

77

78 CHAPTER 6. ADDING MODELS

value string that is comprised of more than one word,
even if there are no blanks.

6.1.1 Device section

parse name (required) This is the name of the de-
vice, to be recognized by the parser, in Gnucap
native format. Example: diode.

id letter (required) This is the letter used to iden-
tify the device, when the parse name is omitted
(Spice format). Example: D identifies a diode.

model type (required) This is the name of the model
type associated with this device type. It can be
the name of the one matching type, or the name
of a base from which a family can be derived.

circuit (required) This is a subsection containing
a netlist representing the internal structure of
the device. See the section circuit subsection for
details.

tr probe (optional) This is a subsection containing
a list of internal probes to be made available to
the user. See the section Tr probe subsection for
details.

device (required) This is a subsection describing the
non-shared data relating to the device. Informa-
tion here is unique to this device. It is primarily
state information. See the section Device subsec-
tion for details.

common (optional) This is a subsection describing the
shared data relating to the device. Information
here may be shared between similar devices. It is
primarily information that is read from the cir-
cuit description. See the section Common sub-
section for details.

tr eval (optional) This is a subsection which will
eventually contain evaluation code for the whole
device. For now, it is a stub, which is used as
a flag. See the section Tr eval subsection for de-
tails. If this subsection is omitted, it is consid-
ered to be a pure subcircuit.

eval (optional) There may be any number of eval
subsections, which are specific evaluators for in-
ternal elements. See the section Evaluators for
details.

Circuit subsection

The circuit subsection has 5 parts, in order.

1. The optional keyword “sync” says that the en-
tire subcircuit representing the device must be
evaluated synchronously. Without this keyword,
it is treated as a subcircuit made of independent
elements.

2. The port list “ports”, which is a list of the nodes
interfacing to the outside.

3. A list of local internal nodes, not visible outside.

Each local node may have two optional at-
tributes:

short if This specifies a conditional which if
true will result in this node being omitted.

short to This specifies another node which will
be substituted for this node if the short if
condition is true.

4. Any number of named and typed args sections.
Each section contains name = value pairs which
assign values to elements in the subcircuit. It is
used only for more complex elements like diodes.

5. A list of circuit elements that comprise the
model. Each has three required fields, then a
list of optional key = value pairs.

The required fields, in order, are:

• The type of element. This is usually one
of resistance, capacitance, admittance, or
poly g, but can be any device type, includ-
ing those created by modelgen.
• The label, a string used to refer to it.
• A node list, in curly braces.

After that, optional fields are used to assign at-
tributes. Not all are legal or appropriate with all
element types.

value This must evaluate to a constant, which
is interpreted as the nominal value of the
element.

eval This is the name of an eval section, which
specifies nonlinear, and depenndent charac-
teristics.

6.1. USING THE MODEL COMPILER 79

args This refers to an args section, described
previously. It is used only for advanced ele-
ment types, as those created by modelgen.

reverse This specifies an expression, that when
evaluated will tell whether to reverse the el-
ement. If it evaluates to true, the node pairs
are interchanged. If there are two nodes,
they are interchanged. If there are four,
the first pair are interchanged and the sec-
ond pair are interchanges. The pattern re-
peats for as many nodes as there are. This
is used with diodes, which may be reversed
depending on whether the device being de-
fined is N-type or P-type.

omit This specifies an expression, that when
evaluated will tell whether to omit the ele-
ment. If it evaluates to true, the element is
omitted.

state This specifies a the name of a de-
vice state variable that is applied to this
element. This state variable must be
one of those defined under calculated
parameters. It is primarily intended for
the poly g and poly cap element types. In
the calculated parameters section, the
following parameters are its derivatives. If
the poly element has N node pairs, the fol-
lowing N parameters are the derivatives,
with respect to each voltage, in order.

Tr probe subsection

The tr probe subsection is where you list the probes
for transient and DC analysis. It is a list of name
= value pairs, where the value is an expression that
calculates or looks up the value.

You can reference any device parameter directly,
or others with the appropriate struct prefixing.

You can reference probes on internal elements with
the syntax “@”, followed by the element label, fol-
lowed by the probe name in square brackets. For
example, “@Cj[Capacitance]” refers to the probe
named “Capacitance” on the element “Cj”. It is your
responsibility to see that the element actually exists,
and that it has a probe with that name.

You can reference node voltages with the same syn-
tax, but the “device” name is formed by prefixing the
node name with “n ”.

You can also call functions, and make arbitrary
expressions. In general, the code is just copied over,
with the exception of the probes, which are modified
to the internal format.

The probe name in the generated model will be
non-case-sensitive. To the model compiler, upper
case letters must match exactly, and lower case letters
are optional. For example, “CGSOvl” in the model file
can be referred to as cgso, cgsov, or cgsovl, or any
variants differing only in case.

Device subsection

This subsection defines information that is not shared
between instances. In general, that which must be
maintained as different, even though devices are iden-
tical, is placed here.

Calculated parameters subsubsection This
subsubsection lists all of the “calculated parame-
ters”. In this case, it means that which is calculated
during simulation, the state information.

The format for each item is: type, name, comment,
attributes, semicolon.

The only attribute appropriate is “default”,
which is the default value set by the constructor.

Common subsection

This section defines information that the simulator
may share between instances. Most parameters spec-
ified by the user are placed here, allowing the simu-
lator to share data for identical devices.

Unnamed subsubsection You can designate one
of the raw parameters to be the “value”. When a
number is given without a name, it is assigned to
this one.

Raw parameters subsubsection This subsub-
section lists all of the “raw parameters”, the param-
eters supplied by the user on the instance line. The
format and available attributes are described in the
“Parameter lists” section, which follows.

Calculated parameters subsubsection This
subsubsection lists all of the “calculated parame-
ters”, the parameters not supplied by the user on

80 CHAPTER 6. ADDING MODELS

the instance line. Instead, the are calculated based
on other input. The format and available attributes
are described in the “Parameter lists” section, which
follows.

Tr eval subsection

In this release, this section is a dummy. Put a stub
here if you define a do tr later. Otherwise leave it
out. This will change in a future release.

Evaluators

The eval sections are evaluators that turn the primi-
tive resistors and capacitors into advanced behavioral
elements.

The body is the core of a C++ function, which
is copied over directly after attaching some headers.
Given some “x”, this function computes “f(x)” and
its derivative with respect to x. The primary com-
munication is through the structure “d-> y0”. The
input is “d-> y0.x”. You must evaluate the function,
and place the result in “d-> y0.f0” and its derivative
in “d-> y0.f1”. The exact meaning of these values
depends on what type of element it is.

For the primitives ...

resistance x is current, y0 is voltage, y1 is resistance

admittance x is voltage, y0 is current, y1 is admit-
tance

capacitance x is voltage, y0 is charge, y1 is capaci-
tance

inductance x is current, y0 is flux, y1 is inductance

vccs x is voltage, y0 is current, y1 is transconduc-
tance

In addition, all relevant parameters are available
with the appropriate prefix. See the section accessing
data in code blocks. Most are read-only.

The prefix d-> refers to the element being pro-
cessed. This data is read-write.

6.1.2 Model section

base (optional) The keyword BASE is used as a flag
to say this is a base for other models. When the
base flag is set, others can be derived from it and
used interchangeably with the same device type.

dev type (required, all) This is the name of the de-
vice type associated with this model type.

level (optional, final only) When several models are
derived from a base, the numeric level is used as
a parameter to select which one to use.

inherit (optional) The model being defined inherits
from the named base model. There is no limit
to the depth if inheritance.

keys (required for base, optional otherwise) This is
a list of the keywords that are used to identify
the model, and assign attributes. See the section
Keys subsection for details.

independent (optional) This is a section describing
parameters that are not dependent on size or
temperature. See the section Independent sub-
section for details.

size dependent (optional) This is a section describ-
ing parameters that are dependent on size. See
the section Size dependent subsection for details.

temperature dependent (optional) This is a sec-
tion describing parameters that are dependent
on temperature. See the section Tempera-
ture dependent subsection for details.

tr eval (required once in hierarchy) This is a section
containing evaluation code for the whole device.
See the section Tr eval subsection for details.

Keys subsection

The keys subsection consists of a number of keywords
that are used in the .model statement to identify
this model. Different keys can be used to represent
variants, such as “NMOS” and “PMOS” to represent the
N and P channel devices. Each one is followed by an
assignment to be made when the key is present.

It is required, at least once in the hierarchy. Addi-
tional keys can be used to select a particular model,
as an alternative to the level parameter.

Independent subsection

The independent subsection list all of the “indepen-
dent” parameters supplied by the user in the .model
statement.

6.1. USING THE MODEL COMPILER 81

Raw parameters subsubsection This subsub-
section lists all of the “raw parameters”, the param-
eters supplied by the user on the .model line. The
format and available attributes are described in the
“Parameter lists” section, which follows.

Calculated parameters subsubsection This
subsubsection lists all of the “calculated param-
eters”, the parameters not supplied by the user.
Instead, they are calculated based on other input.
The format and available attributes are described in
the “Parameter lists” section, which follows.

Override subsubsection This subsubsection lists
parameters that have already been defined in base
classes, that need a change for this particular type.
You can override most attributes, giving the benefit of
defining it locally, while retaining most from the base.
The format and available attributes are described in
the “Parameter lists” section, which follows.

Code pre and Code post subsections These
subsubsections define C++ code that is inserted into
the function that calculates values, scales, and checks
limits. The block code pre is inserted before the au-
tomatically generated code. The block code post is
inserted after the automatically generated code.

Size dependent subsection

The size dependent subsubsection is similar to the
independent subsubsection except that it defines a
base paramater and scale factors so a custom value
can be generated based on the device size.

Every parameter in this subsubsection actually
generates a set of four. The first is the base, as in the
independent subsubsection. In addition, the same
name prefixed by “L” is the length dependency, the
name prefixed by “W” is the width dependency, and
the name prefixed by “P” is the product (length *
width) dependency.

You must provide a code pre section, which must
declare and define values for “L” (length) and “W”
(width).

The actual value is calculated by: nom + ld/L +
wd/W + pd/(W*L);, where nom is the nominal value,
ld is the length dependency (key name has the “L”
prefix), wd is the width dependency (key name has

the “W” prefix), and pd is the product dependency
(key name has the “P” prefix).

Temperature dependent subsection

The temperature dependent subsubsection contains
a list of parameters that are calculated based on
temperature, and two code blocks (code pre and
code post to make the calculations.

This code is evaluated at run time, possibly ev-
ery time step, whenever temperature changes. Some
Spice models throw calculations not related to tem-
perature into the temperature block. This is very bad
practice. In Gnucap, temperature is local and time
variant.

Tr eval subsection

The tr eval subsubsection is the actual model eval-
uation code for nonlinear DC and transient analy-
sis. This code must calculate all state variables (data
listed as “calculated” in the device section, except
those that are part of one of the subcircuit elements.
Inputs and outputs are through the d-> structure.

This function only needs to fill in the calculated
data. The details, like differentiating charge in ca-
pacitors, is left to the subcircuit elements. It is also
not necessary to check convergence. This, too, is left
to the subcircuit elements.

6.1.3 Accessing data in code blocks

Most parameters are available, usually read-only, in
any code block, with the appropriate prefix:

p-> The parent device, usually the device being de-
fined by the .model file. This is usually the
“calculated parameters” under “device” in the
.model file.

c-> The “common” belonging to the parent device.
This consists of all of the parameters in the
common section of the .model file.

m-> This is the “model” parameters, all of the pa-
rameters in the model section of the .model file,
except those listed as “size dependent”.

b-> This is the sized value of the size dependent pa-
rameters in the model section. “B” is for “bin”,

82 CHAPTER 6. ADDING MODELS

which is derived from the concept of “binning”
of models.

d-> This is the device parameters. In evaluation
functions, it is read-write.

t. This is the device values, scaled by temperature.

6.1.4 Parameter lists

The format for each item is: type, name, comment,
attributes, semicolon.

The available attributes are:

name This is the name to be used for input in the
data file. It is also the name this parameter is
listed as when the internal data is printed.

alt name This is an alternate name used for input.

default This is the initial default value, set by the
constructor.

calculate If no value is supplied, the program will
calculate it using this formula.

quiet min If the input or calculated value is less
than this number, substitute this number with-
out warning.

quiet max If the input or calculated value is more
than this number, substitute this number with-
out warning.

final default This is the final default value, sup-
plied after all attempts to fill or calculate it fail.

offset Add this number to the input value to get
the value actually stored in memory. Exam-
ple: double temperature ‘‘’’ offset=273;.
This sample allows data entry in degrees Celsius,
but storage in Kelvin.

scale Multiply the input value by this number to
get the value actually stored in memory. Exam-
ple: double length ‘‘’’ offset=1e6;. This
sample allows data entry in microns, but storage
in meters.

positive This number is always positive. The mag-
nitude of the entered value is stored.

octal The number read is interpreted as octal (base
8), instead of the usual base 10.

print test This is a test to determine whether the
value is printed in a standard listing or not. The
value is printed only if this test evaluates to true
at run time. If print test is omitted, it is al-
ways printed.

calc print test This is a test to determine whether
the value is printed as a comment in a stan-
dard listing or not. The value is printed only
if this test evaluates to true at run time. If
calc print test is omitted, it is never printed.

Chapter 7

Technical Notes

7.1 Architecture

7.1.1 File organization

Gnucap source files are organized into groups by the
name prefix as follows:

ap “Argparse”. Generic parser and lexical analysis
library.

bm Behavioral modeling.

c Commands.

d Devices and models.

e Device and model base classes. (“e” comes from
“electrical” and is retained because of inertia.)

io Input and output library, raw, generic.

l Library. General purpose functions and classes that
do not fit elsewhere.

m Math library.

plot Obsolete plotting that should be replaced.

s Simulation engine.

u Utility functions and classes. Gnucap Specific.

The files ap , io , l , m are not Gnucap specific.
Although they were created for Gnucap, they are
public domain and may be used by anyone for any
purpose.

The remaining files bm , c , d , e , s , u are Gnu-
cap specific, and reuse is subject to the Gnu Public
License.

Some of the d files are automatically generated
during compilation. Do not change them, because
your changes may be lost in a recompile. For licensing
and distribution legal purposes, these files are con-
sidered to be “object” code, even though they are
readable C++.

The files d .model, where present, contain the ac-
tual model descriptions as input for modelgen, the
model compiler. These files are the source that is used
to generate the corresponding .cc and .h files. All
changes should be done to the .model file. For GPL
purposes, these files are considered to be “source”.

7.1.2 Building, Makefiles

Gnucap uses a 4 part Makefile, designed for simulta-
neous builds on several systems. A true Makefile is
built by selecting and catenating the four pieces. A
master Makefile switches to a subdirectory and builds
a specialized Makefile there.

Make1 The file list. Specific to this program.

Make2 Compiler and system dependencies. Specific
to the compiler. In some cases, hardware de-
pendencies are here. There are several provided.
Choose the one that matches your system.

Make3 Basic “make” targets. Generic.

Make.depend List of dependencies.

7.1.3 Program flow

It all starts at “main”, in main.cc. The func-
tion “main” has a loop that gets input and calls
“CMD::cmdproc” to dispatch the command.

83

84 CHAPTER 7. TECHNICAL NOTES

Batch mode is done in “process cmd line”, by us-
ing “CMD::cmdproc” to execute the commands “get”
or “<” which is passed to “CMD::cmdproc” as text.

The function “CMD::cmdproc” dispatches the com-
mand to its handler. The handlers are located in the
“CMD” namespace, and the “c ” files.

7.2 Transient analysis

7.2.1 The “CPOLY” and “FPOLY”
classes

Before beginning a discussion of the evaluation and
stamp methods, it is necessary to understand the
“CPOLY” and “FPOLY” classes.

These classes represent polynomials. At present,
only the first order versions are used, but consider
that they could be extended to any order.

When evaluating a function f(x), there are sev-
eral possible representations for the result. The
“CPOLY” and “FPOLY” represent two of them.

The “CPOLY” classes represent the result in a tra-
ditional polynomial form. Consider a series of terms,
c0, c1, c2, ... These represent the coefficients of a Tay-
lor series of the function expanded about 0. (Maclau-
ran series). Thus f(x) = c0 + c1x+ c2x

2 + c3x
3 + ...

In most cases, only the c0 and c1 terms are used,
hence the “CPOLY1” class. The series is truncated,
so it is exact only at one point. The value “x” in the
“CPOLY” class is the point at which the truncated
series is exact, so it is not truly a series expanded
about 0.

The other “FPOLY” classes represent the same
polynomial as a Taylor series expanded about a point
“x”. Again, consider a series of terms, f0, f1, f2,
... This time the terms represent the function eval-
uated at x and its derivatives. Therefore, f0 is f(x),
f1 is the first derivative, f2 is the second deriva-
tive, and so on. To evaluate this for some t near
x, f(t) = f0 + f1(t− x) + f2(t− x)2 + f3(t− x)3 + ...
Again, in most cases, only the f0 and f1 terms are
used, hence the “FPOLY1” class.

Both of these are equivalent in the sense that they
represent the same data, and there are functions (con-
structors) that convert between them. The “FPOLY”
form is usually most convenient for function evalua-
tion used in behavioral modeling and device model-

ing. The “CPOLY” form is most suitable for stamp-
ing into the admittance matrix and current vector for
the final solution.

7.2.2 The basic solution algorithm

In simplified form, the algorithm looks like this ...
before doing anything

expand()
precalc()

on issuing the “tran” command ..

tr_begin() // get ready
for (each time step) {
tr_advance() // precalculate and propagate
for (each iteration) {
tr_queue_eval() // decide which models need evaluating
do_tr() // evaluate models
tr_load() // build the matrix of equations
solve the resulting system of equations

}
if (converged) {
tr_review() // how are we doing? suggest time step

}
if (no problems) {
tr_accept() // postcalculate and accept data

}
}

The functions referred to above are actually loops
that call that function for all devices in the circuit.

For all of them, it is possible that they may not
be called. If there is evidence that the result will not
change from the last time it was called, it probably
will not be called. Since this algorithm is not per-
fect, it is possible that any particular function may
be called twice, so they are written so calling more
than once is equivalent to calling once.

expand

The expand functions expand subcircuits and mod-
els, as needed. Unlike Spice, it does not flatten the
circuit. It allocates space for the additional storage,
attaches models, and related tasks. It does not com-
pute any values. It is called once after reading the
circuit, and possibly later when the topology of the
circuit is changed.

7.2. TRANSIENT ANALYSIS 85

Most simple elements do not have expand func-
tions. Most advanced components do.

Expanding a subcircuit makes a copy of it, and
remaps the nodes. Most components use a shallow
copy. That is, if something is attached through a
pointer, the value of the pointer is copied, not the
attachment. Commons are never copied when the
owner components are copied.

It is ok to expand a component more than once.
Either it frees then re-expands, or it keeps what it
can and checks to make sure it is correct.

precalc

The precalc functions attempt to pre-calculate any-
thing that will remain constant during a simulation
run. This includes size dependent transistor param-
eters and the stamp values for linear elements.

The actual evaluation of constant linear elements
is done here. For nonlinear elements, it computes a
first guess.

dc begin, tr begin, tr restore

These functions are called once on issuing a simu-
lation command. The dc begin functions are called
on starting a DC or OP anaylsis. The tr begin func-
tions are called on starting a transient analysis from
time = 0, or the first time. The tr restore functions
are called on starting a transient analysis in such a
way that the analysis continues from where a previ-
ous transient analysis left off.

The purpose is to make sure that the initial guesses
and numbers for prior iterations that don’t exist are
properly set up. For linear elements, the values are
set up here and are not computed later.

dc advance, tr advance

These functions are called before beginning a new
time or voltage step.

For basic storage elements like capacitors, they
store the data from the previous step. They may also
attempt to predict a new value, in hopes of speeding
up the real solution.

For delay elements like logic devices and transmis-
sion lines, this function does the real work. It takes
previous results and applies them, generating data
that will be later loaded into the matrix.

tr needs eval

This function returns true if the component needs to
be evaluated on this iteration. It should return false
if it has already been queued, but some do not do
this.

tr queue eval

This function queues the component to be evaluated,
if it needs it. If tr queue eval is not called, it will not
be evaluated.

do tr

In most cases, the do tr functions do the real work,
or call the tr eval function to do it. It evaluates the
model, checks convergence, and queues it for loading.
Calling this function more than once on an iteration
is harmless, except for the waste of time.

Usually, it calculates the function and derivative.
It may also do integration, interpolation, iteration,
or whatever is required. The result is a set of val-
ues ready to stamp into the admittance matrix and
current vector.

There are several distinct steps within this func-
tion.

1. The first step is to gather the information nec-
essary to make the computations. Usually, this
is the node voltages, but it could be currents,
temperature, charge, or something else.

2. The next step is to evaluate any attached func-
tion. This could be done in line, or by a call to
tr eval. The result of this evaluation is stored
in y0 (of type FPOLY1. The tr eval function
reads the value of x from y0, and fills in the
f0 with the result of function evaluation, and f1
with its derivative. The tr eval function must
also check for convergence by comparing the new
y0 with the old value, y1. This attached func-

tion is generic in the sense that it is the same
for all device types. This is the y = f(x) that is
referred to in the behavioral modeling documen-
tation.

3. These values are stored for convergence checking
and probing.

86 CHAPTER 7. TECHNICAL NOTES

4. After that, it must be converted to a current
and admittance so it can be used in the system
of nodal equations. This step is dependent on
what type of device it is. For a conductance el-
ement, tr eval directly returns the correct infor-
mation, so nothing needs to be done here. For a
capacitor, this step does numerical integration.
Capacitors store this in i0. Most other elements
do not store this result directly.

5. Then, it must be converted into CPOLY form
to meet the requirements of the system of equa-
tions.

6. The device is queued for loading. Unlike Spice,
Gnucap does not actually load the matrix here.

tr load

This function gives the appearance of loading the ad-
mittance matrix and current vector with the values
calculated in do tr.

Actually, it does much more. In most cases, it ac-
tually loads a correction factor, assuming the old val-
ues are already loaded. To do this, it keeps track of
what values are actually loaded. Whether it loads
a correction or the actual value is determined first
by the option incmode, then by status information
about the solution. If it is suspected that correcting
would cause too much roundoff error, it loads the ac-
tual value. The decision of whether to do a full load
or an update is global.

In addition, it may apply damping in hopes of im-
proving convergence. This means to load a value
somewhere between the new and old values, in effect
taking a partial step. The decision to damp is semi-
global. Groups of elements are adjusted together.

The actual loading is done by one or more of a small
group of general functions, depending on whether the
element is active, passive, poly, or a source. Only
certain patterns can be stamped. Complex devices
use a combination of these patterns.

WARNING to model developers: DO NOT stamp
the matrix directly!

tr review

The tr review function checks errors and signal con-
ditions after a time step has converged. It makes

entries into the event queue, makes mode decisions
for mixed-mode simulation, and evaluates time step
dependent errors. It returns an approximate time
that the element wants for the next step. The actual
next time step will probably be sooner than the value
returned.

tr accept

This function is called after the solution at a time step
has been accepted. For most devices, it does nothing.
For devices having storage and delayed propagation,
it evaluates what signal will be propagated. For a
transmission line, it calculates and sends on the re-
flections.

tr unload

This function removes the component from the ma-
trix, possibly by subtracting off what was loaded.
Usually, it sets the current values to 0 and calls
tr load.

7.2.3 Step control

The basic algorithm

The basis of it is in the files “s tr swp.cc” and
“s tr rev.cc”.

The function TRANSIENT::review sets two vari-
ables: “approxtime” and “control”.

The variable “approxtime” is a suggestion of what
the next time should be. Note that this is a time, not
a difference. Also note that the simulator may over-
ride this suggestion. Another “control” is an enum
that shows how the time was selected. You can probe
control(0) to find this code, or control(1) to see how
many steps (not iterations) it calculated internally.

This time may be in the future, past, or again at
the present time, depending on conditions. A time
in the future means all is well, and the simulation
can proceed as expected. A time in the past indi-
cates something is wrong, such as convergence fail-
ure, excessive truncation error, or a missed event. In
this case, the step is rejected, and time backed up.
A repeat at the present time usually means a latency
check failed. A portion of the circuit that was thought
to be latent was found to be active. This usually in-
dicates a model problem.

7.2. TRANSIENT ANALYSIS 87

First, it attempts to suggest a time “rtime” based
on iteration count and options.

There are several “options” that control the step-
ping:

• iterations > itl4 ... reduce by option
”trstepshrink”.

• iterations > itl3 ... suggest the same step as last
time.

• else (iterations <= itl3) ... increase step size.
Try the max as per userstepsize/skip limit to
larger of (rdt*trstepgrow) where “rdt” is the old
“review” estimate or (oldstep*trstepgrow) where
oldstep is what was actually used last time and
trstepgrow is an option, from the options com-
mand.

Second it makes another suggestion “tetime” based
on truncation error, etc. It does this by calling the
“review” function for all components, and taking the
minimum. Any component can suggest a time for
its next evaluation with its review function. Most
components return a very large number, letting the
capacitors and inductors dominate, but it is not re-
quired for it to be so. This time should be in the
future, but errors could produce a time in the past.

Then, the earliest time of the above two methods is
selected. A time in the past means to reject the most
recent time step and back up, but note that this time
is only a suggestion that may not be used.

The function “TRANSIENT::sweep” essentially
processes the loop “for (first(); notpastend; next())”.
The function “TRANSIENT::next()” actually ad-
vances (hopefully) to the next step. It may go back-
wards.

The actual time step depends on the suggestion by
the review function (approxtime), the event queue
(which includes what Spice calls “breakpoints”), the
user step size (nexttick), and some tricks to minimize
changes.

Some considerations ...

• Changing the step size is an expensive operation,
because it usually forces a full LU decomposi-
tion and matrix reload. If the step can be kept
constant, changes are limited to the right-side,
eliminating the need for the full evaluation and
LU.

• The simulator will place a time step exactly at
any step for which the user has requested output,
or Fourier analysis needs a point, or at any event
from the event queue.

So, here it is ...
Assume we want it at the time the user requested.

If the event queue says to do it sooner, take it, else
take the user time. Note that this time is needed
exactly, either now or later. If the “approxtime” is
sooner than the exact time, inject a time step as fol-
lows... if the time step is less than half of the time to
when an exact time is needed, take the approxtime,
else take half of the exact interval, in hopes that the
next step will use up the other half.

After that, there are some checks
“Very backward time step” means that the sug-

gested new step is earlier than the PREVIOUS step,
meaning that both the current step and its prede-
cessor are rejected, thus it should back up two steps.
Since it can back up only one step, it rejects the most
recent step and tries again at the minimum step size.
This usually means there is a bug in the software.

“Backwards time step” means to reject the most
recent step, but the one before that is ok. It will reject
the step and try again at the smaller interval. This
happens fairly often, usually due to slow convergence.

“Zero time step” means that the new time is the
same as the previous time, which usually means there
is a bug in the software. Something is requesting a
re-evaluation at the same time.

The combination of “zero time step” and “very
backward time step” means that the re-evaluation
didn’t work.

Now, accept the new time and proceed.

The “review” function

Every component can have a “review” function, in
which it can determine whether to accept or reject
the solution. It will accept by suggesting a time in
the future, or reject by suggesting a time in the past.
It returns the suggested time. It can call new event
to request an exact time.

For capacitors and inductors, the review function
attempts to estimate truncation error using a divided
difference method, and it suggests a time for the next
solution that will result in meeting the error require-
ment. Occasionally, it will discover that the step just

88 CHAPTER 7. TECHNICAL NOTES

computed fails to meet the requirement, so it will re-
ject it.

Truncation error is related to the third derivative
of charge or flux. Since current is the first deriva-
tive of charge, it would seem that second derivative
of current should produce the same results faster.
In practice, the current based method tends to es-
timate high leading to smaller steps, and the charge
based method tends to estimate low, leading to larger
steps. The conservative approach would suggest us-
ing the current based method, but that sometimes led
to unreasonably small steps ans slow simulations, so I
chose (as Spice did) the other method. Either method
is ok when the step size used is close to being reason-
able, but when the trial step is unreasonably large,
either approach gives a very poor estimate. Taking
a step much too small will make the simulator run
much slower, as it takes many steps, then the step
size is allowed to grow slowly. This is slower both
because of the many unnecessary steps, and because
of many adjustments. Taking a step that is much too
large will result in a choice that is better than the
first trial, which will make a better estimate and be
rejected. It is rare to get more than one rejection
based on truncation error.

Conclusion

Gnucap will usually do more time steps than Spice
will, due to 2 factors. Gnucap will force calculations
at print points and fourier points, and can reject a
bad step. It is usually a little more, but could be as
much as twice as many steps.

7.3 Data Structures

7.3.1 Parts list

Main parts list

The primary data storage is in a list of “cards”. A
card is anything that can appear in a net list. Cards
live here, primarily, but there are some other auxilary
lists that also contain pointers to cards.

The list stores pointers, rather than actual objects,
because there are many types of cards. All are de-
rived from the “card”, through several levels of in-
heritance.

Usually, they are stored in the order they are read
from the file, except for subcircuits, which are stored
in separate lists to preserve the hierarchy.

As of release 0.24, the main list is in static storage,
so there can be only one. This will change. New cards
can be inserted anywhere in the list, but usually they
are inserted at the end. The mechanism for marking
the location is a hybrid of STL and a 15 year old
pointer scheme, which will also change someday.

The “Common” and “Eval” classes

The “common” serves two distinct purposes. The
first is to share storage for similar devices. The sec-
ond is to attach “evaluators” to otherwise simple
components for special behavior.

Most circuits have many identical elements. The
“common” enables them to share storage. One “com-
mon” can be attached to many devices. When a new
device is created, even if it is parses separately, an at-
tempt is made to find an appropriate device to share
with.

Simple elements like resistors and capacitors can
have “evaluators” attached as commons. These eval-
uators calculate a function and its derivative, and
return it in a standard form. Some evaluators are
used internally, such as in the diode and mosfet mod-
els. Some are used explicitly, such as in behavioral
modeling.

7.4 Performance

This section gives some notes on some of the perfor-
mance issues in simulators. It is not intended to be
complete or well organized.

7.4.1 Virtual functions

There is a question of the impact on speed from the
use of virtual functions. The experiment used here
is to use the circuit eq4-2305.ckt from the exam-
ples directory, and try several modified versions of the
program. I used a 100 point dc sweep, a version be-
tween 0.20 and 0.21, and made several modifications
for testing purposes. I chose this circuit because it
has little to mask the effect, and therefore is sort of
a worst case.

7.4. PERFORMANCE 89

I added an int foo to the element class. I made
the function il trload source call a virtual func-
tion virtual test and stored the result. The local
version body has a print call, which should not show,
to make sure it calls the other. These functions sim-
ply return a constant, determined by which version
of the function is called. Run time is compared, with
and without this.

With 1 virtual function call (included in load)

user sys total
evaluate 13.45 0.11 13.56

load 13.40 0.06 13.47
lu 1.91 0.09 2.00

back 22.35 0.27 22.61
review 0.00 0.00 0.00
output 0.11 0.11 0.22

overhead 0.23 0.19 0.42
total 51.45 0.83 52.28

With 10 virtual function calls (included in load)

user sys total
evaluate 13.47 0.09 13.57

load 24.69 0.17 24.87
lu 2.09 0.02 2.11

back 22.17 0.35 22.51
review 0.00 0.00 0.00
output 0.14 0.11 0.25

overhead 0.25 0.25 0.50
total 62.82 0.99 63.81

No extra function calls (included in load)

user sys total
evaluate 13.41 0.09 13.50

load 11.75 0.05 11.79
lu 2.04 0.03 2.07

back 22.51 0.33 22.84
review 0.00 0.00 0.00
output 0.08 0.11 0.19

overhead 0.31 0.25 0.56
total 50.10 0.86 50.96

My conclusion is that in this context, even a single
virtual function call is significant (10-15% of the load
time), but not so significant as to prohibit their use.
The load loop here calls one virtual function inside a
loop. The virtual function calls an ordinary member
function. Therefore, about 30% of the load time is
function call overhead.

The impact should be less significant for complex
models like transistors because the calculation time
is much higher and would serve to hide this better.

Spice uses a different architecture, where a single
function evaluates and loads all elements of a given
type. This avoids these two calls.

7.4.2 Inline functions

For this test, il trload source is not inline. Con-
trast to ”No extra function calls” and ”1 virtual func-
tion” above, in which this function is inline.

user sys total
evaluate 13.44 0.15 13.60

load 13.85 0.14 13.99
lu 1.73 0.02 1.75

back 22.89 0.35 23.24
review 0.00 0.00 0.00

overhead 0.45 0.17 0.63
total 52.50 0.94 53.44

This shows (crudely) that the overhead of an or-
dinary private member function call (called from an-
other member function in the same class) is signifi-
cant here. The cost of a virtual function call is com-
parable to the cost of an ordinary private member
function call.

	Introduction
	What is it?
	Starting
	How to use this manual
	Command structure
	Standard options
	Getting help, and the Gnucap user community
	How to contribute
	Licensing

	Command descriptions
	Command Summary
	! command
	< command
	> command
	AC command
	ALARM command
	ALTER command
	BUILD command
	CHDIR command
	CLEAR command
	DC command
	DELETE command
	DISTO command
	EDIT command
	END command
	EXIT command
	FANOUT command
	FAULT command
	FOURIER command
	GENERATOR command
	GET command
	IC command
	INSERT command
	LIST command
	LOG command
	MARK command
	MERGE command
	MODIFY command
	NODESET command
	NOISE command
	OP command
	OPTIONS command
	PAUSE command
	PLOT command
	PRINT command
	QUIT command
	SAVE command
	SENS command
	STATUS command
	SWEEP command
	TEMP command
	TF command
	TITLE command
	TRANSIENT command
	UNFAULT command
	UNMARK command
	WIDTH command

	Circuit description
	Summary
	C: Capacitor
	Trans-capacitor
	D: Diode
	E: Voltage Controlled Voltage Source
	F: Current Controlled Current Source
	G: Voltage Controlled Current Source
	Voltage Controlled Capacitor
	Voltage Controlled Admittance
	Voltage Controlled Resistor
	H: Current Controlled Voltage Source
	I: Independent Current Source
	J: Junction Field-Effect Transistor
	K: Coupled (Mutual) Inductors
	L: Inductor
	M: MOSFET
	Q: Bipolar Junction Transistor
	R: Resistor
	S: Voltage Controlled Switch
	T: Transmission Line
	U: Logic Device
	V: Independent Voltage Source
	W: Current Controlled Switch
	X: Subcircuit Call
	Y: Admittance

	Behavioral modeling
	Conditionals
	Functions
	COMPLEX: Complex value
	EXP: Exponential time dependent value
	FIT: Fit a curve
	GENERATOR: Signal Generator time dependent value
	POLY: Polynomial nonlinear transfer function
	POSY: Polynomial with non-integer powers
	PULSE: Pulsed time dependent value
	PWL: Piecewise linear function
	SFFM: Frequency Modulation time dependent value
	SIN: Sinusoidal time dependent value
	TANH: Hyperbolic tangent transfer function
	.model TABLE: Fit a curve

	Installation
	The easy way
	If that doesn't work
	Details, custom compilation

	Adding models
	Using the model compiler

	Technical Notes
	Architecture
	Transient analysis
	Data Structures
	Performance

