
User Manual for glossaries.sty v4.57

Nicola L.C. Talbot

dickimaw-books.com/contact

2025-03-12

This document is also available as HTML (glossaries-user.html).

Abstract

The glossaries package provides a means to define terms or acronyms or symbols

that can be referenced within your document. Sorted lists with collated locations

can be generated either using TEX or using a supplementary indexing application.

Sample documents are provided with the glossaries package. These are listed in

§18.

glossaries-extra

Additional features not provided here may be available through the extension package

glossaries-extra which, if required, needs to be installed separately. New features will

be added to glossaries-extra. Versions of the glossaries package after v4.21 will mostly
be just bug fixes or minor maintenance. The most significant updates to the glossaries

package since then is version 4.50, which involved the integration of mfirstuc v2.08 and

the phasing out the use of the now deprecated textcase package, and version 4.55, which

involved the integration of datatool-base v3.0.
Note that glossaries-extra provides an extra indexing option (bib2gls) which isn’t

available with just the base glossaries package.

If you require multilingual support you must also install the relevant language module. Each

language module is called glossaries-〈language〉, where 〈language〉 is the root language
name. For example, glossaries-french or glossaries-german. If a language
module is required, the glossaries package will automatically try to load it and will give a warning

if the module isn’t found. See §1.5 for further details. If there isn’t any support available for your

language, use the nolangwarn package option to suppress the warning and provide your own

translations. (For example, use the title key in \printglossary.)

http://www.dickimaw-books.com/contact
glossaries-user.html

�

Documents have wide-ranging styles when it comes to presenting glossaries or lists of

terms or notation. People have their own preferences and to a large extent this is deter-

mined by the kind of information that needs to go in the glossary. They may just have

symbols with terse descriptions or they may have long technical words with complicated

descriptions. The glossaries package is flexible enough to accommodate such varied re-

quirements, but this flexibility comes at a price: a big manual.

If you’re freaking out at the size of this manual, start with “The glossaries package:

a guide for beginners” (glossariesbegin.pdf). You should find it in the same
directory as this document or try

�

texdoc glossariesbegin

Once you’ve got to grips with the basics, then come back to this manual to find out how

to adjust the settings.

The glossaries bundle includes the following documentation:

The glossaries package: a guide for beginners (glossariesbegin.pdf)

If you want some brief information and examples to get you going, start with the guide for

beginners.

User Manual for glossaries.sty (glossaries-user.pdf)

This document is the manual for the glossaries package and is divided into two parts:

Part I is the user guide that describes all available commands and options with examples.

Part II has alphabetical summaries of those commands and options for quick reference.

Documented Code for glossaries (glossaries-code.pdf)

Advanced users wishing to know more about the inner workings of all the packages pro-

vided in the glossaries bundle should read “Documented Code for glossaries v4.57”.

CHANGES

Change log.

README.md

Package summary.

Depends.txt

List of all packages unconditionally required by glossaries. Other unlisted packages may

be required under certain circumstances. For help on installing packages see, for example,

How do I update my TEX distribution?1 or (for Linux users) Updating TEX on Linux.2

1tex.stackexchange.com/questions/55437
2tex.stackexchange.com/questions/14925

b

https://www.tug.org/texdoc/
glossaries-code.pdf
CHANGES
README.md
Depends.txt
https://tex.stackexchange.com/questions/55437
https://tex.stackexchange.com/questions/14925
http://tex.stackexchange.com/questions/55437
http://tex.stackexchange.com/questions/14925

Related resources:

• glossaries-extra and bib2gls: An Introductory Guide.3

• glossaries FAQ4

• glossaries gallery5

• a summary of all glossary styles provided by glossaries and glossaries-extra6

• glossaries performance7 (comparing document build times for the different options pro-

vided by glossaries and glossaries-extra).

• Using LaTeX to Write a PhD Thesis8 (chapter 6).

• Incorporating makeglossaries or makeglossaries-lite or bib2gls
into the document build9

• The glossaries-extra package10

• bib2gls11

�

If you use hyperref and glossaries, you must load hyperref first (although, in general,

hyperref should be loaded after other packages).

3mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
4dickimaw-books.com/faq.php?category=glossaries
5dickimaw-books.com/gallery/#glossaries
6dickimaw-books.com/gallery/glossaries-styles/
7dickimaw-books.com/gallery/glossaries-performance.shtml
8dickimaw-books.com/latex/thesis/
9dickimaw-books.com/latex/buildglossaries/
10ctan.org/pkg/glossaries-extra
11ctan.org/pkg/bib2gls

c

http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
https://www.dickimaw-books.com/faq.php?category=glossaries
https://www.dickimaw-books.com/gallery/#glossaries
https://www.dickimaw-books.com/gallery/glossaries-styles/
https://www.dickimaw-books.com/gallery/glossaries-performance.shtml
https://www.dickimaw-books.com/latex/thesis/
https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/
https://ctan.org/pkg/glossaries-extra
https://ctan.org/pkg/bib2gls
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
https://www.dickimaw-books.com/faq.php?category=glossaries
https://www.dickimaw-books.com/gallery/#glossaries
https://www.dickimaw-books.com/gallery/glossaries-styles/
https://www.dickimaw-books.com/gallery/glossaries-performance.shtml
https://www.dickimaw-books.com/latex/thesis/
https://www.dickimaw-books.com/latex/buildglossaries/
https://ctan.org/pkg/glossaries-extra
https://ctan.org/pkg/bib2gls

Contents

List of Tables vi

List of Examples vii

I. User Guide 1

1. Introduction 2

1.1. Rollback . 7

1.2. Integrating Other Packages and Known Issues 8

1.3. Indexing Options . 8

1.3.1. Option 1 (“noidx”) . 9

1.3.2. Option 2 (makeindex) . 14

1.3.3. Option 3 (xindy) . 18

1.3.4. Option 4 (bib2gls) . 23

1.3.5. Option 5 (“unsrt”) . 28

1.3.6. Option 6 (“standalone”) . 30

1.4. Dummy Entries for Testing . 38

1.5. Multi-Lingual Support . 44

1.5.1. Changing the Fixed Names . 53

1.5.2. Creating a New Language Module 57

1.6. Generating the Associated Glossary Files 62

1.6.1. Using the makeglossaries Perl Script 66

1.6.2. Using the makeglossaries-lite Lua Script 70

1.6.3. Using xindy explicitly (Option 3) 73

1.6.4. Using makeindex explicitly (Option 2) 74

1.7. Note to Front-End and Script Developers 75

1.7.1. MakeIndex and Xindy . 75

1.7.2. Entry Labels . 77

1.7.3. Bib2Gls . 77

2. Package Options 79

2.1. General Options . 79

2.2. Sectioning, Headings and TOC Options . 87

2.3. Glossary Appearance Options . 92

2.4. Indexing Options . 100

2.5. Sorting Options . 105

i

Contents

2.6. Glossary Type Options . 117

2.7. Acronym and Abbreviation Options . 121

2.8. Deprecated Acronym Style Options . 124

2.9. Other Options . 127

2.10. Setting Options After the Package is Loaded 129

3. Setting Up 130

3.1. Option 1 . 130

3.2. Options 2 and 3 . 130

4. Defining Glossary Entries 134

4.1. Plurals . 144

4.2. Other Grammatical Constructs . 146

4.3. Additional Keys . 147

4.3.1. Document Keys . 147

4.3.2. Storage Keys . 149

4.4. Expansion . 155

4.5. Sub-Entries . 157

4.5.1. Hierarchy . 158

4.5.2. Homographs . 159

4.6. Loading Entries From a File . 160

4.7. Moving Entries to Another Glossary . 163

4.8. Drawbacks With Defining Entries in the Document Environment 164

4.8.1. Technical Issues . 164

4.8.2. Good Practice Issues . 165

5. Referencing Entries in the Document 166

5.1. Links to Glossary Entries . 166

5.1.1. Options . 169

5.1.2. The \gls-Like Commands (First Use Flag Queried) 171

5.1.3. The \glstext-Like Commands (First Use Flag Not Queried) . . . 175

5.1.4. Changing the Format of the \gls-like Link Text 181

5.1.5. Hooks . 186

5.1.6. Enabling and Disabling Hyperlinks to Glossary Entries 187

5.2. Using Glossary Terms Without Indexing 190

6. Acronyms and Other Abbreviations 197

6.1. Displaying the Long, Short and Full Forms (Independent of First Use) 202

6.2. Changing the Acronym Style . 206

6.2.1. Predefined Acronym Styles . 209

6.2.2. Defining A Custom Acronym Style 216

6.3. Displaying the List of Acronyms . 231

6.4. Upgrading From the glossary Package . 231

ii

Contents

7. Unsetting and Resetting Entry Flags 234

7.1. Counting the Number of Times an Entry has been Used (First Use Flag Unset) 238

8. Displaying a Glossary 245

8.1. \print〈…〉glossary Options . 247

8.2. Glossary Markup . 251

9. Defining New Glossaries 258

10. Adding an Entry to the Glossary Without Generating Text 261

11. Cross-Referencing Entries 266

11.1. Customising Cross-Reference Text . 269

12. Number Lists 272

12.1. Encap Values (Location Formats) . 273

12.2. Range Formations . 278

12.3. Locations . 280

12.4. Page Precedence . 283

12.5. Problematic Locations . 283

12.6. Iterating Over Locations . 296

13. Glossary Styles 299

13.1. Predefined Styles . 301

13.1.1. List Styles . 304

13.1.2. Longtable Styles . 307

13.1.3. Longtable Styles (Ragged Right) . 310

13.1.4. Longtable Styles (booktabs) . 313

13.1.5. Supertabular Styles . 315

13.1.6. Supertabular Styles (Ragged Right) 318

13.1.7. Tree-Like Styles . 321

13.1.8. Multicols Style . 326

13.1.9. In-Line Style . 327

13.2. Defining your own glossary style . 330

13.2.1. Commands For Use in Glossary Styles 332

13.2.2. Hyper Group Navigation . 335

13.2.3. Glossary Style Commands . 337

14. Xindy (Option 3) 344

14.1. Required Styles . 345

14.2. Language and Encodings . 346

14.3. Locations and Number lists . 347

14.4. Glossary Groups . 357

iii

Contents

15. Utilities 359

15.1. hyperref . 359

15.2. Case-Changing . 361

15.3. Loops . 364

15.4. Conditionals . 365

15.5. Measuring . 372

15.6. Fetching and Updating the Value of a Field 373

16. Prefixes or Determiners 376

17. Accessibility Support 384

17.1. Accessibility Keys . 384

17.2. Incorporating Accessibility Support . 387

17.3. Incorporating the Access Field Values . 389

17.4. Obtaining the Access Field Values . 392

17.5. Developer’s Note . 394

18. Sample Documents 395

18.1. Basic . 395

18.2. Acronyms and First Use . 402

18.3. Non-Page Locations . 420

18.4. Multiple Glossaries . 431

18.5. Sorting . 444

18.6. Child Entries . 451

18.7. Cross-Referencing . 466

18.8. Custom Keys . 469

18.9. Xindy (Option 3) . 474

18.10. No Indexing Application (Option 1) . 485

18.11. Other . 487

19. Troubleshooting 504

II. Summaries and Index 505

Symbols 506

Terms 507

Glossary Entry Keys Summary 514

\Gls-Like and \Glstext-Like Options Summary 522

\print〈…〉glossary Options Summary 525

iv

Contents

Acronym Style Summary 529

Glossary Styles Summary 532

Command Summary 546

Command Summary: Symbols . 546

Command Summary: A . 547

Command Summary: B . 554

Command Summary: C . 555

Command Summary: D . 556

Command Summary: E . 559

Command Summary: F . 559

Command Summary: G . 561

Command Summary: Glo . 561

Command Summary: Gls . 564

Command Summary: Glsxtr . 625

Command Summary: H . 638

Command Summary: I . 639

Command Summary: L . 644

Command Summary: M . 645

Command Summary: N . 646

Command Summary: O . 649

Command Summary: P . 649

Command Summary: R . 652

Command Summary: S . 653

Command Summary: T . 657

Command Summary: W . 658

Command Summary: X . 658

Environment Summary 659

Package Option Summary 660

Index 670

v

List of Tables

1.1. Glossary Options: Pros and Cons . 10

1.2. Customised Text . 54

1.3. Commands and package options that have no effect when using xindy or

makeindex explicitly . 66

4.1. Key to Field Mappings . 156

6.1. Synonyms provided by the shortcuts package option 205

6.2. The effect of using xspace with \oldacronym 233

12.1. Predefined Hyperlinked Location Formats 274

13.1. Glossary Styles . 302

13.2. Multicolumn Styles . 327

vi

List of Examples

If an example shows the icon�� then the source code is embedded in the PDF as an attachment.

If your PDF viewer supports attachments, you can extract the self-contained example file to

try it out for yourself. Alternatively, you can click on the download icon �� which will try

downloading the example source code from your closest CTAN mirror, but make sure that this

user manual matches the version on CTAN first. You can also try using:

�

texdoc -l glossaries-user-example〈nnn〉

where 〈nnn〉 is the example number zero-padded to three digits to find out if the example files
are installed on your device.

1. Simple document with no glossary . 3

2. Simple document with unsorted glossaries 5

3. Simple document that uses TEX to sort entries 12

4. Simple document that uses makeindex to sort entries 15

5. Simple document that uses xindy to sort entries 20

6. Simple document that uses bib2gls to sort entries 25

7. Simple document with an unsorted list of all defined entries 29

8. Simple document with standalone entries . 32

9. UTF-8 and xindy . 48

10. UTF-8 and bib2gls . 51

11. Mixing Alphabetical and Order of Definition Sorting 108

12. Customizing Standard Sort (Options 2 or 3) 109

13. Defining Custom Keys . 148

14. Defining Custom Storage Key (Acronyms and Initialisms) 149

15. Defining Custom Storage Key (Acronyms and Non-Acronyms with Descriptions) 153

16. Hierarchical Divisions—Greek and Roman Mathematical Symbols 158

17. Loading Entries from Another File . 161

18. Custom Entry Display in Text . 185

19. Custom Format for Particular Glossary . 186

20. First Use With Hyperlinked Footnote Description 187

21. Suppressing Hyperlinks on First Use Just For Acronyms 188

22. Only Hyperlink in Text Mode Not Math Mode 188

23. One Hyper Link Per Entry Per Chapter . 189

24. Simple document with acronyms . 197

25. Defining and Using an Acronym . 200

vii

https://www.tug.org/texdoc/

List of Examples

26. Defining and Using an Acronym (Rollback) 208

27. Small-Caps Acronym . 209

28. Adapting a Predefined Acronym Style . 212

29. Defining a Custom Acronym Style . 218

30. Italic and Upright Abbreviations . 226

31. Abbreviations with Full Stops (Periods) . 229

32. Don’t index entries that are only used once 244

33. Switch to Two Column Mode for Glossary 255

34. Dual Entries . 264

35. Changing the Font Used to Display Entry Names in the Glossary 300

36. Creating a completely new style . 339

37. Creating a new glossary style based on an existing style 341

38. Example: creating a glossary style that uses the user1, …, user6 keys . . 341

39. Custom Font for Displaying a Location . 349

40. Custom Numbering System for Locations . 350

41. Locations as Dice . 351

42. Locations as Words not Digits . 353

43. Defining Determiners . 376

44. Using Prefixes . 380

45. Adding Determiner to Glossary Style . 381

viii

Part I.

User Guide

1

1. Introduction

�

\usepackage[〈options〉]{glossaries}

The glossaries package is provided to assist generating lists of terms, symbols or acronyms.

For convenience, these lists are all referred to as glossaries in this manual. The terms, symbols

and acronyms are collectively referred to as glossary entries.

The package has a certain amount of flexibility, allowing the user to customize the format

of the glossary and define multiple glossaries. It also supports glossary styles that include an

associated symbol (in addition to a name and description) for each glossary entry.

There is provision for loading a database of glossary entries. Only those entries indexed in

the document will be displayed in the glossary. (Unless you use Option 5, which doesn’t use any

indexing but will instead list all defined entries in order of definition.)

It’s not necessary to actually have a glossary in the document. You may be interested in using

this package just as means to consistently format certain types of terms, such as acronyms, or

you may prefer to have descriptions scattered about the document and be able to easily link to

the relevant description (Option 6).

Example 1 on the following page demonstrates a basic document without a glossary. For
�1

simplicity, the article class is used and the only package loaded is glossaries. Note that the terms

must be defined before they can be referenced in the document:

�

\documentclass{article}
\usepackage[
sort=none % no sorting or indexing required

]
{glossaries}

\newglossaryentry
{cafe}% label
{% definition:
name={café},
description={small restaurant selling

refreshments}
}

2

1. Introduction

\setacronymstyle{long-short}
\newacronym
{html}% label
{HTML}% short form
{hypertext markup language}% long form

\newglossaryentry
{pi}% label
{% definition:
name={\ensuremath{\pi}},
description={Archimedes' Constant}

}

\newglossaryentry
{distance}% label
{% definition:
name={distance},
description={the length between two points},
symbol={m}

}

\begin{document}
First use: \gls{cafe}, \gls{html}, \gls{pi}.
Next use: \gls{cafe}, \gls{html}, \gls{pi}.

\Gls{distance}
(\glsentrydesc{distance})
is measured in \glssymbol{distance}.
\end{document}

(This is a trivial example. For a real document I recommend you use siunitx for units.)

�

Example 1: Simple document with no glossary �� ��

First use: café, hypertext markup language (HTML), π. Next use: café,
HTML, π.

Distance (the length between two points) is measured in m.

The glossaries-extra package, which is distributed as a separate bundle, extends the capa- glossaries

-extrabilities of the glossaries package. The simplest document with a glossary can be created with

glossaries-extra (which internally loads the glossaries package). Example 2 on page 5 demon-
�2

strates this:

3

% This file is embedded in glossaries-user.pdf
% Example 1 Simple document with no glossary
% Label: "ex:simplenogloss"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[
 sort=none % no sorting or indexing required
] {glossaries}

\newglossaryentry
{cafe}% label
 {% definition:
 name={café},
 description={small restaurant selling refreshments}
}

\setacronymstyle{long-short} \newacronym
{html}% label
 {HTML}% short form
 {hypertext markup language}% long form

\newglossaryentry
{pi}% label
 {% definition:
 name={\ensuremath{\pi}},
 description={Archimedes' Constant}
}

% This is a trivial example. For a real document I recommend you use siunitx for units
 \newglossaryentry
 {distance}% label
 {% definition:
 name={distance},
 description={the length between two points},
 symbol={m}
}
\begin{document}
First use: \gls{cafe}, \gls{html}, \gls{pi}. Next use: \gls{cafe}, \gls{html}, \gls{pi}.

\Gls{distance} (\glsentrydesc{distance}) is measured in \glssymbol{distance}.
\end{document}

Nicola Talbot
Simple document with no glossary (source code)
Example document that defines some glossary entries and references them in the text. (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example001.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example001.pdf

1. Introduction

�

\documentclass{article}
\usepackage[
sort=none,% no sorting or indexing required
abbreviations,% create list of abbreviations
symbols,% create list of symbols
postdot, % append a full stop after the descriptions
stylemods,style=index % set the glossary style
]{glossaries-extra}

\newglossaryentry % glossaries.sty
{cafe}% label
{% definition:
name={café},
description={small restaurant selling

refreshments}
}

\setabbreviationstyle{long-short}
% glossaries-extra.sty

\newabbreviation % glossaries-extra.sty
{html}% label
{HTML}% short form
{hypertext markup language}% long form

% requires glossaries-extra.sty 'symbols' option
\glsxtrnewsymbol
[description={Archimedes' constant}]% options
{pi}% label
{\ensuremath{\pi}}% symbol

\newglossaryentry % glossaries.sty
{distance}% label
{% definition:
name={distance},
description={the length between two points},
symbol={m}

}

\begin{document}
First use: \gls{cafe}, \gls{html}, \gls{pi}.

4

1. Introduction

Next use: \gls{cafe}, \gls{html}, \gls{pi}.

\Gls{distance} is measured in \glssymbol{distance}.
\printunsrtglossaries % list all defined entries
\end{document}

�

Example 2: Simple document with unsorted glossaries �� ��

First use: café, hypertext markup language (HTML), π. Next use: café,
HTML, π.

Distance is measured in m.

Glossary

café small restaurant selling refreshments.

distance (m) the length between two points.

Symbols

π Archimedes’ constant.

Abbreviations

HTML hypertext markup language.

Note the difference in the way the abbreviation (HTML) and symbol (π) are defined in the

two above examples. The abbreviations, postdot and stylemods options are

specific to glossaries-extra. Other options are passed to the base glossaries package.

glossaries-extra

In this user manual, commands and options displayed in tan, such as \new-
abbreviation and stylemods, are only available with the glossaries-extra
package. There are also some commands and options (such as \makeglossaries
and symbols) that are provided by the base glossaries package but are redefined by

the glossaries-extra package. See the glossaries-extra user manual for further details of
those commands.

One of the strengths of the glossaries package is its flexibility, however the drawback of

this is the necessity of having a large manual that covers all the various settings. If you are

5

% This file is embedded in glossaries-user.pdf
% Example 2 Simple document with unsorted glossaries
% Label: "ex:simpleunsrt"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[sort=none,% no sorting or indexing required
 abbreviations,% create list of abbreviations
 symbols,% create list of symbols
 postdot, % append a full stop after the descriptions
 stylemods,style=index % set the default glossary style
]{glossaries-extra}

\newglossaryentry % glossaries.sty
{cafe}% label
 {% definition:
 name={café},
 description={small restaurant selling refreshments}
}

\setabbreviationstyle{long-short}% glossaries-extra.sty
\newabbreviation % glossaries-extra.sty
{html}% label
 {HTML}% short form
 {hypertext markup language}% long form
 % requires glossaries-extra.sty 'symbols' option
 \glsxtrnewsymbol [description={Archimedes' constant}]% options
 {pi}% label
 {\ensuremath{\pi}}% symbol
 % This is a trivial example. For a real document I recommend you use siunitx for units
 \newglossaryentry % glossaries.sty
{distance}% label
 {% definition:
 name={distance}, description={the length between two points}, symbol={m} }
\begin{document}
First use: \gls{cafe}, \gls{html}, \gls{pi}. Next use: \gls{cafe}, \gls{html}, \gls{pi}.

\Gls{distance} is measured in \glssymbol{distance}.
\printunsrtglossaries % list all defined entries

\end{document}

Nicola Talbot
Simple document with unsorted glossaries (source code)
Example document that defines some glossary entries, references them in the text, and displays three simple unsorted glossaries. (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example002.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example002.pdf

1. Introduction

daunted by the size of the manual, try starting off with the much shorter guide for beginners

(glossariesbegin.pdf).

�

There’s a common misconception that you have to have Perl installed in order to use the

glossaries package. Perl is not a requirement (as demonstrated by the above examples).

It’s only required if you want to use xindy or makeglossaries. Perl is used by
other TEX-related applications, such aslatexmk, so youmay already have it installed. If
you want to usebib2gls, you will need to have the Java runtime environment installed.
Java is used by other TEX-related applications, such as arara and JabRef, so you may

already have it installed.

This user manual uses the glossaries-extra package with bib2gls (Option 4). For exam-

ple, when viewing the PDF version of this document in a hyperlinked-enabled PDF viewer (such

as Adobe Reader or Okular) if you click on the word “indexing” you’ll be taken to the entry in the

main glossary where there’s a brief description of the term. This is the way that the glossaries

mechanism works. An indexing application (bib2gls in this case) is used to generate the

sorted list of terms. The indexing applications are CLI tools, which means they can be run di-

rectly from a command prompt or terminal, or can be integrated into some text editors, or you

can use a build tool such as arara to run them.

In addition to standard glossaries, this document has “standalone” definitions (Option 6). For

example, if you click on the command \gls, the hyperlink will take you to the main part of

the document where the command is described. The index and summaries are also glossaries.

The technique used is too complicated to describe in this manual, but an example can be found

in “bib2gls: Standalone entries and repeated lists (a little book of poisons)” TUGboat, Vol-
ume 43 (2022), No. 1.

Neither of the above two examples require an indexing application. The first is just using the

glossaries package for consistent formatting, and there is no list. The second has lists but they

are unsorted (see Option 5).

The remainder of this introductory section covers the following:

• §1.3 lists the available indexing options.

• §1.4 lists the files provided that contain dummy glossary entries which may be used for

testing.

• §1.5 provides information for users who wish to write in a language other than English.

• §1.6 describes how to use an indexing application to create the sorted glossaries for your

document (Options 2 or 3).

In addition to the examples provided in this document, there are some sample documents

provided with the glossaries package. They are described in §18.

6

https://tug.org/TUGboat/tb2022-1/tb133talbot-bib2gls-reorder.pdf
https://tug.org/TUGboat/tb2022-1/tb133talbot-bib2gls-reorder.pdf

1. Introduction

1.1. Rollback

�

Rollback provides a useful way of reverting back to an earlier release if there’s a problem

with a new version. However, the further away the rollback date is from the current LaTeX

kernel, the more likely that incompatibilities will occur. If you have historic documents

that you need to compile, consider using the historic TEX Live Docker images. (See, for

example, Legacy Documents and TEX Live Docker Images.a)

adickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images

The following rollback releases are available:

• Version 4.54 (2024-04-03):

�

\usepackage{glossaries}[=v4.54]

This version is the last version that doesn’t test for the newer datatool-base commands that
may now be used to sort glossaries with \printnoidxglossary. It will always
use the older, slower method.

• Version 4.52 (2022-11-03):

�

\usepackage{glossaries}[=v4.52]

This is the last version that uses an internal comma-separated list for the hyper group

information in glossary-hypernav. Version 4.53 has switched to using a sequence.

• Version 4.49 (2021-11-01):

�

\usepackage{glossaries}[=v4.49]

Note that this should also rollback mfirstuc to version 2.07 if you have a later version

installed.

• Version 4.46 (2020-03-19):

�

\usepackage{glossaries}[=v4.46]

7

https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images
https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images

1. Introduction

If you rollback using latexrelease to an earlier date, then you will need to specify v4.46 for

glossaries as there are no earlier rollback versions available. You may want to consider using one

of the historic TEX Live Docker images instead. See, for example, Legacy Documents and TeX

Live Docker Images.1

1.2. Integrating Other Packages and Known Issues

If you use hyperref and glossaries, you must load hyperref first (although, in general, hyperref

should be loaded after other packages).

Occasionally you may find that certain packages need to be loaded after packages that are

required by glossaries but need to also be loaded before glossaries. For example, a package

〈X〉 might need to be loaded after amsgen but before hyperref (which needs to be loaded before

glossaries). In which case, load the required package first (for example, amsgen), then 〈X〉, and
finally load glossaries.

\usepackage{amsgen}% load before 〈X〉
\usepackage{〈X〉}% must be loaded after amsgen
\usepackage{hyperref}% load after 〈X〉
\usepackage{glossaries}% load after hyperref

Some packages don’t work with some glossary styles. For example, classicthesis doesn’t work

with the styles that use the description environment, such as the list style. Since this is the default

style, the glossaries package checks for classicthesis and will change the default to the index

style if it has been loaded.

Some packages conflict with a package that’s required by a glossary style style package. For

example, xtab conflicts with supertabular, which is required by glossary-super. In this case, en-
sure the problematic glossary style package isn’t loaded. For example, use the nosuper option

and (with glossaries-extra) don’t use stylemods=super or stylemods=all. The
glossaries package now (v4.50+) checks for xtab and will automatically implement nosuper
if it has been loaded.

The language-support is implemented using tracklang. See §1.5 for further details.

1.3. Indexing Options

The basic idea behind the glossaries package is that you first define your entries (terms, symbols

or acronyms). Then you can reference these within your document (analogous to \cite or

\ref). You can also, optionally, display a list of the entries you have referenced in your doc-
ument (the glossary). This last part, displaying the glossary, is the part that most new users find

difficult. There are three options available with the base glossaries package (Options 1 – 3). The

glossaries-extra extension package provides two extra options for lists (Options 4 and 5) as well
as an option for standalone descriptions within the document body (Option 6).

1dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images

8

https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images
https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images
https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images

1. Introduction

An overview of Options 1 – 5 is given in Table 1.1 on the following page. Option 6 is omitted

from the table as it doesn’t produce a list. For a more detailed comparison of the various methods,

see the glossaries performance page.2 If, for some reason, you want to know what indexing

option is in effect, you can test the expansion of:

�

\glsindexingsetting

The definition is initialised to:

\ifglsxindy xindy\else makeindex\fi

If the sort=none or sort=clear options are used, \glsindexingsetting
will be redefined to none. If \makeglossaries is used \glsindexingsetting
will be updated to either makeindex or xindy as appropriate (that is, the conditional will

no longer be part of the definition). If \makenoidxglossaries is used then \gls-
indexingsetting will be updated to noidx. This means that \glsindexing-
setting can’t be fully relied on until the start of the document environment. (If you are using

glossaries-extra v1.49+, then this command will also be updated to take the record setting

into account.)

�

If you are developing a class or package that loads glossaries, I recommend that you don’t

force the user into a particular indexing method by adding an unconditional \make-
glossaries into your class or package code. Aside from forcing the user into a

particular indexing method, it means that they’re unable to use any commands that must

come before\makeglossaries (such as\newglossary) and they can’t switch
off the indexing whilst working on a draft document. (If you are using a class or package

that has done this, pass the disablemakegloss option to glossaries. For example,

via the document class options.)

Strictly speaking, Options 5 and 6 aren’t actually indexing options as no indexing is performed.

In the case of Option 5, all defined entries are listed in order of definition. In the case of Option 6,

the entry hypertargets and descriptions are manually inserted at appropriate points in the docu-

ment. These two options are included here for completeness and for comparison with the actual

indexing options.

1.3.1. Option 1 (“noidx”)

For alphabetical sorting, ensure you have at least version 3.0 of datatool and, where available,

datatool language support. If an older version is detected, a slower, less efficient sort method will

be used. Note that this method doesn’t form location ranges.

Example 3 on page 12 demonstrates this method:
�3

2dickimaw-books.com/gallery/glossaries-performance.shtml

9

https://www.dickimaw-books.com/gallery/glossaries-performance.shtml
https://www.dickimaw-books.com/gallery/glossaries-performance.shtml

1. Introduction

Table 1.1.: Glossary Options: Pros and Cons

Option 1 2 3 4 5

Requires glossaries-extra? 8 8 8 4 4

Requires an external application? 8 4 4 4 8

Requires Perl? 8 8 4 8 8

Requires Java? 8 8 8 4 8

Designed for glossaries[-extra]? 4 8‡ 8‡ 4 4

Can sort extended Latin alphabets

or non-Latin alphabets?

8∗ 8 4 4 N/A

Efficient sort algorithm? 8 4 4 4 N/A

Can use a different sort method for

each glossary?

4 8† 8† 4 N/A

Any problematic sort values? 4 4 4 8 N/A

Are entries with identical sort values

treated as separate unique entries?

4 4 8§ 4 4

Can automatically form ranges in

the location lists?

8 4 4 4 8

Can have non-standard locations in

the location lists?

4 8 4♦ 4 4¶

Maximum hierarchical depth

(style-dependent)

∞# 3 ∞ ∞ ∞

\glsdisplaynumberlist
reliable?

4 8 8 4 8

\newglossaryentry
allowed in document environment?

(Not recommended.)

8 4 4 8※ 4
**

Requires additional write registers? 8 4 4 8 8?

Default value of

sanitizesort package option

false true true true^true^

‡Both makeindex and xindy are general purpose indexing applications developed

independently of glossaries and glossaries-extra.
∗Localisation support may be available via datatool.
†Only with the hybrid method provided with glossaries-extra.
§Entries with the same sort value are merged.
♦Requires some setting up.
¶The locations must be set explicitly through the custom location field provided by

glossaries-extra.
#Unlimited but unreliable.
※Entries are defined in bib format. \newglossaryentry should not be used

explicitly.
**Provided docdef=true or docdef=restricted but not recommended.
?Provided docdef=false or docdef=restricted.
^Irrelevant with sort=none. (The record=only option automatically switches this

on.)

10

1. Introduction

�

\documentclass{article}
\usepackage[style=indexgroup]{glossaries}
\makenoidxglossaries % use TeX to sort
\newglossaryentry{parrot}{name={parrot},
description={a brightly coloured tropical bird}}

\newglossaryentry{duck}{name={duck},
description={a waterbird}}

\newglossaryentry{puffin}{name={puffin},
description=

{a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
description={a flightless black and white seabird}

}
% a symbol:
\newglossaryentry{alpha}{name={\ensuremath{\alpha}},
sort={alpha},description={a variable}}
% an acronym:
\setacronymstyle{short-long}
\newacronym{arpanet}{ARPANET}
{Advanced Research Projects Agency Network}
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
\printnoidxglossary
\end{document}

You can place all your entry definitions in a separate file and load it in the document preamble

with \loadglsentries (after \makenoidxglossaries). Note that six entries

have been defined but only five are referenced (indexed) in the document so only those five appear

in the glossary.

11

1. Introduction

�

Example 3: Simple document that uses TEX to sort entries �� ��

Puffin, duck and parrot. ARPANET (Advanced Research Projects Agency
Network) and α. Next use: ARPANET.

Glossary

A

α a variable. 1

A

ARPANET Advanced Research Projects Agency Network. 1

D

duck a waterbird. 1

P

parrot a brightly coloured tropical bird. 1
puffin a seabird with a brightly coloured bill. 1

This uses the indexgroup style, which puts a heading at the start of each letter group. The letter

group is determined by the first character of the sort value. For a preview of all available styles,

see Gallery: Predefined Styles.3 The number 1 after each description is the number list (or

location list). This is the list of locations (page numbers, in this case) where the entry was indexed.

In this example, all entries were indexed on page 1.

�

As from version 4.55, the glossaries package will check for a new command added to

datatool-base v3.0, that provides better sorting. The method is faster and works better

with UTF-8 characters. See the datatool v3.0+ documentation, in particular the sections

on localisation and on sorting lists.

This option doesn’t require an external indexing application but, with the default alphabetic

sorting and old versions of datatool, it’s very slow with severe limitations, particularly if the sort

value contains extended Latin characters or non-Latin characters. However, if you have both

datatool v3.0+ and datatool-english installed, and at least glossaries v4.56, then make sure you

specify the locale. For example:

3dickimaw-books.com/gallery/index.php?label=glossaries-styles

12

% This file is embedded in glossaries-user.pdf
% Example 3 Simple document that uses TeX\ to sort entries
% Label: "ex:noidx"
% arara: pdflatex
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[style=indexgroup]{glossaries}
\makenoidxglossaries % use TeX to sort
 \newglossaryentry{parrot}{name={parrot},
 description={a brightly coloured tropical bird}}
\newglossaryentry{duck}{name={duck},
 description={a waterbird}}
\newglossaryentry{puffin}{name={puffin},
 description={a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
 description={a flightless black and white seabird}}
% a symbol:
 \newglossaryentry{alpha}{name={\ensuremath{\alpha}},
 sort={alpha},description={a variable}}
% an acronym:
 \setacronymstyle{short-long}
 \newacronym{arpanet}{ARPANET}{Advanced Research Projects Agency Network}
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
\printnoidxglossary
\end{document}

Nicola Talbot
Simple document that uses TeX to sort entries (source code)
Example document that defines some entries, references a subset of them in the document and displays a sorted list of the referenced entries: alpha, ARPANET, duck, parrot and puffin. There are three letter groups, headed A, D and P (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example003.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example003.pdf
https://www.dickimaw-books.com/gallery/index.php?label=glossaries-styles
https://www.dickimaw-books.com/gallery/index.php?label=glossaries-styles

1. Introduction

�

\usepackage[locales=en]{datatool-base}
\usepackage{glossaries}

Or:

�

\usepackage[locales=en]{glossaries}

Other languages will need to have the appropriate datatool localisation support provided. Exam-

ples are provided in the datatool manual. In general, it’s best to use xindy or bib2gls if

you need to sort terms that use an extended Latin alphabet or non-Latin alphabet.

If you have any commands that cause problems when expanding, such as \alpha, then
you must use sanitizesort=true or change the sort method (sort=use or sort=
def) in the package options or explicitly set the sort key when you define the relevant entries,

as shown in the above example which has:

�

\newglossaryentry{alpha}{name={\ensuremath{\alpha}},
sort={alpha},description={a variable}
}

glossaries-extra

The glossaries-extra package has a modified symbols package option that provides

\glsxtrnewsymbol, which automatically sets the sort key to the entry label (in-

stead of the name).

This option works best with datatool v3.0+. If using a word or letter sort, be sure to also install

the applicable datatool language file, if available. This option allows a mixture of sort methods.

(For example, sorting by word order for one glossary and order of use for another.) This option

can be problematic with hierarchical glossaries and does not form ranges in the location lists.

Summary:

1. Add

�

\makenoidxglossaries

to your preamble (before you start defining your entries, as described in §4).

2. Put

13

1. Introduction

�

\printnoidxglossary

where you want your list of entries to appear (described in §8). Alternatively, to display

all glossaries use the iterative command:

�

\printnoidxglossaries

3. Run LATEX twice on your document. (As you would do to make a table of contents appear.)

For example, click twice on the “typeset” or “build” or “pdfLATEX” button in your editor.

1.3.2. Option 2 (makeindex)

�

Sincemakeindexwas designed for indexes, it doesn’t fully integrate with the glossaries

package, which has more complex use cases than a simple index. A better solution is

to use bib2gls which is developed alongside glossaries-extra and so provides better
integration.

Example 4 on the following page demonstrates a simple document that requiresmakeindex:
�4

�

\documentclass{article}
\usepackage[style=indexgroup]{glossaries}
\makeglossaries % open indexing files
\newglossaryentry{parrot}{name={parrot},
description={a brightly coloured tropical bird}}

\newglossaryentry{duck}{name={duck},
description={a waterbird}}

\newglossaryentry{puffin}{name={puffin},
description=

{a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
description={a flightless black and white seabird}

}
% a symbol:
\newglossaryentry{alpha}{name={\ensuremath{\alpha}},
sort={alpha},description={a variable}}
% an acronym:
\setacronymstyle{short-long}

14

1. Introduction

\newacronym{arpanet}{ARPANET}
{Advanced Research Projects Agency Network}
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
\printglossary
\end{document}

You can place all your entry definitions in a separate file and load it in the preamble with\load-
glsentries (after \makeglossaries). The result is the same as for Example 3 on

page 12.

�

Example 4: Simple document that uses makeindex to sort entries �� ��

Puffin, duck and parrot. ARPANET (Advanced Research Projects Agency
Network) and α. Next use: ARPANET.

Glossary

A

α a variable. 1
ARPANET Advanced Research Projects Agency Network. 1

D

duck a waterbird. 1

P

parrot a brightly coloured tropical bird. 1
puffin a seabird with a brightly coloured bill. 1

This option uses a CLI application called makeindex to sort the entries. This application

comes with all modern TEX distributions, but it’s hard-coded for the non-extended Latin alphabet.

It can’t correctly sort accent commands (such as \' or \c) and fails with UTF-8 characters,

especially for any sort values that start with a UTF-8 character (as it separates the octets resulting

in an invalid file encoding). This process involves making LATEXwrite the glossary information to

a temporary file which makeindex reads. Then makeindex writes a new file containing

the code to typeset the glossary. Then \printglossary reads this file in on the next run.

15

% This file is embedded in glossaries-user.pdf
% Example 4 Simple document that uses makeindex to sort entries
% Label: "ex:mkidx"
% arara: pdflatex
% arara: makeglossaries
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[style=indexgroup]{glossaries}
\makeglossaries % open \dglspl {indexingfile}
 \newglossaryentry{parrot}{name={parrot},
 description={a brightly coloured tropical bird}}
\newglossaryentry{duck}{name={duck},
 description={a waterbird}}
\newglossaryentry{puffin}{name={puffin},
 description={a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
 description={a flightless black and white seabird}}
% a symbol:
 \newglossaryentry{alpha}{name={\ensuremath{\alpha}},
 sort={alpha},description={a variable}}
% an acronym:
 \setacronymstyle{short-long}
 \newacronym{arpanet}{ARPANET}{Advanced Research Projects Agency Network}
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
\printglossary
\end{document}

Nicola Talbot
Simple document that uses makeindex to sort entries (source code)
Example document that defines some entries, references a subset of them in the document and displays a sorted list of the referenced entries: alpha, ARPANET, duck, parrot and puffin. There are three letter groups, headed A, D and P (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example004.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example004.pdf

1. Introduction

�

There are other applications that can read makeindex files, such as texindy and

xindex, but the glossaries package uses a customized ist style file (created by

\makeglossaries) that adjusts the special characters and input keyword and also
ensures that the resulting file (which is input by \printglossary) adheres to the

glossary style. If you want to use an alternative, you will need to ensure that it can honour

the settings in the ist file or find some way to convert the ist file into an equivalent

set of instructions.

This option works best if you want to sort entries according to the Basic Latin alphabet and

you don’t want to install Perl or Java. This method can also work with the restricted shell escape

since makeindex is considered a trusted application, which means you should be able to use

the automake=immediate or automake=true package option provided the shell

escape hasn’t been completely disabled.

This method can form ranges in the number list but only accepts limited number formats:

\arabic, \roman, \Roman, \alph and \Alph.
This option does not allow a mixture of sort methods. All glossaries must be sorted according

to the same method: word/letter ordering or order of use or order of definition. If you need word

ordering for one glossary and letter ordering for another you’ll have to explicitly call make-
index for each glossary type.

glossaries-extra

The glossaries-extra package allows a hybrid mix of Options 1 and 2 to provide word/

letter ordering with Option 2 and order of use/definition with Option 1. See the glossaries

-extra documentation for further details. See also the glossaries-extra alternative to

sampleSort.tex in §18.5.

Summary:

1. If you want to use makeindex’s -g option you must change the quote character using

\GlsSetQuote. For example:

�

\GlsSetQuote{+}

This must be used before \makeglossaries. Note that if you are using babel, the

shorthands aren’t enabled until the start of the document, so you won’t be able to use the

shorthands in definitions that occur in the preamble.

2. Add

�

\makeglossaries

16

1. Introduction

to your preamble (before you start defining your entries, as described in §4).

3. Put

�

\printglossary

where you want your list of entries to appear (described in §8). Alternatively, to display

all glossaries use the iterative command:

�

\printglossaries

4. Run LATEX on your document. This creates files with the extensions glo and ist (for

example, if your LATEX document is called myDoc.tex, then you’ll have two extra files
called myDoc.glo and myDoc.ist). If you look at your document at this point,

you won’t see the glossary as it hasn’t been created yet. (If you use glossaries-extra you’ll
see the section heading and some boilerplate text.)

If you have used package options such as symbols there will also be other sets of files

corresponding to the extra glossaries that were created by those options.

5. Run makeindex with the glo file as the input file and the ist file as the style so that

it creates an output file with the extension gls:

�

makeindex -s myDoc.ist -o myDoc.gls myDoc.glo

(Replace myDoc with the base name of your LATEX document file. Avoid spaces in the

file name if possible.)

�

The file extensions vary according to the glossary type. See §1.6.4 for further

details. makeindex must be called for each set of files.

If you don’t know how to use the command prompt, then you can probably access make-
index via your text editor, but each editor has a different method of doing this. See

Incorporating makeglossaries or makeglossaries-lite or bib2gls into the document build4

for some examples.

Alternatively, run makeindex indirectly via the makeglossaries script:

4dickimaw-books.com/latex/buildglossaries/

17

https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/

1. Introduction

�

makeglossaries myDoc

Note that the file extension isn’t supplied in this case. (Replace makeglossaries
with makeglossaries-lite if you don’t have Perl installed.) This will pick up

all the file extensions from the aux file and run makeindex the appropriate number

of times with all the necessary switches.

The simplest approach is to use arara and add the following comment lines to the start

of your document:

�

% arara: pdflatex
% arara: makeglossaries
% arara: pdflatex

(Replace makeglossaries with makeglossarieslite in the second line

above if you don’t have Perl installed. Note that there’s no hyphen in this case.)

The default sort is word order (“sea lion” comes before “seal”). If you want letter ordering

you need to add the -l switch:

�

makeindex -l -s myDoc.ist -o myDoc.gls myDoc.glo

(See §1.6.4 for further details on using makeindex explicitly.) If you use make-
glossaries ormakeglossaries-lite then use theorder=letter pack-

age option and the -l option will be added automatically.

6. Once you have successfully completed the previous step, you can now run LATEX on your

document again.

You’ll need to repeat the last step if you have used thetoc option (unless you’re using glossaries

-extra) to ensure the section heading is added to the table of contents. You’ll also need to repeat
steps 5 and 6 if you have any cross-references which can’t be indexed until the indexing file has

been created.

1.3.3. Option 3 (xindy)

�

Sincexindywas designed for indexes, it doesn’t fully integrate with the glossaries pack-

age, which has more complex use cases than a simple index. A better solution is to use

bib2gls which is developed alongside glossaries-extra and so provides better inte-

gration. See the xindy home page http://www.xindy.org/ for the xindy
documentation, and links to the mailing list and issue tracker.

18

http://www.xindy.org/

1. Introduction

Example 5 on the following page demonstrates a simple document that requires xindy:
�5

�

\documentclass{article}
\usepackage[xindy,style=indexgroup]{glossaries}
\makeglossaries % open indexing files
\newglossaryentry{parrot}{name={parrot},
description={a brightly coloured tropical bird}}

\newglossaryentry{duck}{name={duck},
description={a waterbird}}

\newglossaryentry{puffin}{name={puffin},
description=

{a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
description={a flightless black and white seabird}

}
% a symbol:
\newglossaryentry{alpha}{name={\ensuremath{\alpha}},
sort={alpha},description={a variable}}
% an acronym:
\setacronymstyle{short-long}
\newacronym{arpanet}{ARPANET}
{Advanced Research Projects Agency Network}
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
\printglossary
\end{document}

You can place all your entry definitions in a separate file and load it in the preamble with\load-
glsentries (after \makeglossaries). The result is the same as for Example 3 on

page 12 and Example 4 on page 15.

19

1. Introduction

�

Example 5: Simple document that uses xindy to sort entries �� ��

Puffin, duck and parrot. ARPANET (Advanced Research Projects Agency
Network) and α. Next use: ARPANET.

Glossary

A

α a variable. 1
ARPANET Advanced Research Projects Agency Network. 1

D

duck a waterbird. 1

P

parrot a brightly coloured tropical bird. 1
puffin a seabird with a brightly coloured bill. 1

This option uses a CLI application called xindy to sort the entries. This application is more

flexible than makeindex and is able to sort extended Latin alphabets or non-Latin alphabets,

however it does still have some limitations. (See Example 9 on page 48 for an example with

UTF-8 characters.)

The xindy application comes with both TEX Live and MikTEX, but since xindy is a

Perl script, you will also need to install Perl, if you don’t already have it. In a similar way to

Option 2, this option involves making LATEX write the glossary information to a temporary file

which xindy reads. Then xindywrites a new file containing the code to typeset the glossary.

Then \printglossary reads this file in on the next run.

This is the best option with just the base glossaries package if you want to sort according to

a language other than English or if you want non-standard location lists, but it can require some

setting up (see §14). There are some problems with certain sort values:

• entries with the same sort value are merged by xindy into a single glossary line so you

must make sure that each entry has a unique sort value;

• xindy forbids empty sort values;

• xindy automatically strips control sequences, the math-shift character $ and braces {}
from the sort value, which is usually desired but this can cause the sort value to collapse

to an empty string which xindy forbids.

In these problematic cases, you must set thesort field explicitly, as in the above example which

has:

20

% This file is embedded in glossaries-user.pdf
% Example 5 Simple document that uses xindy to sort entries
% Label: "ex:xdy"
% arara: pdflatex
% arara: makeglossaries
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[xindy,style=indexgroup]{glossaries}
\makeglossaries % open \dglspl {indexingfile}
 \newglossaryentry{parrot}{name={parrot},
 description={a brightly coloured tropical bird}}
\newglossaryentry{duck}{name={duck},
 description={a waterbird}}
\newglossaryentry{puffin}{name={puffin},
 description={a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
 description={a flightless black and white seabird}}
% a symbol:
 \newglossaryentry{alpha}{name={\ensuremath{\alpha}},
 sort={alpha},description={a variable}}
% an acronym:
 \setacronymstyle{short-long}
 \newacronym{arpanet}{ARPANET}{Advanced Research Projects Agency Network}
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
\printglossary
\end{document}

Nicola Talbot
Simple document that uses xindy to sort entries (source code)
Example document that defines some entries, references a subset of them in the document and displays a sorted list of the referenced entries: alpha, ARPANET, duck, parrot and puffin. There are three letter groups, headed A, D and P (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example005.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example005.pdf

1. Introduction

�

\newglossaryentry{alpha}{name={\ensuremath{\alpha}},
sort={alpha},description={a variable}
}

glossaries-extra

The glossaries-extra package has a modified symbols package option that provides

\glsxtrnewsymbol, which automatically sets the sort key to the entry label (in-

stead of the name).

All glossaries must be sorted according to the same method (word/letter ordering, order of

use, or order of definition).

glossaries-extra

The glossaries-extra package allows a hybrid mix of Options 1 and 3 to provide word/

letter ordering with Option 3 and order of use/definition with Option 2. See the glossaries

-extra documentation for further details.

Summary:

1. Add the xindy option to the glossaries package option list:

�

\usepackage[xindy]{glossaries}

If you are using a non-Latin script you’ll also need to either switch off the creation of the

number group:

�

\usepackage[xindy={glsnumbers=false}]
{glossaries}

or use either \GlsSetXdyFirstLetterAfterDigits{〈letter〉} (to indicate

the first letter group to follow the digits) or \GlsSetXdyNumberGroupOrder
{〈spec〉} to indicate where the number group should be placed (see §14).

2. Add \makeglossaries to your preamble (before you start defining your entries, as

described in §4).

3. Run LATEX on your document. This creates files with the extensions glo and xdy (for

example, if your LATEX document is called myDoc.tex, then you’ll have two extra files
calledmyDoc.glo andmyDoc.xdy). If you look at your document at this point, you
won’t see the glossary as it hasn’t been created yet. (If you’re using the glossaries-extra
extension package, you’ll see the section header and some boilerplate text.)

21

1. Introduction

If you have used package options such as symbols there will also be other sets of files

corresponding to the extra glossaries that were created by those options.

4. Run xindy with the glo file as the input file and the xdy file as a module so that it

creates an output file with the extension gls. You also need to set the language name and
input encoding, as follows (all on one line):

�

xindy -L english -C utf8 -I xindy -M myDoc -t
myDoc.glg -o myDoc.gls myDoc.glo

(ReplacemyDocwith the base name of your LATEX document file. Avoid spaces in the file

name. If necessary, also replace english with the name of your language and utf8
with your input encoding, for example, -L german -C din5007-utf8.)

�

The file extensions vary according to the glossary type. See §1.6.3 for further

details. xindy must be called for each set of files.

It’s much simpler to use makeglossaries instead:

�

makeglossaries myDoc

Note that the file extension isn’t supplied in this case. This will pick up all the file ex-

tensions from the aux file and run xindy the appropriate number of times with all the

necessary switches.

There’s no benefit in using makeglossaries-lite with xindy. (Remember

that xindy is a Perl script so if you can use xindy then you can also use make-
glossaries, and if you don’t want to use makeglossaries because you don’t

want to install Perl, then you can’t use xindy either.)

If you don’t know how to use the command prompt, then you can probably access xindy
or makeglossaries via your text editor, but each editor has a different method of

doing this. See Incorporating makeglossaries or makeglossaries-lite or bib2gls into the

document build5 for some examples.

Again, a convenient method is to use arara and add the follow comment lines to the

start of your document:

�

% arara: pdflatex
% arara: makeglossaries

5dickimaw-books.com/latex/buildglossaries/

22

https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/

1. Introduction

% arara: pdflatex

The default sort is word order (“sea lion” comes before “seal”). If you want letter ordering

you need to add the order=letter package option:

�

\usepackage[xindy,order=letter]{glossaries}

(and return to the previous step). This option is picked up by makeglossaries. If
you are explicitly using xindy then you’ll need to add -M ord/letorder to the

options list. See §1.6.3 for further details on using xindy explicitly.

5. Once you have successfully completed the previous step, you can now run LATEX on your

document again. As with makeindex (Option 2), you may need to repeat the previous

step and this step to ensure the table of contents and cross-references are resolved.

1.3.4. Option 4 (bib2gls)

This option is only available with the glossaries-extra extension package. This method uses glossaries

-extrabib2gls to both fetch entry definitions from bib files and to hierarchically sort and collate.

The bib2gls application is designed specifically for, and developed alongside, the glossaries

-extra package.
Example 6 on page 25 demonstrates a simple document that requires bib2gls:

�6

�

\documentclass{article}
\usepackage[record,style=indexgroup]{glossaries-
extra}
\setabbreviationstyle{short-long}
% data in sample-entries.bib:
\GlsXtrLoadResources[src={sample-entries}]
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
\printunsrtglossary
\end{document}

Note that the abbreviation style must be set before \GlsXtrLoadResources. The file
sample-entries.bib contains:

23

1. Introduction

�

@entry{parrot,
name={parrot},
description={a brightly coloured tropical bird}
}
@entry{duck,
name={duck},
description={a waterbird}
}
@entry{puffin,
name={puffin},
description={a seabird with a brightly
coloured bill}
}
@entry{penguin,
name={penguin},
description={a flightless black and white seabird}
}
@symbol{alpha,
name={\ensuremath{\alpha}},
description={a variable}
}
@abbreviation{arpanet,
short={ARPANET},
long={Advanced Research Projects Agency Network}

}

The result is slightly different from the previous examples. Letter groups aren’t created by de-

fault with bib2gls so, even though the glossary style supports letter groups, there’s no group

information. This can be added by invoking bib2gls with the --group switch.

24

1. Introduction

�

Example 6: Simple document that uses bib2gls to sort entries �� ��

Puffin, duck and parrot. ARPANET (Advanced Research Projects Agency
Network) and α. Next use: ARPANET.

Glossary

α a variable 1
ARPANET Advanced Research Projects Agency Network 1
duck a waterbird 1
parrot a brightly coloured tropical bird 1
puffin a seabird with a brightly coloured bill 1

All entries must be provided in one or more bib files. (See the bib2gls user manual for

the required format.) In this example, the terms “parrot”, “duck”, “puffin” and “penguin” are de-

fined using @atentry, the symbol alpha (α) is defined using @symbol and the abbreviation

“ARPANET” is defined using@abbreviation. See Example 10 on page 51 for an example
with UTF-8 content.

�

Note that the sort key should not be used. Each entry type (@entry, @symbol,
@abbreviation) has a particular field that’s used for the sort value by default

(name, the label, short). You will break this mechanism if you explicitly use the

sort key. See bib2gls gallery: sortinga for examples.

adickimaw-books.com/gallery/index.php?label=bib2gls-sorting

The glossaries-extra package needs to be loaded with the record package option:

�

\usepackage[record]{glossaries-extra}

or (equivalently)

�

\usepackage[record=only]{glossaries-extra}

or (with glossaries-extra v1.37+ and bib2gls v1.8+):

�

\usepackage[record=nameref]{glossaries-extra}

25

% This file is embedded in glossaries-user.pdf
% Example 6 Simple document that uses bib2gls to sort entries
% Label: "ex:b2g"
% arara: pdflatex
% arara: bib2gls
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\begin{filecontents*}{sample-entries.bib}
@entry{parrot,
 name={parrot},
 description={a brightly coloured tropical bird}
}
@entry{duck,
 name={duck},
 description={a waterbird}
}
@entry{puffin,
 name={puffin},
 description={a seabird with a brightly coloured bill}
}
@entry{penguin,
 name={penguin},
 description={a flightless black and white seabird}
}
@symbol{alpha,
 name={\ensuremath{\alpha}},
 description={a variable}
}
@abbreviation{arpanet,
 short={ARPANET},
 long={Advanced Research Projects Agency Network}
}
\end{filecontents*}
\usepackage[record,style=indexgroup]{glossaries-extra}
\setabbreviationstyle{short-long}
\GlsXtrLoadResources[src={sample-entries}]% data in sample-entries.bib

\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
\printunsrtglossary
\end{document}

Nicola Talbot
Simple document that uses bib2gls to sort entries (source code)
Example document that defines some entries, references a subset of them in the document and displays a sorted list of the referenced entries: alpha, ARPANET, duck, parrot and puffin. There are no letter groups (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example006.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example006.pdf
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

1. Introduction

The record=nameref option is the best method if you are using hyperref.

Each resource set is loaded with \GlsXtrLoadResources. For example:

�

\GlsXtrLoadResources
[% definitions in entries1.bib and entries2.bib:
src={entries1,entries2},
sort={de-CH-1996}% sort according to this locale
]

The bib files are identified as a comma-separated list in the value of the src key. The sort
option identifies the sorting method. This may be a locale identifier for alphabetic sorting, but

there are other sort methods available, such as character code or numeric. One resource set

may cover multiple glossaries or one glossary may be split across multiple resource sets, forming

logical sub-blocks.

If you want to ensure that all entries are selected, even if they haven’t been referenced in

the document, then add the option selection=all. (There are also ways of filtering the
selection or you can even have a random selection by shuffling and truncating the list. See the

bib2gls user manual for further details.)

The glossary is displayed using:

�

\printunsrtglossary

Alternatively all glossaries can be displayed using the iterative command:

�

\printunsrtglossaries

The document is built using:

�

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc

If letter groups are required, you need the --group switch:

�

bib2gls --group myDoc

or with arara:

26

1. Introduction

�

% arara: bib2gls: { group: on }

(You will also need an appropriate glossary style.)

Unlike Options 2 and 3, this method doesn’t create a file containing the typeset glossary but

simply determines which entries are needed for the document, their associated locations and

(if required) their associated letter group. This option allows a mixture of sort methods. For

example, sorting by word order for one glossary and order of use for another or even sorting one

block of the glossary differently to another block in the same glossary. See bib2gls gallery:

sorting.6

This method supports Unicode and uses the CLDR, which provides more extensive language

support thanxindy. (Except for Klingon, which is supported byxindy, but not by the CLDR.)
The locations in the number list may be in any format. If bib2gls can deduce a numerical

value it will attempt to form ranges otherwise it will simply list the locations.

Summary:

1. Use glossaries-extra with the record package option:

�

\usepackage[record]{glossaries-extra}

2. Use\GlsXtrLoadResources to identify thebib file(s) andbib2gls options.

The bib extension may be omitted:

�

\GlsXtrLoadResources[src=
{terms.bib,abbreviations.bib},sort=en]

3. Put

�

\printunsrtglossary

where you want your list of entries to appear. Alternatively to display all glossaries use the

iterative command:

�

\printunsrtglossaries

6dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

27

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

1. Introduction

4. Run LATEX on your document.

5. Run bib2gls with just the document base name.

6. Run LATEX on your document.

See glossaries-extra and bib2gls: An Introductory Guide7 or the bib2gls user manual

for further details of this method, and also Incorporating makeglossaries or makeglossaries-lite

or bib2gls into the document build.8

1.3.5. Option 5 (“unsrt”)

This option is only available with the extension package glossaries-extra. No indexing applica- glossaries

-extration is required.

Example 7 on the following page demonstrates this method:
�7

�

\documentclass{article}
\usepackage[style=indexgroup]{glossaries-extra}
\newglossaryentry{parrot}{name={parrot},
description={a brightly coloured tropical bird}}

\newglossaryentry{duck}{name={duck},
description={a waterbird}}

\newglossaryentry{puffin}{name={puffin},
description=

{a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
description={a flightless black and white seabird}

}
% a symbol:
\newglossaryentry{alpha}{name={\ensuremath{\alpha}},
description={a variable}}
% an abbreviation:
\setabbreviationstyle{short-long}
\newabbreviation{arpanet}{ARPANET}
{Advanced Research Projects Agency Network}
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
\printunsrtglossary
\end{document}

7mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
8dickimaw-books.com/latex/buildglossaries/

28

http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
https://www.dickimaw-books.com/latex/buildglossaries/

1. Introduction

You can place all your entry definitions in a separate file and load it in the preamble with\load-
glsentries. There’s no “activation” command (such as \makeglossaries for Op-

tions 2 and 3).

The result is different from the previous examples. Now all entries are listed in the glossary,

including “penguin” which hasn’t been referenced in the document, and the list is in the order

that the entries were defined. There are no number lists.

�

Example 7: Simple document with an unsorted list of all defined entries �� ��

Puffin, duck and parrot. ARPANET (Advanced Research Projects Agency
Network) and α. Next use: ARPANET.

Glossary

P

parrot a brightly coloured tropical bird

D

duck a waterbird

P

puffin a seabird with a brightly coloured bill
penguin a flightless black and white seabird

A

α a variable
ARPANET Advanced Research Projects Agency Network

Note that the letter groups are fragmented because the list isn’t in alphabetical order, so there are

two “P” letter groups.

The \printunsrtglossary command simply iterates over the set of all defined en-

tries associated with the given glossary and lists them in the order of definition. This means that

child entries must be defined immediately after their parent entry if they must be kept together

in the glossary. Some glossary styles indent entries that have a parent but it’s the indexing appli-

cation that ensures the child entries are listed immediately after the parent. If you’re opting to

use this manual approach then it’s your responsibility to define the entries in the correct order.

The glossaries-extra package requires entries to be defined in the preamble by default. It’s

possible to remove this restriction, but bear in mind that any entries defined after \print-
unsrtglossary won’t be listed.

The glossary is displayed using:

29

% This file is embedded in glossaries-user.pdf
% Example 7 Simple document with an unsorted list of all defined entries
% Label: "ex:unsrt"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[style=indexgroup]{glossaries-extra}
\newglossaryentry{parrot}{name={parrot},
 description={a brightly coloured tropical bird}}
\newglossaryentry{duck}{name={duck},
 description={a waterbird}}
\newglossaryentry{puffin}{name={puffin},
 description={a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
 description={a flightless black and white seabird}}
% a symbol:
 \newglossaryentry{alpha}{name={\ensuremath{\alpha}},
 sort={alpha},description={a variable}}
% an abbreviation:
 \setabbreviationstyle{short-long}
\newabbreviation{arpanet}{ARPANET}{Advanced Research Projects Agency Network}
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
% entries are listed in order of definition
 \printunsrtglossary
\end{document}

Nicola Talbot
Simple document with an unsorted list of all defined entries (source code)
Example document that defines some entries, references a subset of them in the document and displays an unsorted list of the defined entries: parrot, duck, puffin, penguin, alpha and ARPANET. There are four letter groups with a repeated letter: P, D, P, A (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example007.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example007.pdf

1. Introduction

�

\printunsrtglossary

Alternatively all glossaries can be displayed using the iterative command:

�

\printunsrtglossaries

This method will display all defined entries, regardless of whether or not they have been used

in the document. Note that this uses the same command for displaying the glossary as Option 4.

This is because bib2gls takes advantage of this method by defining the wanted entries in

the required order and setting the locations (and letter group information, if required). See the

glossaries-extra manual for further details.
Therefore, the above example document has a glossary containing the entries: parrot, duck,

puffin, penguin, α and ARPANET (in that order). Note that the “penguin” entry has been in-

cluded even though it wasn’t referenced in the document.

This just requires a single LATEX call:

�

pdflatex myDoc

unless the glossary needs to appear in the table of contents, in which case a second run is required:

�

pdflatex myDoc
pdflatex myDoc

(Naturally if the document also contains citations, and so on, then additional steps are required.

Similarly for all the other options above.)

See the glossaries-extra documentation for further details of this method.

1.3.6. Option 6 (“standalone”)

This option is only available with the glossaries-extra extension package. (You can just use glossaries

-extrathe base glossaries package for the first case, but it’s less convenient. You’d have to manually

insert the entry target before the sectioning command and use \glsentryname{〈label〉}
or \Glsentryname{〈label〉} to display the entry name.) Instead of creating a list, this has

standalone definitions throughout the document. The entry name may or may not be in a section

heading.

You can either define entries in the preamble (or in an external file loaded with \loadgls-
entries), as with Option 5, or use bib2gls if you want to manage a large database of

terms.

Example 8 on page 32 demonstrates standalone definitions without bib2gls:
�8

30

1. Introduction

�

\documentclass{article}

\usepackage[colorlinks]{hyperref}
\usepackage[sort=none,

nostyles% <- no glossary styles are required
]{glossaries-extra}

\newglossaryentry{set}{name={set},
description={a collection of any kind of objects},
symbol={\ensuremath{\mathcal{S}}}

}

\newglossaryentry{function}{name={function},
description=

{a rule that assigns every element in the
domain \gls{set} to an element in the range \gls

{set}},
symbol={\ensuremath{f(x)}}

}
\newcommand*{\termdef}[1]{%
\section{\Glsxtrglossentry{#1} \glsentrysymbol{#1}

}%
\begin{quote}\em\Glsentrydesc{#1}.\end{quote}%

}
\begin{document}
\tableofcontents

\section{Introduction}
Sample document about \glspl{function} and \glspl
{set}.

\termdef{set}

More detailed information about \glspl{set}
with examples.

\termdef{function}

More detailed information about \glspl{function}
with examples.

31

1. Introduction

\end{document}

This allows the references to hyperlink to the standalone definitions rather than to a glossary.

�

Example 8: Simple document with standalone entries �� ��

Contents

1 Introduction 1

2 Set S 1

3 Function f(x) 1

1 Introduction

Sample document about functions and sets.

2 Set S
A collection of any kind of objects.

More detailed information about sets with examples.

3 Function f (x)

A rule that assigns every element in the domain set to an element
in the range set.

More detailed information about functions with examples.

The above example can be modified to use bib2gls if the terms are defined in one or more

bib files:

�

\documentclass{article}

\usepackage[colorlinks]{hyperref}
\usepackage[record,

nostyles% <- no glossary styles are required

32

% This file is embedded in glossaries-user.pdf
% Example 8 Simple document with standalone entries
% Label: "ex:standalone"
% arara: pdflatex
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[colorlinks]{hyperref}
\usepackage[sort=none,
 nostyles% <- no glossary styles are required
]{glossaries-extra}

\newglossaryentry{set}{name={set},
 description={a collection of any kind of objects},
 symbol={\ensuremath{\mathcal{S}}}
}

\newglossaryentry{function}{name={function},
 description={a rule that assigns every element in the
 domain \gls{set} to an element in the range \gls{set}},
 symbol={\ensuremath{f(x)}} }
\newcommand*{\termdef}[1]{%
 \section{\Glsxtrglossentry{#1} \glsentrysymbol{#1}}%
 \begin{quote}\em\Glsentrydesc{#1}.\end{quote}%
}
\begin{document}
\tableofcontents

\section{Introduction}
Sample document about \glspl{function} and \glspl{set}.

\termdef{set}

More detailed information about \glspl{set} with examples.

\termdef{function}

More detailed information about \glspl{function} with examples.
\end{document}

Nicola Talbot
Simple document with standalone entries (source code)
Example document that defines entries and displays them in the document. (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example008.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example008.pdf

1. Introduction

]{glossaries-extra}

\GlsXtrLoadResources[src={terms},sort=none,save
-locations=false]

\newcommand*{\termdef}[1]{%
\section{\Glsxtrglossentry{#1} \glossentrysymbol

{#1}}%
\glsadd{#1}% <- index this entry
\begin{quote}\em\Glsentrydesc{#1}.\end{quote}%

}
\begin{document}
\tableofcontents

\section{Introduction}
Sample document about \glspl{function} and \glspl
{set}.

\termdef{set}

More detailed information about \glspl{set}
with examples.

\termdef{function}

More detailed information about \glspl{function}
with examples.
\end{document}

Where the file terms.bib contains:

�

@entry{set,
name={set},
description={a collection of any kind of objects},
symbol={\ensuremath{\mathcal{S}}}

}
@entry{function,
name={function},
description=

{a rule that assigns every element in the domain
\gls{set} to an element in the range \gls{set}},

33

1. Introduction

symbol={\ensuremath{f(x)}}
}

The advantage in this approach (with \loadglsentries or bib2gls) is that you can
use an existing database of entries shared across multiple documents, ensuring consistent notation

for all of them.

In both cases, there’s no need to load all the glossary styles packages, as they’re not required,

so I’ve used the nostyles package option to prevent them from being loaded.

In the first case, you just need to define the terms (preferably in the preamble or in a file that’s

input in the preamble). No external tool is required. Just run LATEX as normal. (Twice to ensure

that the table of contents is up to date.)

�

pdflatex myDoc
pdflatex myDoc

In the second case, you need the record package option (as in Option 4) since bib2gls
is needed to select the required entries, but you don’t need a sorted list:

�

\GlsXtrLoadResources[src={terms},sort=none]

This will ensure that any entries indexed in the document (through commands like \gls or

\glsadd) will be selected by bib2gls, but it will skip the sorting step. (The chances

are you probably also won’t need location lists either. If so, you can add the option save
-locations=false.)
Remember that for this second case you need to run bib2gls as per Option 4:

�

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc
pdflatex myDoc

For both cases (with or without bib2gls), instead of listing all the entries using \print-
unsrtglossary, you use\glsxtrglossentry{〈label〉}where you want the name

(and anchor with hyperref) to appear in the document. This will allow the link text created by

commands like \gls to link to that point in the document. The description can simply be

displayed with \glsentrydesc{〈label〉} or \Glsentrydesc{label}, as in the

above examples. In both examples, I’ve defined a custom command \termdef to simplify

the code and ensure consistency. Extra styling, such as placing the description in a coloured

frame, can be added to this custom definition as required.

(Instead of using \glsentrydesc or \Glsentrydesc, you can use \gloss-
entrydesc{〈label〉}, whichwill obey category attributes such asglossdesc andgloss-

34

1. Introduction

descfont. See the glossaries-extra manual for further details.)
The symbol (if required) can be displayed with either \glsentrysymbol{〈label〉} or

\glossentrysymbol{〈label〉}. In the first example, I’ve used\glsentrysymbol.
In the second I’ve used \glossentrysymbol. The latter is necessary with bib2gls if

the symbol needs to go in a section title as the entries aren’t defined on the first LATEX run.

In normal document text, \glsentrysymbol will silently do nothing if the entry hasn’t

been defined, but when used in a section heading it will expand to an undefined internal command

when written to the aux file, which triggers an error.

The \glossentrysymbol command performs an existence check, which triggers a

warning if the entry is undefined. (All entries will be undefined before the first bib2gls call.)

You need at least glossaries-extra v1.42 to use this command in a section title. (\gloss-
entrysymbol is defined by the base glossaries package but is redefined by glossaries-extra.)
If hyperref has been loaded, this will use \texorpdfstring to allow a simple expansion

for the PDF bookmarks (see the glossaries-extra user manual for further details).
If you want to test if thesymbol field has been set, you need to use\ifglshassymbol

outside of the section title. For example:

�

\ifglshassymbol{#1}%
{\section{\glsxtrglossentry{#1} \glossentrysymbol
{#1}}}
{\section{\glsxtrglossentry{#1}}}

In both of the above examples, the section titles start with a lowercase character (because the

name value is all lowercase in entry definitions). You can apply automatic case change with the

glossname category attribute. For example:

�

\glssetcategoryattribute{general}{glossname}
{firstuc}

or (for title-case)

�

\glssetcategoryattribute{general}{glossname}{title}

However, this won’t apply the case change in the table of contents or bookmarks. Instead you can

use helper commands provided by glossaries-extra v1.49+ but make sure you have up-to-date

versions of glossaries and mfirstuc.

In the second example, you can instead use bib2gls to apply a case change. For example,

to apply sentence case to the name field:

35

1. Introduction

�

\GlsXtrLoadResources[src={terms},
sort=none,save-locations=false,
replicate-fields={name=text},
name-case-change=firstuc
]

(Or name-case-change=title for title case.) This copies the name value to the

text field and then applies a case change to the name field (leaving the text field un-

changed). The name in the section titles now starts with a capital but the link text produced

by commands like \gls is still lowercase.

In the first example (without bib2gls) you can do this manually. For example:

�

\newglossaryentry{set}{name={Set},text={set},
description={a collection of any kind of objects},
symbol={\ensuremath{\mathcal{S}}}

}

A more automated solution can be obtained with the standalone helper commands for the PDF

bookmark and heading text (glossaries-extra v1.49+).
Note that if you use the default save-locations=true with bib2gls, it’s possible

to combine Options 4 and 6 to have both standalone definitions and an index. In this case, a

glossary style is required. In the example below, I’ve use bookindex, which is provided in the

glossary-bookindex package (bundled with glossaries-extra). I don’t need any of the other style
packages, so I can still keep the nostyles option and just load glossary-bookindex:

�

\usepackage[record=nameref,% <- using bib2gls
nostyles,% <- don't load default style packages
stylemods=
bookindex,% <- load glossary-bookindex.sty
style=book-
index% <- set the default style to 'bookindex'
]{glossaries-extra}

I also need to sort the entries, so the resource command is now:

�

\GlsXtrLoadResources[src={terms}
,% definitions in terms.bib
sort=en-GB,% sort by this locale

36

1. Introduction

replicate-fields={name=text},
name-case-change=firstuc
]

At the end of the document, I can add the glossary:

�

\printunsrtglossary[title=Index,target=false]

Note that I’ve had to switch off the hypertargets withtarget=false (otherwise there would

be duplicate targets). If you want letter group headings you need to use the --group switch:

�

bib2gls --group myDoc

or if you are using arara:

�

% arara: bib2gls: { group: on }

The bookindex style doesn’t show the description, so only the name and location is displayed.

Remember that the name has had a case change so it now starts with an initial capital. If you feel

this is inappropriate for the index, you can adjust the bookindex style so that it uses the text
field instead. For example:

�

\renewcommand*{\glsxtrbookindexname}[1]{%
\glossentrynameother{#1}{text}}

See the glossaries-extra user manual for further details about this style.
Note that on the first LATEX run none of the entries will be defined. Once they are defined, the

page numbers may shift due to the increased amount of document text. You may therefore need

to repeat the document build to ensure the page numbers are correct.

If there are extra terms that need to be included in the index that don’t have a description, you

can define them with @index in the bib file. For example:

�

@index{element}
@index{member,alias={element}}

They can be used in the document as usual:

37

1. Introduction

�

The objects that make up a set are the \glspl
{element}
or \glspl{member}.

See glossaries-extra and bib2gls: An Introductory Guide9 or the bib2gls user manual

for further details.

1.4. Dummy Entries for Testing

In addition to the sample files described in §18, glossaries also provides some files containing

lorum ipsum dummy entries. These are provided for testing purposes and are on TEX’s path (in

tex/latex/glossaries/test-entries) so they can be included via \input
or \loadglsentries. The glossaries-extra package provides bib versions of all these

files for use with bib2gls. The files are as follows:

� example-glossaries-brief.tex

These entries all have brief descriptions. For example:

�

\newglossaryentry{lorem}{name={lorem},description=
{ipsum}}

� example-glossaries-utf8.tex

This file is based on example-glossaries-brief.tex but random characters

have been converted to accented characters to test UTF-8 support.

� example-glossaries-long.tex

These entries all have long descriptions. For example:

�

\newglossaryentry{loremipsum}{name={lorem ipsum},
description={dolor sit amet, consectetuer adipiscing
elit. Ut purus elit, vestibulum ut, placerat ac,
adipiscing vitae, felis. Curabitur dictum gravida
mauris.}}

� example-glossaries-multipar.tex

These entries all have multi-paragraph descriptions. For example:

9mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf

38

http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf

1. Introduction

�

\longnewglossaryentry{loremi-ii}{name={lorem 1--2}}
%
{%
Lorem ipsum ...

Nam dui ligula...
}

� example-glossaries-symbols.tex

These entries all use the symbol key. For example:

�

\newglossaryentry{alpha}{name={alpha},
symbol={\ensuremath{\alpha}},
description={Quisque ullamcorper placerat ipsum.}}

� example-glossaries-symbolnames.tex

Similar to the previous file but the symbol key isn’t used. Instead the symbol is stored in

the name key. For example:

�

\newglossaryentry{sym.alpha}{sort={alpha},
name={\ensuremath{\alpha}},
description={Quisque ullamcorper placerat ipsum.}}

� example-glossaries-user.tex

The top level (level 0) entries have the symbol key and all user1, …, user6 keys set.

For example:

�

\newglossaryentry{sample-a}
{name={a name},
description={a description},
symbol={\ensuremath{\alpha}},
user1={A},
user2={1},
user3={i},
user4={A-i},
user5={25.2020788573521},
user6={1585-11-06}}

39

1. Introduction

There are also some level 1 entries, which may or may not have the symbol and user keys set.

For example:

�

\newglossaryentry{sample-b-0}
{parent={sample-b},
name={b/0 name},
description={child 0 of b},
symbol={\ensuremath{\sigma}},
user2={0},
user4={a-i}}

There are no deeper hierarchical entries. Where set, the user1 key is an uppercase letter (A–

Z), the user2 key is an integer, the user3 key is a lowercase Roman numeral, the user4
key is in the form 〈alpha〉-〈roman〉 where 〈alpha〉 is either an upper or lowercase letter (a–z or
A–Z) and 〈roman〉 is either an upper or lowercase Roman numeral. Theuser5 key is a random

number (in the range (−50,+50) for top level (level 0) entries and (−1,+1) for child entries).
The user6 key is a random date between 1000-01-01 and 2099-12-31.

� example-glossaries-images.tex

These entries use theuser1 key to store the name of an image file. (The images are provided

by the mwe package and should be on TEX’s path.) One entry doesn’t have an associated image

to help test for a missing key. The descriptions are long to allow for tests with the text wrapping

around the image. For example:

�

\longnewglossaryentry{sedfeugiat}{name={sed feugiat}
,
user1={example-image}}%
{%
Cum sociis natoque...

Etiam...
}

� example-glossaries-acronym.tex

These entries are all acronyms. For example:

�

\newacronym[type={\glsdefaulttype}]{lid}{LID}
{lorem ipsum
dolor}

40

1. Introduction

glossaries-extra

If you use the glossaries-extra extension package, then \newacronym is redefined

to use \newabbreviation with the category key set to acronym (rather than

the default abbreviation). This means that you need to set the abbreviation style for the

acronym category. For example:

�

\setabbreviationstyle[acronym]{long-short}

� example-glossaries-acronym-desc.tex

This file contains entries that are all acronyms that use the description key. For exam-

ple:

�

\newacronym[type={\glsdefaulttype},
description={fringilla a, euismod sodales,
sollicitudin vel, wisi}]{ndl}{NDL}{nam dui ligula}

glossaries-extra

If you use the glossaries-extra extension package, then \newacronym is redefined

to use \newabbreviation with the category key set to acronym (rather than

the default abbreviation). This means that you need to set the abbreviation style for the

acronym category. For example:

�

\setabbreviationstyle[acronym]{long-short-desc}

� example-glossaries-acronyms-lang.tex

These entries are all acronyms, where some of them have a translation supplied in the user1
key. For example:

�

\newacronym[type={\glsdefaulttype},user1=
{love itself}]
{li}{LI}{lorem ipsum}

glossaries-extra

If you use the glossaries-extra extension package, then \newacronym is redefined

to use \newabbreviation with the category key set to acronym (rather than

41

1. Introduction

the default abbreviation). This means that you need to set the abbreviation style for the

acronym category. For example:

�

\setabbreviationstyle[acronym]{long-short-user}

� example-glossaries-parent.tex

These are hierarchical entries where the child entries use the name key. For example:

�

\newglossaryentry{sedmattis}{name={sed mattis},
description={erat sit amet}}

\newglossaryentry{gravida}{parent={sedmattis},
name={gravida},description={malesuada}}

� example-glossaries-childnoname.tex

These are hierarchical entries where the child entries don’t use the name key. For example:

�

\newglossaryentry{scelerisque}{name={scelerisque},
description={at}}

\newglossaryentry{vestibulum}{parent={scelerisque},
description={eu, nulla}}

� example-glossaries-longchild.tex

These entries all have long descriptions and there are some child entries. For example:

�

\newglossaryentry{longsedmattis}{name={sed mattis},
description=
{erat sit amet dolor sit amet, consectetuer adipiscing elit.
Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis.
Curabitur dictum gravida mauris.}}

\newglossaryentry{longgravida}{parent=
{longsedmattis},name={gravida},
description=
{malesuada libero, nonummy eget, consectetuer id, vulputate a,

42

1. Introduction

magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique
senectus et netus et malesuada fames ac turpis egestas. Mauris ut
leo.}}

� example-glossaries-childmultipar.tex

This consists of parent entries with single paragraph descriptions and child entries with multi-

paragraph descriptions. Some entries have the user1 key set to the name of an image file

provided by the mwe package. For example:

�

\newglossaryentry{hiersedmattis}{name={sed mattis}
,user1={example-image},
description=
{Erat sit amet dolor sit amet, consectetuer adipiscing elit.
Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur
dictum gravida mauris. Ut pellentesque augue sed urna. Vestibulum
diam eros, fringilla et, consectetuer eu, nonummy id, sapien. Nullam
at lectus. In sagittis ultrices mauris. Curabitur malesuada erat sit
amet massa. Fusce blandit. Aliquam erat volutpat.}}

\longnewglossaryentry{hierloremi-ii}
{name={lorem 1--2},parent={hiersedmattis}}%
{%
Lorem ipsum ...

Nam dui ligula...
}

� example-glossaries-cite.tex

These entries use the user1 key to store a citation key (or comma-separated list of citation

keys). The citations are defined in xampl.bib, which should be available on all modern TEX
distributions. One entry doesn’t have an associated citation to help test for a missing key. For

example:

�

\newglossaryentry{fusce}{name={fusce},
description={suscipit cursus sem},user1={article-
minimal}}

� example-glossaries-url.tex

These entries use the user1 key to store an URL associated with the entry. For example:

43

1. Introduction

�

\newglossaryentry{aenean-url}{name={aenean},
description={adipiscing auctor est},
user1={http://uk.tug.org/}}

The sample fileglossary-lipsum-examples.tex in thedoc/latex/glossaries/samples
directory uses all these files. See also glossaries gallery.10

The glossaries-extra package provides the additional test file: glossaries

-extra
� example-glossaries-xr.tex

These entries use the see key provided by the base glossaries package and also the alias
and seealso keys that require glossaries-extra. For example:

�

\newglossaryentry{alias-lorem}{name={alias-lorem},
description={ipsum},alias={lorem}}

\newglossaryentry{amet}{name={amet},description=
{consectetuer},
see={dolor}}

\newglossaryentry{arcu}name={arcu},description=
{libero},
seealso={placerat,vitae,curabitur}

1.5. Multi-Lingual Support

�

The glossaries package uses the tracklang package to determine the document languages.

Unfortunately, because there isn’t a standard language identification framework provided

with LATEX, tracklang isn’t always able to detect the selected languages either as a result of

using an unknown interface or where the interface doesn’t provide a way of detecting the

language.

You will needed at least version 1.6.4 of tracklang to support babel’s \babelpro-
vide. All instances of\babelprovide need to occur before tracklang is loaded. In

the event that tracklang can’t detect the language, use the languages or locales
package option. See §1.2 and also Localisation with tracklang.texa for further
details.

adickimaw-books.com/latex/tracklang/

10dickimaw-books.com/gallery/#glossaries

44

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples//glossary-lipsum-examples.tex
https://www.dickimaw-books.com/gallery/#glossaries
https://www.dickimaw-books.com/latex/tracklang/
https://www.dickimaw-books.com/latex/tracklang/
https://www.dickimaw-books.com/gallery/#glossaries

1. Introduction

For example (using babel):

�

\documentclass{article}
\usepackage[german]{babel}
\usepackage{glossaries}

This can pick up the language setting but will also automatically load translator. Compare this

with:

�

\documentclass{article}
\usepackage[german]{babel}
\usepackage{glossaries-extra}

This will pick up the language setting but won’t automatically load translator.

In both the above cases, tracklang will automatically be loaded and the language-sensitive

commands provided by glossaries will use the definitions in glossaries-german.ldf
(which needs to be installed separately).

Another example (no language package):

�

\documentclass[german]{article}
\usepackage[translate=true]{glossaries}

The above document doesn’t load babel or polyglossia or translator, but the translate=
true setting will ensure that tracklang is loaded, which will pick up the document class option.

Alternatively, using the locales package option:

�

\usepackage[locales={de-DE,en-GB}]{glossaries}

This will required bothglossaries-german.ldf andglossaries-english.ldf
to be installed. Note that the locales option is a synonym of the languages option, but

semantically localesmakes more sense when using language identifiers that include regions.

Note that if another package has already been loaded that uses tracklang, then the list of

supported locales will be picked up from that package. For example:

�

\usepackage[de-DE,en-GB]{datetime2}
\usepackage{glossaries}

The best method to sort terms that use an extended Latin alphabet or non-Latin alphabet is

with glossaries-extra and bib2gls. This means using a bib file to store the entry data (see

45

1. Introduction

Option 4). If you prefer to only use the base glossaries package, then xindy (Option 3) is the

best option, but be aware that xindy is a general purpose indexing application that’s developed

independently of glossaries (as opposed to bib2gls, which is specifically designed for, and
developed alongside, glossaries-extra and therefore provides better integration).
Note also that bib2gls can support any language provided by the CLDR, whereas xindy

only has a limited number of built-in languages (although more can be added).

�

If you are using a non-Latin script with xindy, you may need the xindynogls-
numbers option or use \GlsSetXdyFirstLetterAfterDigits to indi-

cate the first letter group that should follow the number group.

Example 9 on page 48 demonstrates a document with UTF-8 characters that requires xindy.
�9

If you try this example and encounter errors, check that you have an up-to-date TEX distribution.

Note that with the modern LATEX kernel, the default encoding is assumed to be UTF-8 so I haven’t

bothered loading the inputenc package.

�

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage[main=english,brazilian]{babel}
\usepackage[xindy]{glossaries}

Note the use of the xindy package option, which ensures that all the indexing information is

written in the correct format.

This example is a multilingual document so a second glossary is defined for the Brazilian terms:

�

\newglossary*{dictionary}{\glossaryname}

I could just supply the actual title, but using the language-sensitive \glossaryname (which

is also the title provided for the main glossary) demonstrates the language support.

This document will need to have both glossaries-english and glossaries-
portuges installed in addition to the base glossaries package.

To ensure that the files required by xindy are opened:

�

\makeglossaries

Now define some English terms:

46

1. Introduction

�

\newglossaryentry{élite}{name={élite},
description={select group or class}}
\newglossaryentry{elephant}{name={elephant},
description={large animal with trunk and tusks}}
\newglossaryentry{elk}{name={elk}, description=
{large deer}}

And here are the terms that need to go in the custom “dictionary” glossary:

�

\newglossaryentry{água}{name={água},
type={dictionary},
description={water}}
\newglossaryentry{árvore}{name={árvore},
type={dictionary},
description={tree}}
\newglossaryentry{ano}{name={ano},
type={dictionary},
description={year}}

Themain body of the document contains references using the labels provided in the first argument

of\newglossaryentry and the glossary lists are placed at the desired location, at the end

of each section:

�

\begin{document}
\section{English}
An \gls{elk} and an \gls{elephant} belonged to an
\gls{élite} group.

\printglossary

\selectlanguage{brazilian}
\section{Brasileiro}
A \gls{árvore} tive \gls{água} este \gls{ano}.

\printglossary[type=dictionary]
\end{document}

If the document is saved in the file myDoc.tex then the document build is:

47

1. Introduction

�

pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc

�

Example 9: UTF-8 and xindy �� ��

1 English
An elk and an elephant belonged to an élite group.

Glossary
elephant large animal with trunk and tusks. 1

élite select group or class. 1

elk large deer. 1

2 Brasileiro
A árvore tive água este ano.

Glossário
água water. 1

ano year. 1

árvore tree. 1

Example 10 on page 51 is a modification of the previous example which uses bib2gls (and glossaries

-extra

�10

therefore requires glossaries-extra). The entry data must now be provided in one or more bib
files. For example, the file sample-utf8-en.bib contains:

�

% Encoding: UTF-8
@entry{élite,
name={élite},
description={select group or class}

48

% This file is embedded in glossaries-user.pdf
% Example 9 UTF-8 and xindy
% Label: "ex:xindyutf8"
% arara: pdflatex
% arara: makeglossaries
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[T1]{fontenc}
\usepackage[main=english,brazilian]{babel}
\usepackage[xindy]{glossaries}
\newglossary*{dictionary}{\glossaryname}
\makeglossaries
\newglossaryentry{élite}{name={élite},
description={select group or class}}
\newglossaryentry{elephant}{name={elephant},
description={large animal with trunk and tusks}}
\newglossaryentry{elk}{name={elk}, description={large deer}}

\newglossaryentry{água}{name={água},
type={dictionary},
description={water}}
\newglossaryentry{árvore}{name={árvore},
type={dictionary},
description={tree}}
\newglossaryentry{ano}{name={ano},
type={dictionary},
description={year}}
\begin{document}
\section{English}
An \gls{elk} and an \gls{elephant} belonged to an \gls{élite} group.

\printglossary

\selectlanguage{brazilian}
\section{Brasileiro}
A \gls{árvore} tive \gls{água} este \gls{ano}.

\printglossary[type=dictionary]
\end{document}

Nicola Talbot
UTF-8 and xindy (source code)
Example document that defines a term with a UTF-8 character (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example009.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example009.pdf

1. Introduction

}

@entry{elephant,
name={elephant},
description={large animal with trunk and tusks}
}

@entry{elk,
name={elk},
description={large deer}
}

and the file sample-utf8-pt.bib contains:

�

% Encoding: UTF-8
@entry{água,
name={água},
description={water}
}

@entry{árvore,
name={árvore},
description={tree}
}

@entry{ano,
name={ano},
description={year}
}

The document now requires glossaries-extra with the record option:

�

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage[main=english,brazilian]{babel}
\usepackage[record]{glossaries-extra}

As before a custom glossary is defined:

�

\newglossary*{dictionary}{\glossaryname}

49

1. Introduction

Instead of using \makeglossaries, the document now needs:

�

\GlsXtrLoadResources[
sort=en,% sort according to English language rules
src={sample-utf8-en}% data in sample-utf8-en.bib
]

\GlsXtrLoadResources[
sort=pt-BR,% sort according to pt-BR language rules
src={sample-utf8-pt},% data in sample-utf8-pt.bib
type=dictionary
]

The main body of the document is similar to the previous example, but a different command is

needed to display the glossary.

�

\begin{document}
\section{English}
An \gls{elk} and an \gls{elephant} belonged to an
\gls{élite} group.

\printunsrtglossary

\selectlanguage{brazilian}
\section{Brasileiro}
A \gls{árvore} tive \gls{água} este \gls{ano}.

\printunsrtglossary[type=dictionary]
\end{document}

The document build is slightly different:

�

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc

50

1. Introduction

�

Example 10: UTF-8 and bib2gls �� ��

1 English
An elk and an elephant belonged to an élite group.

Glossary
elephant large animal with trunk and tusks 1

élite select group or class 1

elk large deer 1

2 Brasileiro
A árvore tive água este ano.

Glossário
água water 1

ano year 1

árvore tree 1

�

Note that although a non-Latin character, such as é, looks like a plain character in your

tex file, with pdfLATEX it’s actually a macro and can therefore cause problems. (This

issue doesn’t occur with XƎLATEX or LuaLATEXwhich both natively support UTF-8.) Recent

versions of the LATEX kernel have made significant improvements in handling UTF-8. To

ensure you have the bestUTF-8 support, use at leastmfirstuc v2.08+with glossaries v4.50+

(and, if required, glossaries-extra v1.49+). With old TEX distributions, you can’t use

UTF-8 characters in labels.

With old versions of mfirstuc (pre v2.08), if you use a UTF-8 character at the start of an entry

name, you must place it in a group, or it will cause a problem for sentence case commands (e.g.

\Gls). For example:

51

% This file is embedded in glossaries-user.pdf
% Example 10 UTF-8 and bib2gls
% Label: "ex:bib2glsutf8"
% arara: pdflatex
% arara: bib2gls
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\begin{filecontents*}{sample-utf8-en.bib}
% Encoding: UTF-8
@entry{élite,
 name={élite},
 description={select group or class}
}

@entry{elephant,
 name={elephant},
 description={large animal with trunk and tusks}
}

@entry{elk,
 name={elk},
 description={large deer}
}
\end{filecontents*}
\begin{filecontents*}{sample-utf8-pt.bib}
% Encoding: UTF-8
@entry{água,
 name={água},
 description={water}
}

@entry{árvore,
 name={árvore},
 description={tree}
}

@entry{ano,
 name={ano},
 description={year}
}
\end{filecontents*}
\usepackage[T1]{fontenc}
\usepackage[main=english,brazilian]{babel}
\usepackage[record]{glossaries-extra}
\newglossary*{dictionary}{\glossaryname}
\GlsXtrLoadResources[
 sort=en,% sort according to English language rules
 src={sample-utf8-en}% data in sample-utf8-en.bib
]
\GlsXtrLoadResources[
 sort=pt-BR,% sort according to pt-BR language rules
 src={sample-utf8-pt},% data in sample-utf8-pt.bib
 type=dictionary
]
\begin{document}
\section{English}
An \gls{elk} and an \gls{elephant} belonged to an \gls{élite} group.

\printunsrtglossary

\selectlanguage{brazilian}
\section{Brasileiro}
A \gls{árvore} tive \gls{água} este \gls{ano}.

\printunsrtglossary[type=dictionary]
\end{document}

Nicola Talbot
UTF-8 and bib2gls (source code)
Example UTF-8 document that defines terms in bib files (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example010.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example010.pdf

1. Introduction

�

% mfirstuc v2.07:
\newglossaryentry{elite}{name={{é}lite},
description={select group or class}}

This isn’t necessary with glossaries v4.50+ and mfirstuc v2.08+, and with a newer LATEX kernel

the UTF-8 character may occur in the label:

�

% mfirstuc v2.08:
\newglossaryentry{élite}{name={élite},
description={select group or class}}

If you are using xindy or bib2gls, the application needs to know the encoding of the

tex file. This information is added to the aux file and can be picked up by makeglos-
saries and bib2gls.
Note that makeindex doesn’t support UTF-8 so, although it can be used with some Latin

alphabet languages, you will need to ensure that the sort value doesn’t contain any UTF-8. If you

have the double-quote character (") as an active character (for example, a babel shorthand) and
you want to use makeindex’s -g (German) option, you’ll need to change makeindex’s
quote character using:

�

\GlsSetQuote{〈character〉}

Note that 〈character〉 may not be one of ? (question mark), | (pipe) or ! (exclamation mark).

For example:

�

\GlsSetQuote{+}

This must be done before \makeglossaries and any entry definitions. It’s only applicable

for makeindex. This option in conjunction with ngerman will also cause makeglos-
saries to use the -g switch when invoking makeindex. For example:

�

\documentclass{article}

\usepackage[ngerman]{babel}
\usepackage{glossaries}

\GlsSetQuote{+}

52

1. Introduction

\makeglossaries

\newglossaryentry{rna}{name=ribonukleinsäure,
sort={ribonukleins"aure},
description={eine Nukleinsäure}}

\begin{document}
\gls{rna}

\printglossaries
\end{document}

1.5.1. Changing the Fixed Names

The fixed names are produced using the commands listed in Table 1.2 on the following page.

If you aren’t using a language package such as babel or polyglossia that uses caption hooks,

you can just redefine these commands as appropriate. If you are using babel or polyglossia,

you need to use their caption hooks to change the defaults. See changing the words babel uses

or read the babel or polyglossia documentation. If you have loaded babel, then glossaries will

attempt to load translator, unless you have used thenotranslate, translate=false
or translate=babel package options.

glossaries-extra

The glossaries-extra package defaults to translate=babel if babel has been

loaded.

If the translator package is loaded, the translations are provided by dictionary files (for exam-

ple, glossaries-dictionary-English.dict). See the translator package for

advice on changing translations provided by translator dictionaries. If you can’t work out how

to modify these dictionary definitions, try switching to babel’s interface using translate=
babel:

�

\documentclass[english,french]{article}
\usepackage{babel}
\usepackage[translate=babel]{glossaries}

and then use babel’s caption hook mechanism. Note that if you pass the language options directly

to babel rather that using the document class options or otherwise passing the same options to

translator, then translator won’t pick up the language and no dictionaries will be loaded and

babel’s caption hooks will be used instead.

As from version 4.12, multilingual support is provided by separate language modules that

need to be installed in addition to installing the glossaries package. You only need to install

53

https://texfaq.org/FAQ-latexwords

1. Introduction

Table 1.2.: Customised Text

Command Name Translator Key Word Purpose

\glossaryname Glossary Title of the main glossary.

\acronymname Acronyms Title of the list of acronyms (when

used with package option

acronym).
\entryname Notation

(glossaries)
Header for first column in the

glossary (for 2, 3 or 4 column

glossaries that support headers).

\descriptionname Description
(glossaries)

Header for second column in the

glossary (for 2, 3 or 4 column

glossaries that support headers).

\symbolname Symbol
(glossaries)

Header for symbol column in the

glossary for glossary styles that

support this option.

\pagelistname Page List
(glossaries)

Header for the page list column in the

glossary for glossaries that support

this option.

\glssymbolsgroupname Symbols
(glossaries)

Header for symbols section of the

glossary for glossary styles that

support this option.

\glsnumbersgroupname Numbers
(glossaries)

Header for numbers section of the

glossary for glossary styles that

support this option.

54

1. Introduction

the modules for the languages that you require. If the language module has an unmaintained

status, you can volunteer to take over the maintenance by contacting me at https://www.
dickimaw-books.com/contact. The translator dictionary files for glossaries are

now provided by the appropriate language module. For further details about information specific

to a given language, please see the documentation for that language module.

Examples of use:

• Using babel and translator:

�

\documentclass[english,french]{article}
\usepackage{babel}
\usepackage{glossaries}

(translator is automatically loaded).

• Using babel:

�

\documentclass[english,french]{article}
\usepackage{babel}
\usepackage[translate=babel]{glossaries}

(translator isn’t loaded). The glossaries-extra package has translate=babel as

the default if babel has been loaded.

• Using polyglossia:

�

\documentclass{article}
\usepackage{polyglossia}
\setmainlanguage{english}
\usepackage{glossaries}

Due to the varied nature of glossaries, it’s likely that the predefined translations may not be

appropriate. If you are using the babel package and the glossaries package optiontranslate
=babel, you need to be familiar with the advice given in changing the words babel uses. If you
are using the translator package, then you can provide your own dictionary with the necessary

modifications (using \deftranslation) and load it using \usedictionary. If you
simply want to change the title of a glossary, you can use the title key in commands like

\printglossary (but not the iterative commands like \printglossaries).

55

https://www.dickimaw-books.com/contact
https://www.dickimaw-books.com/contact
https://texfaq.org/FAQ-latexwords

1. Introduction

�

Note that the translator dictionaries are loaded at the beginning of the document, so it

won’t have any effect if you put \deftranslation in the preamble. It should be

put in your personal dictionary instead (as in the example below). See the translator doc-

umentation for further details.

Your custom dictionary doesn’t have to be just a translation from English to another lan-

guage. You may prefer to have a dictionary for a particular type of document. For example,

suppose your institution’s in-house reports have to have the glossary labelled as “Nomencla-

ture” and the location list should be labelled “Location”, then you can create a file called, say,

myinstitute-glossaries-dictionary-English.dict that contains the

following:

�

\ProvidesDictionary{myinstitute-glossaries-
dictionary}{English}
\deftranslation{Glossary}{Nomenclature}
\deftranslation{Page List (glossaries)}{Location}

You can now load it using:

�

\usedictionary{myinstitute-glossaries-dictionary}

(Make sure thatmyinstitute-glossaries-dictionary-English.dict can

be found by TEX.) If you want to share your custom dictionary, you can upload it to CTAN.

If you are using babel and don’t want to use the translator interface, you can use the package

option translate=babel. For example:

�

\documentclass[british]{article}

\usepackage{babel}
\usepackage[translate=babel]{glossaries}

\addto\captionsbritish{%
\renewcommand*{\glossaryname}{List of Terms}%
\renewcommand*{\acronymname}{List of Acronyms}%

}

Note that xindy and bib2gls provide much better multi-lingual support than make-
index, so I recommend that you useOptions 2 or 3 if you have glossary entries that contain non-
Latin characters. See §14 for further details on xindy, and see the bib2gls user manual

for further details of that application.

56

http://www.ctan.org/

1. Introduction

1.5.2. Creating a New Language Module

The glossaries package now uses the tracklang package to determine which language modules

need to be loaded. If you want to create a new language module, you should first read the track-

lang documentation.

To create a new language module, you need to at least create two files called: glossaries
-〈lang〉.ldf andglossaries-dictionary-〈Lang〉.dictwhere 〈lang〉 is the root
language name (for example, english) and 〈Lang〉 is the language name used by translator

(for example, English).
Here’s an example of glossaries-dictionary-English.dict:

�

\ProvidesDictionary{glossaries-dictionary}{English}

\providetranslation{Glossary}{Glossary}
\providetranslation{Acronyms}{Acronyms}
\providetranslation{Notation (glossaries)}{Notation}
\providetranslation{Description (glossaries)}
{Description}
\providetranslation{Symbol (glossaries)}{Symbol}
\providetranslation{Page List (glossaries)}
{Page List}
\providetranslation{Symbols (glossaries)}{Symbols}
\providetranslation{Numbers (glossaries)}{Numbers}

You can use this as a template for your dictionary file. Change English to the translator

name for your language (so that it matches the file name glossaries-dictionary-
〈Lang〉.dict) and, for each \providetranslation, change the second argument to
the appropriate translation.

Here’s an example of glossaries-english.ldf:

�

\ProvidesGlossariesLang{english}

\glsifusedtranslatordict{English}
{%
\addglossarytocaptions{\CurrentTrackedLanguage}%
\addglossarytocaptions{\CurrentTrackedDialect}%

}
{%
\@ifpackageloaded{polyglossia}%
{%
\newcommand*{\glossariescaptionsenglish}{%

57

1. Introduction

\renewcommand*{\glossaryname}{\textenglish
{Glossary}}%

\renewcommand*{\acronymname}{\textenglish
{Acronyms}}%

\renewcommand*{\entryname}{\textenglish
{Notation}}%

\renewcommand*{\descriptionname}{\textenglish
{Description}}%

\renewcommand*{\symbolname}{\textenglish
{Symbol}}%

\renewcommand*{\pagelistname}{\textenglish
{Page List}}%

\renewcommand*{\glssymbolsgroupname}
{\textenglish{Symbols}}%

\renewcommand*{\glsnumbersgroupname}
{\textenglish{Numbers}}%

}%
}%
{%
\newcommand*{\glossariescaptionsenglish}{%

\renewcommand*{\glossaryname}{Glossary}%
\renewcommand*{\acronymname}{Acronyms}%
\renewcommand*{\entryname}{Notation}%
\renewcommand*{\descriptionname}{Description}

%
\renewcommand*{\symbolname}{Symbol}%
\renewcommand*{\pagelistname}{Page List}%
\renewcommand*{\glssymbolsgroupname}{Symbols}

%
\renewcommand*{\glsnumbersgroupname}{Numbers}

%
}%

}%
\ifcsdef{captions\CurrentTrackedDialect}
{%
\csappto{captions\CurrentTrackedDialect}%
{%

\glossariescaptionsenglish
}%

}%
{%
\ifcsdef{captions\CurrentTrackedLanguage}

58

1. Introduction

{%
\csappto{captions\CurrentTrackedLanguage}%
{%
\glossariescaptionsenglish

}%
}%
%
%

}%
\glossariescaptionsenglish

}
\renewcommand*{\glspluralsuffix}{s}
\renewcommand*{\glsacrpluralsuffix}{\glsplural-
suffix}
\renewcommand*{\glsupacrpluralsuffix}{\glstextup
{\glspluralsuffix}}

This is a somewhat longer file, but again you can use it as a template. Replace English with

the translator language label 〈Lang〉 used for the dictionary file and replace english with

the root language name 〈lang〉. Within the definition of \glossariescaptions〈lang〉,
replace the English text (such as “Glossaries”) with the appropriate translation.

The suffixes used to generate the plural forms when the plural hasn’t been specified are given

by \glspluralsuffix (for general entries). For acronyms defined with the base \new-
acronym, \glsupacrpluralsuffix is used for the small caps acronym styles where

the suffix needs to be set using \glstextup to counteract the effects of \textsc and

\glsacrpluralsuffix for other acronym styles. There’s no guarantee when these com-

mands will be expanded. They may be expanded on definition or they may be expanded on use,

depending on the glossaries configuration.

�

Therefore these plural suffix command definitions aren’t included in the \captions-
〈language〉 hook as that’s typically not implemented until the start of the document. This
means that the suffix in effect will be for the last loaded language that redefined these

commands. It’s best to initialise these commands to the most common suffix required in

your document and use the plural, longplural, shortplural etc keys to

override exceptions.

If you want to add a regional variation, create a file called glossaries-〈iso-lang〉-〈iso-
region〉.ldf, where 〈iso-lang〉 is the ISO language code and 〈iso-region〉 is the ISO country

code. For example, glossaries-en-GB.ldf. This file can load the root language file
and make the appropriate changes, for example:

59

1. Introduction

�

\ProvidesGlossariesLang{en-GB}
\RequireGlossariesLang{english}
\glsifusedtranslatordict{British}
{%
\addglossarytocaptions{\CurrentTrackedLanguage}%
\addglossarytocaptions{\CurrentTrackedDialect}%

}
{%
\@ifpackageloaded{polyglossia}%
{%
% Modify \glossariescaptionsenglish as appropriate for
% polyglossia

}%
{%
% Modify \glossariescaptionsenglish as appropriate for
% non-polyglossia

}%
}

If the translations includes non-Latin characters, it’s a good idea to provide code that’s inde-

pendent of the input encoding. Remember that while some users may use UTF-8 (and it’s now

the default encoding with modern LATEX kernels), others may use Latin-1 or any other supported

encoding, but while users won’t appreciate you enforcing your preference on them, it’s useful to

provide a UTF-8 version.

The glossaries-irish.ldf file provides this as follows:

�

\ProvidesGlossariesLang{irish}

\glsifusedtranslatordict{Irish}
{%
\addglossarytocaptions{\CurrentTrackedLanguage}%
\addglossarytocaptions{\CurrentTrackedDialect}%

}
{%
\ifdefstring{\inputencodingname}{utf8}
{\input{glossaries-irish-utf8.ldf}}%
{%
\ifdef\XeTeXinputencoding% XeTeX defaults to UTF-8
{\input{glossaries-irish-utf8.ldf}}%
{\input{glossaries-irish-noenc.ldf}}

60

1. Introduction

}
\ifcsdef{captions\CurrentTrackedDialect}
{%
\csappto{captions\CurrentTrackedDialect}%
{%

\glossariescaptionsirish
}%

}%
{%
\ifcsdef{captions\CurrentTrackedLanguage}
{

\csappto{captions\CurrentTrackedLanguage}%
{%
\glossariescaptionsirish

}%
}%
{%
}%

}%
\glossariescaptionsirish

}

(Again you can use this as a template. Replace irish with your root language label and

Irish with the translator dictionary label.)

There are now two extra files: glossaries-irish-noenc.ldf (no encoding in-

formation) and glossaries-irish-utf8.ldf (UTF-8).

These both define\glossariescaptionsirish but the*-noenc.ldf file uses

LATEX accent commands:

�

\@ifpackageloaded{polyglossia}%
{%
\newcommand*{\glossariescaptionsirish}{%
\renewcommand*{\glossaryname}{\textirish{Gluais}

}%
\renewcommand*{\acronymname}{\textirish

{Acrainmneacha}}%
\renewcommand*{\entryname}{\textirish{Ciall}}%
\renewcommand*{\descriptionname}{\textirish

{Tuairisc}}%
\renewcommand*{\symbolname}{\textirish

{Comhartha}}%

61

1. Introduction

\renewcommand*{\glssymbolsgroupname}{\textirish
{Comhartha\'\i}}%

\renewcommand*{\pagelistname}{\textirish
{Leathanaigh}}%

\renewcommand*{\glsnumbersgroupname}{\textirish
{Uimhreacha}}%
}%

}%
{%
\newcommand*{\glossariescaptionsirish}{%
\renewcommand*{\glossaryname}{Gluais}%
\renewcommand*{\acronymname}{Acrainmneacha}%
\renewcommand*{\entryname}{Ciall}%
\renewcommand*{\descriptionname}{Tuairisc}%
\renewcommand*{\symbolname}{Comhartha}%
\renewcommand*{\glssymbolsgroupname}

{Comhartha\'\i}%
\renewcommand*{\pagelistname}{Leathanaigh}%
\renewcommand*{\glsnumbersgroupname}{Uimhreacha}

%
}%

}

whereas the*-utf8.ldf file replaces the accent commands with the appropriate UTF-8 char-

acters.

1.6. Generating the Associated Glossary Files

�

This section is only applicable if you have chosen Options 2 or 3. You can ignore this

section if you have chosen any of the other options. (For Option 4, see the bib2gls
manual for details.) If you want to alphabetically sort your entries always remember to

use the sort key if the name contains any LATEX commands (except if you’re using

bib2gls).

If this section seriously confuses you, and you can’t work out how to run external tools like

makeglossaries or makeindex, you can try using the automake package option,

described in §2.5, but you will need TEX’s shell escape enabled. See also Incorporatingmakeglos-

saries or makeglossaries-lite or bib2gls into the document build.11 Since makeindex is on the

trusted list, the restricted shell escape may be used, which is safer than the unrestricted mode.

For example:

11dickimaw-books.com/latex/buildglossaries/

62

https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/

1. Introduction

�

\usepackage[automake]{glossaries}
\makeglossaries

If the document source is in the file myDoc.tex then this requires:

�

pdflatex -shell-restricted myDoc
pdflatex -shell-restricted myDoc

(you may find that -shell-restricted is the default for your system, in which case it

may be omitted). Whereas:

�

\usepackage[xindy,automake]{glossaries}
\makeglossaries

requires:

�

pdflatex -shell-escape myDoc
pdflatex -shell-escape myDoc

Be aware that this unrestricted mode is a security risk, so it’s best avoided.

In order to generate a sorted glossary with compact number lists, it is necessary to use an

external indexing application as an intermediate step (Option 1, which uses TEX to do the sort-

ing, can’t compact number lists). It is this application that creates the file containing the code

required to typeset the glossary. If this step is omitted, the glossaries will not appear in your

document.

The two oldest indexing applications most commonly used with LATEX are makeindex and

xindy. The glossaries package can be used with either of these applications. Any other ap-

plication that can support makeindex’s syntax and style file may be used instead of make-
index. Simply follow the makeindex instructions and substitute the call to makeindex
with the appropriate call to the alternative.

Commands that only have an effect when xindy is used are described in §14.

�

This is a multi-stage process, but there are methods of automating document compila-

tion using applications such as latexmk and arara. With arara you can just add

special comments to your document source:

63

1. Introduction

�

% arara: pdflatex
% arara: makeglossaries
% arara: pdflatex

With latexmk you need to set up the required dependencies.

The glossaries package comes with the Perl script makeglossaries which will run

makeindex or xindy on all the indexing files using a customized style file (which is cre-

ated by \makeglossaries). See §1.6.1 for further details. Perl is stable, cross-platform,
open source software that is used by a number of TEX-related applications (including xindy
and latexmk). Most Unix-like operating systems come with a Perl interpreter. TEX Live

also comes with a Perl interpreter. As far as I know, MikTEX doesn’t come with a Perl in-

terpreter so if you are a Windows MikTEX user you will need to install Perl if you want to

use makeglossaries or xindy. Further information is available at http://www.
perl.org/about.html and MikTeX and Perl scripts (and one Python script).12

The advantages of using makeglossaries:

• It automatically detects whether to use makeindex or xindy and sets the relevant

application switches.

• One call of makeglossaries will run makeindex/xindy for each glossary

type.

• If things go wrong, makeglossaries will scan the messages from makeindex
or xindy and attempt to diagnose the problem in relation to the glossaries package.

This will hopefully provide more helpful messages in some cases. If it can’t diagnose the

problem, you will have to read the relevant transcript file and see if you can work it out

from the makeindex or xindy messages.

• If makeindex warns about multiple encap values, makeglossaries v2.18+ will

detect this and attempt to correct the problem. This correction is only provided by make-
glossarieswhenmakeindex is used sincexindy uses the order of the attributes

list to determine which format should take precedence. (see §14.3.) This correction can

be switched off with the -e switch.

• If makeindex warns about invalid or empty locations, makeglossaries v4.50+

will detect this and attempt to alter the location to fit makeindex’s syntax. This may
or may not cause unexpected results in the location list, but it’s useful if the nonumber-
list option is used.

• Ifmakeindex has a warning that could be the result of a command occurring within the

location, makeglossaries v4.50+ will attempt to repair it by moving the command

out of the location and into the encap.

12tex.stackexchange.com/questions/158796

64

http://www.perl.org/about.html
http://www.perl.org/about.html
https://tex.stackexchange.com/questions/158796
http://tex.stackexchange.com/questions/158796

1. Introduction

• If the output directory has been set when running LATEX (which puts all the associated files

in another directory), makeglossaries has a -d switch that can be used to identify

the output directory. This means that makeglossaries can change to that directory

before running makeindex or xindy.

The first two items also apply to makeglossaries-lite.
As from version 4.16, the glossaries package also comeswith a Lua script calledmakeglos-

saries-lite. This is a trimmed-down alternative to themakeglossaries Perl script.

It doesn’t have some of the options that the Perl version has and it doesn’t attempt to diagnose

any problems, but since modern TEX distributions come with LuaTEX (and therefore have a Lua

interpreter) you don’t need to install anything else in order to usemakeglossaries-lite
so it’s an alternative to makeglossaries if you want to use Option 2 (makeindex).
If things go wrong and you can’t work out why your glossaries aren’t being generated correctly,

you can use makeglossariesgui as a diagnostic tool. Once you’ve fixed the problem,

you can then go back to using makeglossaries or makeglossaries-lite.
Whilst I strongly recommended that you use the makeglossaries Perl script or the

makeglossaries-lite Lua script, it is possible to use the glossaries package without

using those applications. However, note that some commands and package options have no effect

if you explicitly run makeindex/xindy. These are listed in Table 1.3 on the next page.

�

If you are choosing not to use makeglossaries because you don’t want to install

Perl, you will only be able to usemakeindex asxindy also requires Perl. (Other use-

ful Perl scripts includeepstopdf andlatexmk, so it’s well-worth the effort to install
Perl.) Alternatively, if you have Java installed, switch to glossaries-extra andbib2gls.

Below, references to makeglossaries can usually be substituted with makeglos-
saries-lite, except where noted otherwise.
If any of your entries use an entry that is not referenced outside the glossary (for example, the

entry is only referenced in the description of another entry), you will need to do an additional

makeglossaries, makeindex or xindy run, as appropriate. For example, suppose

you have defined the following entries:

�

\newglossaryentry{citrusfruit}{name={citrus fruit},
description={fruit of any citrus tree. (See also
\gls{orange})}}

\newglossaryentry{orange}{name={orange},
description={an orange coloured fruit.}}

and suppose you have \gls{citrusfruit} in your document but don’t reference the

“orange” entry, then the orange entry won’t appear in your glossary until you first create the

glossary and then do another run of makeglossaries, makeindex or xindy. For

65

1. Introduction

example, if the document is called myDoc.tex, then you must do:

�

pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc

(In the case of Option 4, bib2gls will scan the description for instances of commands like

\gls to ensure they are selected but an extra bib2gls call is required to ensure the locations

are included, if location lists are required. See the bib2gls manual for further details.)

Likewise, an additional makeglossaries and LATEX run may be required if the docu-

ment pages shift with re-runs. For example, if the page numbering is not reset after the table of

contents, the insertion of the table of contents on the second LATEX run may push glossary entries

across page boundaries, which means that the number lists in the glossary may need updating.

The examples in this document assume that you are accessingmakeglossaries,xindy
or makeindex via a terminal. Windows users can use the command prompt which is usu-

ally accessed via the StartÜAll Programsmenu or StartÜAll ProgramsÜAccessoriesmenu or

StartÜWindows System.

Alternatively, your text editor may have the facility to create a function that will call the re-

quired application. See Incorporating makeglossaries or makeglossaries-lite or bib2gls into the

document build.13

If any problems occur, remember to check the transcript files (e.g.glg oralg) for messages.

Table 1.3.: Commands and package options that have no effect when using xindy or make-
index explicitly

Command or Package Option makeindex xindy
order=letter use -l use -M ord/letorder
order=word default default

xindy={language={lang},codepage={code}} N/A use -L 〈lang〉 -C 〈code〉
\GlsSetXdyLanguage{〈lang〉} N/A use -L 〈lang〉
\GlsSetXdyCodePage{〈code〉} N/A use -C 〈code〉

1.6.1. Using the makeglossaries Perl Script

�

makeglossaries 〈options〉 〈aux-file〉

The makeglossaries script picks up the relevant information from the auxiliary (aux)
file andwill either callxindy ormakeindex, depending on the supplied information. There-

13dickimaw-books.com/latex/buildglossaries/

66

https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/

1. Introduction

fore, you only need to pass the document’s namewithout the extension tomakeglossaries.
For example, if your document is called myDoc.tex, type the following in your terminal:

�

pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc

If you only want one glossary processed (for example, if you are working on a draft of a large

document and want to concentrate on one specific glossary) then include the 〈out-ext〉 extension
supplied to\newglossary, such asglo for themain glossary. Note that if you do specify

the extension and your document has multiple glossaries defined, then makeglossaries
will tell you how many glossaries have been ignored unless the -q switch has been used.

Windows users: TEX Live on Windows has its own internal Perl interpreter and provides

makeglossaries.exe as a convenient wrapper for themakeglossariesPerl script.

MikTEX also provides a wrapper makeglossaries.exe but doesn’t provide a Perl inter-

preter (as far as I know), which is still required even if you runMikTEX’smakeglossaries.exe,
so with MikTEX you’ll need to install Perl. There’s more information about this at MikTeX and

Perl scripts (and one Python script).14

�

When upgrading the glossaries package, make sure you also upgrade your version of

makeglossaries. The current version is 4.57.

Some of the options are only applicable to makeindex and some are only applicable to

xindy.

�

--help

Shows a summary of all available options.

�

--version

Shows the version details.

�
-n

Dry run mode. This doesn’t actually run makeindex/xindy but just prints the command it

would execute based on the information given in the aux file and the supplied options.

�

-d 〈directory〉

Instructs makeglossaries to change to the given directory, which should be where the

14tex.stackexchange.com/questions/158796

67

https://tex.stackexchange.com/questions/158796
https://tex.stackexchange.com/questions/158796
http://tex.stackexchange.com/questions/158796

1. Introduction

aux, glo etc files are located. For example:

�

pdflatex -output-directory myTmpDir myDoc
makeglossaries -d myTmpDir myDoc

�
-e

Don’t check for multiple encaps (only applicable with makeindex). By default, if you are us-
ingmakeindex,makeglossarieswill check themakeindex transcript for multiple

encap warnings.

The multiple encap warning is where different location encap values (location formats) are

used on the same location for the same entry. For example:

�

\documentclass{article}

\usepackage{glossaries}
\makeglossaries

\newglossaryentry{sample}{name={sample},description=
{an example}}

\begin{document}
\gls{sample}, \gls[format=textbf]{sample}.
\printglossaries
\end{document}

If you explicitly use makeindex, this will cause a warning and the location list will be “1,

1”. That is, the page number will be repeated with each format. As from v2.18, makeglos-
saries will check for this warning and, if found, will attempt to correct the problem by re-

moving duplicate locations and retrying. If you actually want the duplicate location, you can

prevent makeglossaries from checking and correcting the duplicates with -e.
There’s no similar check for xindy as xindy won’t produce any warning and will simply

discard duplicates.

�
-q

Suppresses messages. The makeglossaries script attempts to fork the makeindex/
xindy process using open() on the piped redirection 2>&1 | and parses the processor

output to help diagnose problems. If this method fails makeglossaries will print an “Un-

able to fork” warning and will retry without redirection. Without this redirection, the -q switch

doesn’t work as well. Some operating systems don’t support redirection.

68

1. Introduction

�

-Q

Suppresses the “Unable to fork” warning.

�

-k

Don’t attempt redirection.

�

-m 〈application〉

The makeindex application. Only the name is required if it’s on the operating system’s path,

otherwise the full path name will be needed.

If you want to use an application that is capable of reading makeindex files (including

support for makeindex style files via -s), then you can use -m to specify the alternative

application to use instead of makeindex. Note that both xindex and texindy can read

makeindex files using the default makeindex syntax but, as of the time of writing this,

they don’t support makeindex style files.

�

-x 〈application〉

The xindy application. Only the name is required if it’s on the operating system’s path, other-

wise the full path name will be needed.

�
-c

Compress intermediate blanks. This will pass -c to makeindex. (Ignored if xindy should

be called.)

�
-r

Disable implicit page range formation. This will pass-r tomakeindex. (Ignored ifxindy
should be called.)

�

-p 〈num〉

Set the starting page number. This will pass -p 〈num〉 to makeindex. (Ignored if xindy
should be called.)

The following switches may be used to override settings written to the aux file.

�

-l

Use letter ordering. This will pass-l tomakeindex or-M ord/letorder toxindy.

69

1. Introduction

�

-L 〈language〉

The language to pass to xindy. (Ignored if makeindex should be called.)

�
-g

EmployGermanword ordering. This will pass-g tomakeindex. (Ignored ifxindy should

be called.)

�

-s 〈filename〉

Set the style file. This will pass-s 〈filename〉 tomakeindex or-M 〈basename〉 toxindy
(where 〈basename〉 is 〈filename〉 with the xdy extension removed). This will generate an error

if the extension isxdywhenmakeindex should be called, or if the extension isn’txdywhen

xindy should be called.

�

-o 〈filename〉

Sets the output file name. Note that this should only be used when only one glossary should be

processed. The default is to set the output filename to the basename supplied to makeglos-
saries with the extension associated with the glossary (the 〈in-ext〉 argument of \new-
glossary).

�

-t 〈filename〉

Sets the transcript file name. Note that this should only be used when only one glossary should be

processed. The default is to set the transcript filename to the basename supplied tomakeglos-
saries with the extension associated with the glossary (the 〈log-ext〉 argument of \new-
glossary).

1.6.2. Using the makeglossaries-lite Lua Script

�

makeglossaries-lite 〈options〉 〈aux-file〉

The Lua alternative to themakeglossaries Perl script requires a Lua interpreter, which

should already be available if you have a modern TEX distribution that includes LuaTEX. Lua is

a light-weight, cross-platform scripting language, but because it’s light-weight it doesn’t have the

full-functionality of heavy-weight scripting languages, such as Perl. The makeglossaries
-lite script is therefore limited by this and some of the options available to the makeglos-
saries Perl script aren’t available here. (In particular the -d option.) Whilst it may be

possible to implement those features by requiring Lua packages, this would defeat the purpose of

70

1. Introduction

providing this script for those don’t want the inconvenience of learning how to install interpreters

or their associated packages.

�

The script is actually supplied as makeglossaries-lite.lua but TEX dis-

tributions on Windows convert this to an executable wrapper makeglossaries-
lite.exe and TEX Live on Unix-like systems provide a symbolic link without the

extension.

The makeglossaries-lite script can be invoked in the same way as makeglos-
saries. For example, if your document is called myDoc.tex, then do

�

makeglossaries-lite myDoc

Note that the arara rule doesn’t contain the hyphen:

�

% arara: makeglossarieslite

Some of the options are only applicable to makeindex and some are only applicable to

xindy. There’s no equivalent to the -d available to makeglossaries but it may work

if you prefix the basename with the path.

�

--help

Shows a summary of all available options.

�

--version

Shows the version details.

�
-n

Dry run mode. This doesn’t actually run makeindex/xindy but just prints the command it

would execute based on the information given in the aux file and the supplied options.

�
-q

Quiet mode. This suppresses some but not all messages.

�

-m 〈application〉

The makeindex application. Only the name is required if it’s on the operating system’s path,

71

1. Introduction

otherwise the full path name will be needed.

�

-x 〈application〉

The xindy application. Only the name is required if it’s on the operating system’s path, other-

wise the full path name will be needed.

�
-c

Compress intermediate blanks. This will pass -c to makeindex. (Ignored if xindy should

be called.)

�
-r

Disable implicit page range formation. This will pass-r tomakeindex. (Ignored ifxindy
should be called.)

�

-p 〈num〉

Set the starting page number. This will pass -p 〈num〉 to makeindex. (Ignored if xindy
should be called.)

The following switches may be used to override settings written to the aux file.

�

-l

Use letter ordering. This will pass-l tomakeindex or-M ord/letorder toxindy.

�

-L 〈language〉

The language to pass to xindy. (Ignored if makeindex should be called.)

�
-g

EmployGermanword ordering. This will pass-g tomakeindex. (Ignored ifxindy should

be called.)

�

-s 〈filename〉

Set the style file.

�

-o 〈filename〉

Sets the output file name. Note that this should only be used when only one glossary should be

72

1. Introduction

processed. The default is to set the output filename to the basename supplied to makeglos-
saries with the extension associated with the glossary (the 〈in-ext〉 argument of \new-
glossary).

�

-t 〈filename〉

Sets the transcript file name. Note that this should only be used when only one glossary should be

processed. The default is to set the transcript filename to the basename supplied tomakeglos-
saries with the extension associated with the glossary (the 〈log-ext〉 argument of \new-
glossary).

1.6.3. Using xindy explicitly (Option 3)

xindy comes with TEX Live. It has also been added to MikTEX, but if you don’t have it

installed, see How to use Xindy with MikTeX.15

If you want to use xindy to process the glossary files, you must make sure you have used

the xindy package option:

�

\usepackage[xindy]{glossaries}

This is required regardless of whether you use xindy explicitly or whether it’s called implicitly

via applications such as makeglossaries. This causes the glossary entries to be written in
raw xindy format, so you need to use -I xindy not -I tex.
To run xindy type the following in your terminal (all on one line):

�

xindy -L 〈language〉 -C 〈encoding〉 -I xindy -M 〈style〉 -t
〈base〉.glg -o 〈base〉.gls 〈base〉.glo

where 〈language〉 is the required language name, 〈encoding〉 is the encoding, 〈base〉 is the name
of the document without the tex extension and 〈style〉 is the name of the xindy style file

without the xdy extension. The default name for this style file is 〈base〉xdy but can be changed

via \setStyleFile. As usual for command line applications, if any of the file names

contain spaces, you must delimit them using double-quotes.

For example, if your document is called myDoc.tex and you are using UTF-8 encoding in

English, then type the following in your terminal:

�

xindy -L english -C utf8 -I xindy -M myDoc -t
myDoc.glg -o myDoc.gls myDoc.glo

15tex.stackexchange.com/questions/71167

73

https://tex.stackexchange.com/questions/71167
http://tex.stackexchange.com/questions/71167

1. Introduction

Note that this just creates the main glossary. You need to do the same for each of the

other glossaries (including the list of acronyms if you have used the acronym package option),

substituting glg, gls and glo with the relevant extensions. For example, if you have used

the acronym package option, then you would need to do:

�

xindy -L english -C utf8 -I xindy -M myDoc -t
myDoc.alg -o myDoc.acr myDoc.acn

For additional glossaries, the extensions are those supplied when you created the glossary with

\newglossary.
Note that if you use makeglossaries instead, you can replace all those calls to xindy

with just one call to makeglossaries:

�

makeglossaries myDoc

Note also that some commands and package options have no effect if you use xindy explicitly

instead of using makeglossaries. These are listed in Table 1.3 on page 66.

1.6.4. Using makeindex explicitly (Option 2)

If you want to use makeindex explicitly, you must make sure that you haven’t used the

xindy package option or the glossary entries will be written in the wrong format. To run

makeindex, type the following in your terminal:

�

makeindex -s 〈style〉.ist -t 〈base〉.glg -o 〈base〉.gls
〈base〉.glo

where 〈base〉 is the name of your document without the tex extension and 〈style〉ist is the

name of the makeindex style file. By default, this is 〈base〉ist, but may be changed via

\setStyleFile. Note that there are other options, such as -l (letter ordering). See the

makeindex manual for further details.

For example, if your document is called myDoc.tex, then type the following at the termi-
nal:

�

makeindex -s myDoc.ist -t myDoc.glg -o myDoc.gls
myDoc.glo

Note that this only creates the main glossary. If you have additional glossaries (for example,

if you have used the acronym package option) then you must call makeindex for each

glossary, substituting glg, gls and glo with the relevant extensions. For example, if you

have used the acronym package option, then you need to type the following in your terminal:

74

1. Introduction

�

makeindex -s myDoc.ist -t myDoc.alg -o myDoc.acr
myDoc.acn

For additional glossaries, the extensions are those supplied when you created the glossary with

\newglossary.
Note that if you use makeglossaries instead, you can replace all those calls to make-

index with just one call to makeglossaries:

�

makeglossaries myDoc

Note also that some commands and package options have no effect if you use makeindex
explicitly instead of using makeglossaries. These are listed in Table 1.3 on page 66.

1.7. Note to Front-End and Script Developers

The information needed to determine whether to use xindy, makeindex or bib2gls
is stored in the aux file. This information can be gathered by a front-end, editor or script to

make the glossaries where appropriate. This section describes how the information is stored in

the auxiliary file. See also “Decyphering the Aux File Commands Provided by glossaries.sty and

glossaries-extra.sty16”.

1.7.1. MakeIndex and Xindy

The file extension of the indexing files used for each defined glossary (not including any ignored

glossaries) are given by:

�

\@newglossary{〈glossary-label〉}{〈log〉}{〈out-ext〉}{〈in-ext〉}

where 〈in-ext〉 is the extension of the indexing application’s input file (the output file from the

glossaries package’s point of view), such as glo, 〈out-ext〉 is the extension of the indexing

application’s output file (the input file from the glossaries package’s point of view), such as gls,
and 〈log〉 is the extension of the indexing application’s transcript file, such as glg. The label for
the glossary is also given. This isn’t required with makeindex, but with xindy it’s needed

to pick up the associated language and encoding (see below). For example, the information for

the default main glossary is written as:

�

\@newglossary{main}{glg}{gls}{glo}

16dickimaw-books.com/latex/auxglossaries

75

https://www.dickimaw-books.com/latex/auxglossaries
https://www.dickimaw-books.com/latex/auxglossaries
https://www.dickimaw-books.com/latex/auxglossaries

1. Introduction

If glossaries-extra’s hybrid method has been used (with \makeglossaries[〈sub-list〉]),
then the sub-list of glossaries that need to be processed will be identified with:

�

\glsxtr@makeglossaries{〈label-list〉}

The indexing application’s style file is specified by:

�

\@istfilename{〈filename〉}

The file extension indicates whether to use makeindex (ist) or xindy (xdy). Note

that the glossary information has a different syntax depending on which indexing application is

supposed to be used, so it’s important to call the correct one.

For example, with arara you can easily determine whether to run makeglossaries:

�

% arara:
makeglossaries if found("aux", "@istfilename")

It’s more complicated if you want to explicitly run makeindex or xindy.

�

Note that if you choose to explicitly callmakeindex orxindy then the user will miss

out on the diagnostic information and the encap-clash fix that makeglossaries also

provides.

Word or letter ordering is specified by:

�

\@glsorder{〈order〉}

where 〈order〉 can be either word or letter (obtained from the order package option).

If xindy should be used, the language for each glossary is specified by:

�

\@xdylanguage{〈glossary-label〉}{〈language〉}

where 〈glossary-label〉 identifies the glossary and 〈language〉 is the root language (for example,
english).
The codepage (file encoding) for all glossaries is specified by:

�

\@gls@codepage{〈code-page〉}

76

1. Introduction

where 〈code〉 is the encoding (for example, utf8). The above two commands are omitted if

makeindex should be used.

If Option 1 has been used, the aux file will contain

�

\@gls@reference{〈type〉}{〈label〉}{〈location〉}

for every time an entry has been referenced.

1.7.2. Entry Labels

If you need to gather labels for auto-completion, the writeglslabels package option will

create a file containing the labels of all defined entries (regardless of whether or not the entry

has been used in the document). As from v4.47, there is a similar option writeglslabel-
names that writes both the label and name (separated by a tab).

glossaries-extra

The glossaries-extra package also provides docdef=atom, which will create the

glsdefs file but will act like docdef=restricted.

1.7.3. Bib2Gls

If Option 4 has been used, the aux file will contain one or more instances of: bib2gls

�

\glsxtr@resource{〈options〉}{〈basename〉}

where 〈basename〉 is the basename of the glstex file that needs to be created by bib2gls.
If src={〈bib list〉} isn’t present in 〈options〉 then 〈basename〉 also indicates the name of the
associated bib file.

For example, with arara you can easily determine whether or not to run bib2gls:

�

% arara: bib2gls if found("aux", "glsxtr@resource")

(It getsmore complicated if both\glsxtr@resource and\@istfilename are present

as that indicates the hybrid record=hybrid option.)

Remember that with bib2gls, the glossary entries will never be defined on the first LATEX
call (because their definitions are contained in the glstex file created by bib2gls). You
can also pick up labels from the records in aux file, which will be in the form:

�

\glsxtr@record{〈label〉}{〈h-prefix〉}{〈counter〉}{〈format〉}{〈loc〉}

or (with record=nameref):

77

1. Introduction

�

\glsxtr@record@nameref{〈label〉}{〈href
prefix〉}{〈counter〉}{〈format〉}{〈location〉}{〈title〉}{〈href anchor〉}{〈href value〉}

or (with \glssee):

�

\glsxtr@recordsee{〈label〉}{〈xr list〉}

You can also pick up the commands defined with \glsxtrnewglslike, which are added
to the aux file for bib2gls’s benefit:

�

\@glsxtr@newglslike{〈label-prefix〉}{〈cs〉}

If \GlsXtrSetAltModifier is used, then the modifier is identified with:

�

\@glsxtr@altmodifier{〈character〉}

Label prefixes (for the \dgls set of commands) are identified with:

�

\@glsxtr@prefixlabellist{〈list〉}

78

2. Package Options

This section describes the available glossaries package options. You may omit the =true for

boolean options. (For example, acronym is equivalent to acronym=true).

glossaries-extra

The glossaries-extra package has additional options described in the glossaries-extra
manual. The extension package also has some different default settings to the base pack-

age. Those that are available at the time of writing are included here. Future versions of

glossaries-extra may have additional package options or new values for existing settings

that aren’t listed here.

�

Note that 〈key〉=〈value〉 package options can’t be passed via the document class options.
(This includes options where the 〈value〉 part may be omitted, such as acronym.) This
is a general limitation not restricted to the glossaries package. Options that aren’t 〈key〉=
〈value〉 (such as makeindex) may be passed via the document class options.

2.1. General Options

�
nowarn

This suppresses all warnings generated by the glossaries package. Don’t use this option if you’re

new to using glossaries as the warnings are designed to help detect common mistakes (such as

forgetting to use \makeglossaries). Note that if you use debug with any value other

than false it will override this option.

�

nolangwarn

This suppresses the warning generated by a missing language module.

�

noredefwarn

If you load glossaries with a class or another package that already defines glossary related com-

mands, by default glossaries will warn you that it’s redefining those commands. If you are aware

of the consequences of using glossaries with that class or package and you don’t want to be

79

2. Package Options

warned about it, use this option to suppress those warnings. Other warnings will still be issued

unless you use the nowarn option described above. (This option is automatically switched on

by glossaries-extra.)

�

debug=〈value〉 initial: false

Debugging mode may write information to the transcript file or add markers to the document.

The following values are available:

�

debug=false

Switches off debugging mode.

�

debug=true

This will write the following line to the transcript file if any attempt at indexing occurs before

the associated files have been opened by \makeglossaries:

wrglossary(〈glossary-type〉)(〈indexing info〉)

Note that this setting will also cancel nowarn.

�

debug=showtargets

As debug=true but also adds a marker where the glossary-related hyperlinks and targets

occur in the document.

The debug=showtargets option will additionally use:

�

\glsshowtarget{〈target name〉}

to show the hypertarget or hyperlink name when \glsdohypertarget is used by com-

mands like\glstarget andwhen\glsdohyperlink is used by commands like\gls.
In math mode or inner mode, this uses:

�

\glsshowtargetinner{〈target name〉}

which typesets the target name as:

[\glsshowtargetfonttext{〈target name〉}]

just before the link or anchor. This uses the text-block command:

80

2. Package Options

�

\glsshowtargetfonttext{〈text〉}

which checks for math-mode before applying the font change. In outer mode \glsshow-
target uses:

�

\glsshowtargetouter{〈target name〉}

which by default places the target name in the margin with a symbol produced with:

�

\glsshowtargetsymbol{〈target name〉}

which defaults to a small right facing triangle.

The font used by both\glsshowtargetfonttext and\glsshowtargetouter
is given by the declaration:

�

\glsshowtargetfont initial: \ttfamily\footnotesize

�

debug=showaccsupp

As debug=true but also adds a marker where the glossary-related accessibility information

occurs (see glossaries-accsupp) using:

�

\glsshowaccsupp{〈options〉}{〈PDF element〉}{〈value〉}

glossaries-extra

The glossaries-extra package provides extra values debug=showwrgloss, that
may be used to show where the indexing is occurring, and debug=all, which switches
on all debugging options. See the glossaries-extra manual for further details.

The purpose of the debug mode can be demonstrated with the following example document:

�

\documentclass{article}
\usepackage{glossaries}
\newglossaryentry{sample1}{name={sample1}
,description={example}}

81

2. Package Options

\newglossaryentry{sample2}{name={sample2}
,description={example}}
\glsadd{sample2}% <- does nothing here
\makeglossaries
\begin{document}
\gls{sample1}.
\printglossaries
\end{document}

In this case, only the “sample1” entry has been indexed, even though \glsadd{sample2}
appears in the source code. This is because \glsadd{sample2} has been used before the

associated file is opened by \makeglossaries. Since the file isn’t open yet, the informa-
tion can’t be written to it, which is why the “sample2” entry doesn’t appear in the glossary.

Without \makeglossaries the indexing is suppressed with Options 2 and 3 but, other

than that, commands like \gls behave as usual.

This situation doesn’t cause any errors or warnings as it’s perfectly legitimate for a user to want

to use glossaries to format the entries (for example, to show a different form on first use) but

not display any glossaries (or the user may prefer to use the unsorted Options 5 or 6). It’s also

possible that the user may want to temporarily comment out \makeglossaries in order

to suppress the indexing while working on a draft version to speed compilation, or the user may

prefer to use Options 1 or 4 for indexing, which don’t use \makeglossaries.
Therefore \makeglossaries can’t be used to enable \newglossaryentry and

commands like \gls and \glsadd. These commands must be enabled by default. (It does,
however, enable the see key as that’s a more common problem. See below.)

The debug mode, enabled with the debug option,

�

\usepackage[debug]{glossaries}

will write information to the log file when the indexing can’t occur because the associated file

isn’t open. The message is written in the form

Package glossaries Info: wrglossary(〈type〉)(〈text〉) on
input line 〈line number〉.

where 〈type〉 is the glossary label and 〈text〉 is the line of text that would’ve been written to the
associated file if it had been open. So if any entries haven’t appeared in the glossary but you’re

sure you used commands like \glsadd or \glsaddall, try switching on the debug
option and see if any information has been written to the log file.

82

2. Package Options

�

savewrites=〈boolean〉 default: true; initial: false

This is a boolean option tominimise the number of write registers used by the glossaries package.

The default is savewrites=false. With Options 2 and 3, one write register is required

per (non-ignored) glossary and one for the style file.

�

In general, this package option is best avoided.

With all options except Options 1 and 414, another write register is required if the glsdefs
file is needed to save document definitions. With both Options 1 and 4, no write registers are

required (document definitions aren’t permitted and indexing information is written to the aux
file). If you really need document definitions but you want to minimise the number of write

registers then consider using docdef=restricted with glossaries-extra.
There are only a limited number of write registers, and if you have a large number of glossaries

or if you are using a class or other packages that create a lot of external files, you may exceed

the maximum number of available registers. If savewrites is set, the glossary information

will be stored in token registers until the end of the document when they will be written to the

external files.

�

This option can significantly slow document compilation and may cause the indexing to

fail. Page numbers in the number list will be incorrect on page boundaries due to TEX’s

asynchronous output routine. As an alternative, you can use the scrwfile package (part of

the KOMA-Script bundle) and not use this option.

By way of comparison, sample-multi2.tex provided with bib2gls has a total of

15 glossaries. With Options 2 or 3, this would require 46 associated files and 16 write registers.

(These figures don’t include standard files and registers provided by the kernel or hyperref, such

as aux and out.) With bib2gls, no write registers are required and there are only 10

associated files for that particular document (9 resource files and 1 transcript file).

�

If you want to use TEX’s shell escape to call makeindex or xindy from your docu-

ment and use savewrites, then use automake=immediate or automake
=makegloss or automake=lite.

�

translate=〈value〉 default: true; initial: varies

This can take one of the values listed below. If no supported language package has been loaded

the default is translate=false otherwise the default is translate=true for the

83

2. Package Options

base glossaries package and translate=babel for glossaries-extra.

�

translate=true

If babel has been loaded and the translator package is installed, translator will be loaded and the

translations will be provided by the translator package interface. You can modify the trans-

lations by providing your own dictionary. If the translator package isn’t installed and babel

is loaded, the glossaries-babel package will be loaded and the translations will be provided

using babel’s \addto\captions〈language〉 mechanism. If polyglossia has been loaded,

glossaries-polyglossia will be loaded.

�

translate=false

Don’t provide translations, even if babel or polyglossia has been loaded. (Note that babel provides

the command \glossaryname so that will still be translated if you have loaded babel.)

�

translate=babel

Don’t load the translator package. Instead load glossaries-babel.

�

I recommend you use translate=babel if you have any problems with the trans-

lations or with PDF bookmarks, but to maintain backward compatibility, if babel has been

loaded the default is translate=true.

See §1.5.1 for further details.

�

notranslate

This is equivalent totranslate=false and may be passed via the document class options.

�

languages

This automatically implements translate=babel (which means that translator won’t au-

tomatically be loaded) but will also add the list of languages to tracklang’s list of tracked lan-

guages. Each element in the 〈list〉 may be an ISO language tag (such as pt-BR) or one of
tracklang’s known language labels (such as british).

�

locales alias: languages

Synonym of languages.

84

2. Package Options

�

hyperfirst=〈boolean〉 default: true; initial: true

If true, terms on first use will have a hyperlink, if supported, unless the hyperlink is explicitly

suppressed using starred versions of commands such as \gls*. If false, only subsequent use
instances will have a hyperlink (if supported).

Note that nohypertypes overrides hyperfirst=true. This option only affects

commands that check the first use flag, such as the\gls-like commands (for example,\gls or

\glsdisp), but not the \glstext-like commands (for example, \glslink or \gls-
text).
The hyperfirst setting applies to all glossary types (unless identified by nohyper-

types or defined with \newignoredglossary). It can be overridden on an individual
basis by explicitly setting the hyper key when referencing an entry (or by using the plus or

starred version of the referencing command).

It may be that you only want to suppress hyperlinks for just the acronyms (where the first use

explains the meaning of the acronym) but not for ordinary glossary entries (where the first use

is identical to subsequent use). In this case, you can use hyperfirst=false and apply

\glsunsetall to all the regular (non-acronym) glossaries. For example:

�

\usepackage[acronym,hyperfirst=false]{glossaries}
% acronym and glossary entry definitions

% at the end of the preamble
\glsunsetall[main]

Alternatively you can redefine the hook

�

\glslinkcheckfirsthyperhook

which is used by the commands that check the first use flag, such as \gls. Within the definition

of this command, you can use \glslabel to reference the entry label and \glstype to

reference the glossary type. You can also use \ifglsused to determine if the entry has

been used. You can test if an entry is an acronym by checking if it has the long key set using

\ifglshaslong (or if the short key has been set using \ifglshasshort). For
example, to switch off the hyperlink on first use just for acronyms:

�

\renewcommand*{\glslinkcheckfirsthyperhook}{%
\ifglsused{\glslabel}{}%
{%
\ifglshaslong{\glslabel}{\setkeys{glslink}{hyper=

85

2. Package Options

false}}%
}%
}

Note that this hook isn’t used by the commands that don’t check the first use flag, such as

\glstext. (You can, instead, redefine \glslinkpostsetkeys, which is used by

both the \gls-like and \glstext-like commands.)

glossaries-extra

The glossaries-extra package provides a method of disabling the first use hyperlink ac-

cording to the entry’s associated category. For example, if you only want to switch
off the first use hyperlink for abbreviations then you simply need to set the nohyper-
first attribute for the abbreviation and, if appropriate, acronym categories. (Instead of

using the hyperfirst package option.) See the glossaries-extra manual for further
details.

�

writeglslabels

This option will create a file called \jobname.glslabels at the end of the document.

This file simply contains a list of all defined entry labels (including those in any ignored glos-

saries). It’s provided for the benefit of text editors that need to know labels for auto-completion.

If you also want the name, use writeglslabelnames. (See also glossaries-extra’s
docdef=atom package option.)

bib2gls

Note that with bib2gls the file will only contain the entries that bib2gls has se-

lected from the bib files.

�

writeglslabelnames

Similar to writeglslabels but writes both the label and name (separated by a tab).

�

undefaction=〈value〉 initial: error

Only available with glossaries-extra, the value for this option may be one of:

�

undefaction=error

Generates an error if a referenced entry is undefined (default, and the only available setting with

just the base glossaries package).

86

2. Package Options

�

undefaction=warn

Only warns if a referenced entry is undefined (automatically activated with Option 4).

�

docdef=〈value〉 default: true; initial: false

Only available with glossaries-extra, this option governs the use of \newglossary-
entry. Available values:

�

docdef=false

This setting means that \newglossaryentry is not permitted in the document environ-

ment (default with glossaries-extra and for Option 1 with just the base glossaries package).

�

docdef=restricted

This setting means that \newglossaryentry is only permitted in the document environ-

ment if it occurs before \printglossary (not available for some indexing options, such

as Option 4).

�

docdef=atom

This setting is as docdef=restricted but creates the glsdefs file for use by atom
(without the limitations of docdef=true).

�

docdef=true

This setting means that \newglossaryentry is permitted in the document environment

where it would normally be permitted by the base glossaries package. This will create the

glsdefs file if \newglossaryentry is found in the document environment.

2.2. Sectioning, Headings and TOC Options

�

toc=〈boolean〉 default: true; initial: varies

Adds the glossaries to the table of contents (toc file). Note that an extra LATEX run is required

with this option. Alternatively, you can switch this function on and off using

�

\glstoctrue

87

2. Package Options

and

�

\glstocfalse

You can test whether or not this option is set using:

�

\ifglstoc 〈true〉\else 〈false〉\fi initial: \iffalse

The default value istoc=false for the base glossaries package andtoc=true for glossaries

-extra. This option has no effect if numberedsection has been used to switch to a num-

bered (unstarred) sectioning command.

�

This option simply governs whether or not \glossarysection should use \add-
contentsline after the applicable starred section command. The document class

you are using may have its own behaviour for starred sections, such as adding the title to

the PDF bookmarks.

�

numberline=〈boolean〉 default: true; initial: false

When used with toc=true option, this will add \numberline{} in the final argument

of \addcontentsline. This will align the table of contents entry with the numbered

section titles. Note that this option has no effect with toc=false. If toc=true is used

without numberline, the glossary title will be aligned with the section numbers rather than
the section titles.

�

section=〈name〉 default: section

This option indicates the sectional unit to use for the glossary. The value 〈name〉 should be

the control sequence name without the leading backslash or following star (for example, just

chapter not \chapter or chapter*).
The default behaviour is for the glossary heading to use \chapter, if that command exists,

or \section otherwise. The starred or unstarred form is determined by the numbered-
section option.

Example:

�

\usepackage[section=subsection]{glossaries}

You can omit the value if you want to use \section:

88

2. Package Options

�

\usepackage[section]{glossaries}

is equivalent to

�

\usepackage[section=section]{glossaries}

You can change this value later in the document using

�

\setglossarysection{〈name〉}

where 〈name〉 is the sectional unit.
The start of each glossary adds information to the page header via \glsglossarymark

(see §8.2).

�

ucmark=〈boolean〉 default: true; initial: varies

If ucmark=true, this will make \glsglossarymark use all caps in the header, oth-

erwise no case change will be applied. The default is ucmark=false, unless memoir has

been loaded, in which case the default is ucmark=true.
You can test if this option has been set using:

�

\ifglsucmark 〈true〉\else 〈false〉\fi initial: varies

For example:

�

\renewcommand{\glsglossarymark}[1]{%
\ifglsucmark
\markright{\glsuppercase{#1}}%

\else
\markright{#1}%

\fi}

�

numberedsection=〈value〉 default: nolabel; initial: false

The glossaries are placed in unnumbered sectional units by default, but this can be changed using

numberedsection. This option can take one of the following values:

89

2. Package Options

�

numberedsection=false

No number, that is, use the starred form of sectioning command (for example, \chapter*
or \section*).

�

numberedsection=nolabel

Use a numbered section, that is, the unstarred form of sectioning command (for example,\chapter
or \section), but no label is automatically added.

�

numberedsection=autolabel

Use numbered sections with automatic labelling. Each glossary uses the unstarred form of a

sectioning command (for example, \chapter or \section) and is assigned a label (via

\label). The label is formed from the glossary’s label prefixed with:

�

\glsautoprefix

The default value of \glsautoprefix is empty. For example, if you load glossaries using:

�

\usepackage[section,numberedsection=autolabel]
{glossaries}

then each glossary will appear in a numbered section, and can be referenced using something

like:

�

The main glossary is in section~\ref{main} and
the list of acronyms is in section~\ref{acronym}.

If you can’t decide whether to have the acronyms in the main glossary or a separate list of

acronyms, you can use \acronymtype which is set to main if the acronym option is

not used and is set to acronym if the acronym option is used. For example:

�

The list of acronyms is in section~\ref{\acronym-
type}.

You can redefine the prefix if the default label clashes with another label in your document. For

example:

90

2. Package Options

�

\renewcommand*{\glsautoprefix}{glo:}

will add glo: to the automatically generated label, so you can then, for example, refer to the

list of acronyms as follows:

�

The list of acronyms is in
section~\ref{glo:\acronymtype}.

Or, if you are undecided on a prefix:

�

The list of acronyms is in
section~\ref{\glsautoprefix\acronymtype}.

�

numberedsection=nameref

This setting is likenumberedsection=autolabel but uses an unnumbered sectioning

command (for example, \chapter* or \section*). It’s designed for use with the name-

ref package. For example:

�

\usepackage{nameref}
\usepackage[numberedsection=nameref]{glossaries}

Alternatively, since nameref is automatically loaded by hyperref:

�

\usepackage{hyperref}
\usepackage[numberedsection=nameref]{glossaries}

Now \nameref{main} will display the (table of contents) section title associated with the

main glossary. As above, you can redefine \glsautoprefix to provide a prefix for the

label.

91

2. Package Options

2.3. Glossary Appearance Options

�

savenumberlist=〈boolean〉 default: true; initial: false
Options 2 and 3 only

This is a boolean option that specifies whether or not to gather and store the number list for

each entry. The default is savenumberlist=false with Options 2 and 3. (See \gls-
entrynumberlist and\glsdisplaynumberlist in §5.2.) This setting is always

true if you use Option 1 as a by-product of the way that indexing method works.

bib2gls

If you use the record option (with either no value or record=only or record
=nameref) then this package option has no effect. With bib2gls, the number

lists are automatically saved with the default save-locations=true and save
-loclist=true resource settings.

�

entrycounter=〈boolean〉 default: true; initial: false

If set, this will create the counter:

№

glossaryentry

Each top level (level 0) entry will increment and display that counter at the start of the entry

line when using glossary styles that support this setting. Note that if you also use subentry-
counter the option order makes a difference. If entrycounter is specified first, the

sub-entry counter will be dependent on the glossaryentry counter.

If you use this option (and are using a glossary style that supports this option) then you can

reference the entry number within the document using:

�

\glsrefentry{〈label〉}

where 〈label〉 is the label associated with that glossary entry. This will use \ref if either

entrycounter=true orsubentrycounter=true, with the label 〈prefix〉〈label〉,
where 〈label〉 is the entry’s label and 〈prefix〉 is given by:

�

\GlsEntryCounterLabelPrefix initial: glsentry-

If bothentrycounter=false andsubentrycounter=false,\gls{〈label〉}
will be used instead.

92

2. Package Options

�

If you use \glsrefentry, you must run LATEX twice after creating the indexing files

using makeglossaries, makeindex or xindy (or after creating the glstex
file with bib2gls) to ensure the cross-references are up-to-date. This is because the

counter can’t be incremented and labelled until the glossary is typeset.

The glossaryentry counter can be reset back to zero with:

�

\glsresetentrycounter

This does nothing if entrycounter=false. The glossaryentry counter can be simulta-
neously incremented and labelled (using \refstepcounter and \label) with:

�

\glsstepentry{〈label〉}

This command is within the definition of\glsentryitem, which is typically used in glossary
styles at the start of top level (level 0) entries. The argument is the entry label.

The value of the glossaryentry counter can be displayed with:

�

\theglossaryentry

This command is defined when the glossaryentry counter is defined, so won’t be available other-

wise. The formatted value is more usually displayed with:

�

\glsentrycounterlabel

This will do \theglossaryentry.\space if entrycounter=true, otherwise
does nothing. This is thereforemore generally useful in glossary styles as it will silently do nothing

if the setting isn’t on. This command is used within the definition of \glsentryitem.
If you want to test whether or not this option is currently enabled, use the conditional:

�

\ifglsentrycounter 〈true〉\else 〈false〉\fi initial: \iffalse

You can later switch it off using:

�

\glsentrycounterfalse

and switch it back on with:

�

\glsentrycountertrue

93

2. Package Options

but note that this won’t define glossaryentry if entrycounter=true wasn’t used initially.

You can also locally enable or disable this option for a specific glossary using the entry-
counter \print〈…〉glossary option.

�

counterwithin=〈parent-counter〉

If used, this option will automatically set entrycountertrue and the glossaryentry counter
will be reset every time 〈parent-counter〉 is incremented. An empty value indicates that glossary-
entry has no parent counter (but glossaryentry will still be defined).

�

The glossaryentry counter isn’t automatically reset at the start of each glossary, except

when glossary section numbering is on and the counter used by counterwithin is

the same as the counter used in the glossary’s sectioning command.

If you want the counter reset at the start of each glossary, you canmodify the glossary preamble

(\glossarypreamble) to use \glsresetentrycounter. For example:

�

\renewcommand{\glossarypreamble}{%
\glsresetentrycounter

}

or if you are using \setglossarypreamble, add it to each glossary preamble, as re-

quired. For example:

�

\setglossarypreamble[acronym]{%
\glsresetentrycounter
The preamble text here for the list of acronyms.

}
\setglossarypreamble{%
\glsresetentrycounter
The preamble text here for the main glossary.

}

�

subentrycounter=〈boolean〉 default: true; initial: false

If set, each level 1 glossary entry will be numbered at the start of its entry line when using glossary

94

2. Package Options

styles that support this option. This option creates the counter

№

glossarysubentry

If the entrycounter option is used before subentrycounter, then glossarysub-

entry will be added to the reset list for glossaryentry. If subentrycounter is used without

entrycounter then the glossarysubentry counter will be reset by \glsentryitem. If
subentrycounter is used before entrycounter then the two counters are indepen-

dent.

�

There’s no support for deeper hierarchical levels. Some styles, such as those that don’t

support any hierarchy, may not support this setting or, for those that only support level 0

and level 1, may use this setting for all child entries.

As with the entrycounter option, you can reference the number within the document

using \glsrefentry. There are analogous commands to those for entrycounter.
The glossarysubentry counter can be reset back to zero with:

�

\glsresetsubentrycounter

This does nothing if subentrycounter=false. This command is used within the def-
inition of \glsentryitem if entrycounter=false.
The glossarysubentry counter can be simultaneously incremented and labelled (using \ref-

stepcounter and \label) with:

�

\glsstepsubentry{〈label〉}

This command is used in \glssubentryitem if subentrycounter=true, oth-
erwise it does nothing. The argument is the entry label and is passed to \label is as for

\glsrefentry.
The value of the glossarysubentry counter can be displayed with:

�

\theglossarysubentry

This command is defined when the glossarysubentry counter is defined, so won’t be available

otherwise. The formatted value is more usually displayed with:

�

\glssubentrycounterlabel

95

2. Package Options

This will do \theglossarysubentry)\space if subentrycounter=true,
otherwise does nothing. This is therefore more generally useful in glossary styles as it will silently

do nothing if the setting isn’t on. This command is used in \glssubentryitem.
If you want to test whether or not this option is currently enabled, use the conditional:

�

\ifglssubentrycounter 〈true〉\else 〈false〉\fi initial: \iffalse

You can later switch it off using:

�

\glssubentrycounterfalse

and switch it back on with:

�

\glssubentrycountertrue

but note that this won’t define glossarysubentry if subentrycounter=true wasn’t used

initially. You can also locally enable or disable this option for a specific glossary using the sub-
entrycounter \print〈…〉glossary option.

�

style=〈style-name〉 initial: varies

This option sets the default glossary style to 〈style-name〉. This is initialised to style=list
unless classicthesis has been loaded, in which case the default is style=index. (The styles
that use the description environment, such as the list style, are incompatible with classicthesis.)

This setting may only be used for styles that are defined when the glossaries package is loaded.

This will usually be the styles in the packages glossary-list, glossary-long, glossary-super or
glossary-tree, unless they have been suppressed through options such as nostyles. Style

packages can also be loaded by the stylemods option provided by glossaries-extra.
Alternatively, you can set the style later using:

�

\setglossarystyle{〈style-name〉}

or use the style \print〈…〉glossary option. (See §13 for further details.)

�

nolong

This prevents the glossaries package from automatically loading glossary-long (which means

that the longtable package also won’t be loaded). This reduces overhead by not defining unwanted

styles and commands. Note that if you use this option, you won’t be able to use any of the glossary

styles defined in the glossary-long package (unless you explicitly load glossary-long).

96

2. Package Options

�

Some style packages implicitly load glossary-long, so this package may still end up being
loaded even if you use nolong.

�
nosuper

This prevents the glossaries package from automatically loading glossary-super (which means
that the supertabular package also won’t be loaded). This reduces overhead by not defining

unwanted styles and commands. Note that if you use this option, you won’t be able to use any

of the glossary styles defined in the glossary-super package (unless you explicitly load glossary

-super).

�

This option is automatically implemented if xtab has been loaded as it’s incompatible with

supertabular. This option is also automatically implemented if supertabular isn’t installed.

�

nolist

This prevents the glossaries package from automatically loading glossary-list. This reduces

overhead by not defining unwanted styles. Note that if you use this option, you won’t be able

to use any of the glossary styles defined in the glossary-list package (unless you explicitly load
glossary-list). Note that since the default style is list (unless classicthesis has been loaded), you
will also need to use the style option to set the style to something else.

�

notree

This prevents the glossaries package from automatically loading glossary-tree. This reduces

overhead by not defining unwanted styles. Note that if you use this option, you won’t be able

to use any of the glossary styles defined in the glossary-tree package (unless you explicitly load
glossary-tree). Note that if classicthesis has been loaded, the default style is index, which is

provided by glossary-tree.

�

Some style packages implicitly load glossary-tree, so this package may still end up being
loaded even if you use notree.

�

nostyles

This prevents all the predefined styles from being loaded. If you use this option, you need to

load a glossary style package (such as glossary-mcols). Also if you use this option, you can’t use

97

2. Package Options

the style package option (unless you use stylemods with glossaries-extra). Instead you
must either use \setglossarystyle or the style \print〈…〉glossary option.

Example:

�

\usepackage[nostyles]{glossaries}
\usepackage{glossary-mcols}
\setglossarystyle{mcoltree}

Alternatively:

�

\usepackage[nostyles,stylemods=mcols,style=mcoltree]
{glossaries-extra}

�

nonumberlist

This option will suppress the associated number lists in the glossaries (see also §12). This op-

tion can also be locally switched on or off for a specific glossary with the nonumberlist
\print〈…〉glossary options.

�

Note that if you use Options 2 or 3 (makeindex or xindy) then the locations must
still be valid even if this setting is on. This package option merely prevents the number

list from being displayed, but both makeindex and xindy still require a location or

cross-reference for each term that’s indexed.

Remember that number list includes any cross-references, so suppressing the number list will

also hide the cross-references (in which case, you may want to use seeautonumberlist).

bib2gls

With bib2gls, it’s more efficient to use save-locations=false in the re-

source options if no locations are required.

�

seeautonumberlist

If you suppress the number lists withnonumberlist, described above, this will also suppress
any cross-referencing information supplied by the see key in \newglossaryentry or

\glssee. If you use seeautonumberlist, the see key will automatically implement

nonumberlist=false for that entry. (Note this doesn’t affect \glssee.) For further
details see §11.

98

2. Package Options

�

counter=〈counter-name〉 initial: page

This setting indicates that 〈counter-name〉 should be the default counter to use in the number lists
(see §12). This option can be overridden for a specific glossary by the 〈counter〉 optional argu-
ment of \newglossary or the counter key when defining an entry or by the counter
option when referencing an entry.

This option will redefine:

�

\glscounter initial: page

to 〈counter-name〉.
�

nopostdot=〈boolean〉 default: true; initial: true

If true, this option suppresses the default terminating full stop in glossary styles that use the

post-description hook \glspostdescription.
The default setting isnopostdot=false for the base glossaries package andnopostdot

=true for glossaries-extra.

glossaries-extra

The glossaries-extra package providespostdot, which is equivalent tonopostdot
=false, and also postpunc, which allows you to choose a different punctuation

character.

�

nogroupskip=〈boolean〉 default: true; initial: false

If true, this option suppresses the default vertical gap between letter groups used by some of

the predefined glossary styles. This option can also be locally switched on or off for a specific

glossary with the nogroupskip \print〈…〉glossary options.

This option is only relevant for glossary styles that use the conditional:

�

\ifglsnogroupskip 〈true〉\else 〈false〉\fi initial: \iffalse

to test for this setting.

bib2gls

If you are using bib2gls without the --group (or -g) switch then this option is

irrelevant as there won’t be any letter groups.

99

2. Package Options

�

stylemods=〈list〉 default: default

Loads the glossaries-extra-stylemods package, which patches the predefined glossary styles.

The 〈list〉 argument is optional. If present, this will also load glossary-〈element〉.sty for each
〈element〉 in the comma-separated 〈list〉. See the glossaries-extra manual for further details.

2.4. Indexing Options

�

seenoindex=〈value〉 initial: error

(This option is only relevant with makeindex and xindy.) The see key automatically

indexes the cross-referenced entry using \glssee. This means that if this key is used in an

entry definition before the relevant indexing file has been opened, the indexing can’t be per-

formed. Since this is easy to miss, the glossaries package by default issues an error message if

the see key is used before \makeglossaries.
This option may take one of the following values:

�

seenoindex=error

This is the default setting that issues an error message.

�

seenoindex=warn

This setting will trigger a warning rather than an error.

�

seenoindex=ignore

This setting will do nothing.

For example, if you want to temporarily comment out \makeglossaries to speed up

the compilation of a draft document by omitting the indexing, you can use seenoindex=
warn or seenoindex=ignore.

�

esclocations=〈boolean〉 default: true; initial: false

Only applicable to makeindex and xindy. As from v4.50, the initial setting is now

esclocations=false. Previously it was esclocations=true.
Both makeindex and xindy are fussy about the location syntax (makeindex more

so than xindy) so, if esclocations=true, the glossaries package will try to ensure

that special characters are escaped, which allows for the location to be substituted for a format

100

2. Package Options

that’s more acceptable to the indexing application. This requires a bit of trickery to circumvent

the problem posed by TEX’s asynchronous output routine, which can go wrong and also adds to

the complexity of the document build.

If you’re sure that your locations will always expand to an acceptable format (or you’re prepared

to post-process the glossary file before passing it to the relevant indexing application) then use

esclocations=false to avoid the complex escaping of location values. This is now the

default.

If, however, your locations (for example, \thepage with the default counter=page)
expand to a robust command then you may need to use esclocations=true. You may
additionally need to set the following conditional to true:

�

\ifglswrallowprimitivemods 〈true〉\else 〈false〉\fi
initial: \iffalse

which will locally redefine some primitives in order to escape special characters without prema-

turely expanding \thepage. Since this hack may cause some issues and isn’t necessary for

the majority of documents, this is off by default.

This conditional can be switched on with:

�

\glswrallowprimitivemodstrue

but remember that it will have no effect with esclocations=false. If can be switched
off with:

�

\glswrallowprimitivemodsfalse

If you are usingmakeindex and your location expands to content in the form 〈cs〉 {〈num〉}
, where 〈cs〉 is a command (optionally preceded by\protect) and 〈num〉 is a location accept-
able to makeindex, then you can use makeglossaries to make a suitable adjustment

without esclocations=true. See §12.5 for furthe details.
This isn’t an issue for Options 1 or 4 as the locations are written to the aux file and both

methods use LATEX syntax, so no conversion is required.

�

indexonlyfirst=〈boolean〉 default: true; initial: false

If true, this setting will only index on first use. The default setting indexonlyfirst=
false, will index the entry every time one of the \gls-like or \glstext-like commands
are used. Note that \glsadd will always add information to the external glossary file (since

that’s the purpose of that command).

You can test if this setting is on using the conditional:

101

2. Package Options

�

\ifglsindexonlyfirst 〈true〉\else 〈false〉\fi initial: \iffalse

This setting can also be switched on with:

�

\glsindexonlyfirsttrue

and off with:

�

\glsindexonlyfirstfalse

�

Resetting the first use flag with commands like \glsreset after an entry has been

indexed will cause that entry to be indexed multiple times if it’s used again after the reset.

Likewise unsetting the first use flag before an entry has been indexed will prevent it from

being indexed (unless specifically indexed with \glsadd).

You can customise the default behaviour by redefining

�

\glswriteentry{〈label〉}{〈indexing code〉}

where 〈label〉 is the entry’s label and 〈indexing code〉 is the code that writes the entry’s information
to the external file. The default definition of \glswriteentry is:

\newcommand*{\glswriteentry}[2]{%
\ifglsindexonlyfirst
\ifglsused{#1}{}{#2}%

\else
#2%

\fi
}

This does 〈indexing code〉 unless indexonlyfirst=true and the entry identified by

〈label〉 has been marked as used
For example, suppose you only want to index the first use for entries in theacronym glossary

and not in the main (or any other) glossary:

102

2. Package Options

�

\renewcommand*{\glswriteentry}[2]{%
\ifthenelse\equal{\glsentrytype{#1}}{acronym}
{\ifglsused{#1}{}{#2}}%
{#2}%
}

Here I’ve used\ifthenelse to ensure the arguments of\equal are fully expanded before

the comparison is made. There are other methods of performing an expanded string comparison,

which you may prefer to use.

With the glossaries-extra package it’s possible to only index first use for particular categories.
For example, if you only want this enabled for abbreviations then you can set the indexonly-
first attribute for the abbreviation and, if appropriate, acronym categories. (Instead of using

theindexonlyfirst package option.) See the glossaries-extramanual for further details.

�

indexcrossrefs=〈boolean〉 default: true; initial: true

This option is only available with glossaries-extra. If true, this will automatically index

(\glsadd) any cross-referenced entries that haven’t been marked as used at the end of the

document. Note that this increases the document build time. See glossaries-extra manual for
further details.

bib2gls

Note that bib2gls can automatically find dependent entries when it parses the bib
file. Use the selection option to determine the selection of dependencies.

�

autoseeindex=〈boolean〉 default: true; initial: true

This option is only available with glossaries-extra. The base glossaries package always im-

plements autoseeindex=true.
If true, this makes the see and seealso keys automatically index the entry (with \gls-

see) when the entry is defined. This means that any entry with the see (or seealso) key
will automatically be added to the glossary. See the glossaries-extra manual for further details.

bib2gls

With bib2gls, use the selection resource option to determine the selection of

dependencies.

103

2. Package Options

�

record=〈value〉 default: only; initial: off

This option is only available with glossaries-extra. See glossaries-extra manual for further
details. A brief summary of available values:

�

record=off

This default setting indicates that bib2gls isn’t being used.

�

record=only

This setting indicates that bib2gls is being used to fetch entries from one or more bib files,

to sort the entries and collate the number lists, where the location information is the same as for

Options 1, 2 and 3.

�

record=nameref

This setting is like record=only but provides extra information that allows the associated

title to be used instead of the location number and provides better support for hyperlinked loca-

tions.

�

record=hybrid

This setting indicates a hybrid approach where bib2gls is used to fetch entries from one or

more bib files but makeindex or xindy are used for the indexing. This requires a more

complicated document build and isn’t recommended.

�

equations=〈boolean〉 default: true; initial: false

This option is only available with glossaries-extra. If true, this option will cause the default
location counter to automatically switch to equation when inside a numbered equation environ-

ment.

�

floats=〈boolean〉 default: true; initial: false

This option is only available with glossaries-extra. If true, this option will cause the de-

fault location counter to automatically switch to the corresponding counter when inside a float.

(Remember that with floats it’s the \caption command that increments the counter so the

location will be incorrect if an entry is indexed within the float before the caption.)

104

2. Package Options

�

indexcounter

This option is only available with glossaries-extra. This valueless option is primarily intended
for use with bib2gls and hyperref allowing the page location hyperlink target to be set to the

relevant point within the page (rather than the top of the page). Unexpected results will occur

with other indexing methods. See glossaries-extra manual for further details.

2.5. Sorting Options

This section is mostly for Options 2 and 3. Only the sort and order options are applicable

for Option 1.

glossaries-extra

With Options 4, 5 and 6, only sort=none is applicable (and this is automatically im-

plemented byrecord=only andrecord=nameref). Withbib2gls, the sort
method is provided in the optional argument of\GlsXtrLoadResources not with

the sort package option. There’s no sorting with Options 5 and 6.

�

sanitizesort=〈boolean〉 default: true; initial: varies

This option determines whether or not to sanitize the sort value when writing to the external

indexing file. For example, suppose you define an entry as follows:

�

\newglossaryentry{hash}{name={\#},sort={},
description={hash symbol}}

The sort value () must be sanitized before writing it to the indexing file, otherwise LATEX will try

to interpret it as a parameter reference. If, on the other hand, you want the sort value expanded,

you need to switch off the sanitization. For example, suppose you do:

�

\newcommand{\mysortvalue}{AAA}
\newglossaryentry{sample}{%
name={sample},
sort={\mysortvalue},
description={an example}}

and you actually want \mysortvalue expanded, so that the entry is sorted according to

AAA, then use the package option sanitizesortfalse.

105

2. Package Options

The default for Options 2 and 3 is sanitizesort=true, and the default for Option 1
is sanitizesort=false.

�

sort=〈value〉 initial: standard

If you use Options 2 or 3, this package option is the only way of specifying how to sort the

glossaries. Only Option 1 allows you to specify sort methods for individual glossaries via the

sort key in the optional argument of \printnoidxglossary. If you have multiple

glossaries in your document and you are using Option 1, only use the package options sort=
def or sort=use if you want to set this sort method for all your glossaries.

�

sort=none

This setting is only for documents that don’t use \makeglossaries (Options 2 or 3) or

\makenoidxglossaries (Option 1). It omits the code used to sanitize or escape the

sort value, since it’s not required. This can help to improve the document build speed, especially

if there are a large number of entries. This setting may be used if no glossary is required or

if \printunsrtglossary is used (Option 5). If you want an unsorted glossary with

bib2gls, use the resource option sort=none instead. This option will redefine \gls-
indexingsetting to none.

�

This option will still assign the sort key to its default value. It simply doesn’t process it.

If you want the sort key set to an empty value instead, use sort=clear instead.

�

sort=clear

As sort=none but sets the sort key to an empty value. This will affect letter group for-

mations in \printunsrtglossary with Option 5. See the glossaries-extra manual for
further details. This option will redefine \glsindexingsetting to none. The remain-
ing sort options listed below don’t change \glsindexingsetting.

�

sort=def

Entries are sorted in the order in which they were defined. With Option 1, this is implemented by

simply iterating over all defined entries so there’s no actual sorting. With Options 2 and 3, sorting

is always performed (since that’s the purpose ofmakeindex andxindy). This means that to
obtain a list in order of definition, the sort key is assigned a numeric value that’s incremented

whenever a new entry is defined.

106

2. Package Options

�

sort=use

Entries are sorted according to the order in which they are used in the document. With Option 1,

this order is obtained by iterating over a list that’s formed with the aux file is input at the start

of the document. With Options 2 and 3, again the sort key is assigned a numeric value, but

in this case the value is incremented, and the sort key is assigned, the first time an entry is

indexed.

Both sort=def and sort=use zero-pad the sort key to a six digit number using:

�

\glssortnumberfmt{〈number〉}

This can be redefined, if required, before the entries are defined (in the case of sort=def) or
before the entries are used (in the case of sort=use).
Note that the group styles (such as listgroup) are incompatible with the sort=use and

sort=def options.

�

sort=standard

Entries are sorted according to the value of the sort key used in \newglossaryentry
(if present) or the name key (if sort key is missing).

When the standard sort option is in use, you can hook into the sort mechanism by redefining:

�

\glsprestandardsort{〈sort cs〉}{〈type〉}{〈entry-label〉}

where 〈sort cs〉 is a temporary control sequence that stores the sort value (which was either ex-
plicitly set via the sort key or implicitly set via the name key) before any escaping of the

makeindex/xindy special characters is performed. By default \glsprestandard-
sort just does:

�

\glsdosanitizesort

which sanitizes 〈sort cs〉 if sanitizesort=true (or does nothing if sanitizesort
=false).
The other arguments, 〈type〉 and 〈entry-label〉, are the glossary type and the entry label for the

current entry. Note that 〈type〉 will always be a control sequence, but 〈label〉 will be in the form
used in the first argument of \newglossaryentry.

�

Redefining\glsprestandardsortwon’t affect any entries that have already been

defined and will have no effect at all if you use another sort setting.

107

2. Package Options

Example 11: Mixing Alphabetical and Order of Definition Sorting

Suppose I have three glossaries: main, acronym and notation, and let’s suppose I

want the main and acronym glossaries to be sorted alphabetically, but the notation
type should be sorted in order of definition.

For Option 1, the sort option can be used in \printnoidxglossary:

�

\printnoidxglossary[sort=word]
\printnoidxglossary[type=acronym,sort=word]
\printnoidxglossary[type=notation,sort=def]

For Options 2 or 3, I can setsort=standard (which is the default), and I can either define

all my main and acronym entries, then redefine \glsprestandardsort to set 〈sort
cs〉 to an incremented integer, and then define all my notation entries. Alternatively, I can

redefine \glsprestandardsort to check for the glossary type and only modify 〈sort cs〉
if 〈type〉 is notation.
The first method can be achieved as follows:

�

\newcounter{sortcount}

\renewcommand{\glsprestandardsort}[3]{%
\stepcounter{sortcount}%
\edef#1{\glssortnumberfmt{\arabic{sortcount}}}%

}

The second method can be achieved as follows:

�

\newcounter{sortcount}

\renewcommand{\glsprestandardsort}[3]{%
\ifdefstring{#2}{notation}%
{%

\stepcounter{sortcount}%
\edef#1{\glssortnumberfmt{\arabic{sortcount}}}

%
}%
{%

\glsdosanitizesort
}%

}

108

2. Package Options

(\ifdefstring is defined by the etoolbox package, which is automatically loaded by glossaries.)

For a complete document, see the sample file sampleSort.tex.

Example 12: Customizing Standard Sort (Options 2 or 3)

Suppose youwant a glossary of people and youwant the names listed as 〈first-name〉 〈surname〉
in the glossary, but you want the names sorted by 〈surname〉, 〈first-name〉. You can do this by
defining a command called, say, \name{first-name}{surname} that you can use in the name
key when you define the entry, but hook into the standard sort mechanism to temporarily redefine

\name while the sort value is being set.

First, define two commands to set the person’s name:

�

\newcommand{\sortname}[2]{#2, #1}
\newcommand{\textname}[2]{#1 #2}

and \name needs to be initialised to \textname:

�

\let\name\textname

Now redefine\glsprestandardsort so that it temporarily sets\name to\sortname
and expands the sort value, then sets\name to\textname so that the person’s name appears

as 〈first-name〉 〈surname〉 in the text:

�

\renewcommand{\glsprestandardsort}[3]{%
\let\name\sortname
\edef#1{\expandafter\expandonce\expandafter{#1}}%
\let\name\textname
\glsdosanitizesort
}

(The somewhat complicate use of \expandafter etc helps to protect fragile commands,

but care is still needed.)

Now the entries can be defined:

�

\newglossaryentry{joebloggs}name={\name{Joe}{Bloggs}
},
description={some information about Joe Bloggs}

109

2. Package Options

\newglossaryentry{johnsmith}{name={\name{John}
{Smith}},
description={some information about John Smith}}

For a complete document, see the sample file samplePeople.tex.

�

order

This may take two values:

�

order=word

Word order (“sea lion” before “seal”).

�

order=letter

Letter order (“seal” before “sea lion”).

�

Note that with Options 2 and 3, the order option has no effect if you explicitly call

makeindex or xindy.

If you use Option 1, this setting will be used if you use sort=standard in the optional

argument of \printnoidxglossary:

�

\printnoidxglossary[sort=standard]

Alternatively, you can specify the order for individual glossaries:

�

\printnoidxglossary[sort=word]
\printnoidxglossary[type=acronym,sort=letter]

bib2gls

With bib2gls, use the break-at option in \GlsXtrLoadResources in-

stead of order.

110

2. Package Options

�

makeindex
Option 2

The glossary information and indexing style file will be written in makeindex format. If you

use makeglossaries or makeglossaries-lite, it will automatically detect that
it needs to call makeindex. If you don’t use makeglossaries, you need to remember
to use makeindex not xindy. The indexing style file will been given a ist extension.

You may omit this package option if you are using Option 2 as this is the default. It’s available

in case you need to override the effect of an earlier occurrence of xindy in the package option

list.

�

xindy={〈options〉}
Option 3

The glossary information and indexing style file will be written in xindy format. If you use

makeglossaries, it will automatically detect that it needs to call xindy. If you don’t

use makeglossaries, you need to remember to use xindy not makeindex. The

indexing style file will been given a xdy extension.

This package option may additionally have a value that is a 〈key〉=〈value〉 comma-separated
list to override some default options. Note that these options are irrelevant if you explicitly call

xindy. See §14 for further details on using xindy with the glossaries package.

You can test if this option has been set using the conditional:

�

\ifglsxindy 〈true〉\else 〈false〉\fi initial: \iffalse

Note that this conditional should not be changed after \makeglossaries otherwise the

syntax in the glossary files will be incorrect. If this conditional is false, it means that any option

other than Option 3 is in effect. (If you need to know which indexing option is in effect, check

the definition of \glsindexingsetting instead.)

The 〈options〉 value may be omitted. If set, it should be a 〈key〉=〈value〉 list, where the fol-
lowing three options may be used:

�

language={〈value〉}

The language module to use, which is passed to xindy with the -L switch. The default is

obtained from \languagename but note that this may not be correct as xindy has a

different labelling system to babel and polyglossia.

The makeglossaries script has a set of mappings of known babel language names to

xindy language names, but new babel dialect names may not be included. The makeglos-
saries-lite script doesn’t have this feature (but there’s no benefit in use makeglos-
saries-lite instead of makeglossaries when using xindy). The automake
=option that calls xindy explicitly also doesn’t use any mapping.

111

2. Package Options

However, even if the appropriate mapping is available, \languagename may still not

expand to the language required for the glossary. In which case, you need to specify the correct

xindy language. For example:

�

\usepackage[brazilian,english]{babel}
\usepackage[xindy=language=portuguese]{glossaries}

If you have multiple glossaries in different languages, use \GlsSetXdyLanguage to set

the language for each glossary.

�

codepage={〈value〉}

The codepage is the file encoding for the xindy files and is passed to xindy with the -C
switch. The default codepage is obtained from \inputencodingname. As from v4.50,

if \inputencodingname isn’t defined, UTF-8 is assumed (which is identified by the la-

bel utf8). If this is incorrect, you will need to use the codepage option but make sure

you use the xindy codepage label (for example, cp1252 or latin9). See the xindy
documentation for further details.

�

The codepage may not simply be the encoding but may include a sorting rule, such as

ij-as-y-utf8 or din5007-utf8. See §14.2.

For example:

�

\usepackage[xindy=language=english,codepage=cp1252]
{glossaries}

�

glsnumbers={〈boolean〉} default: true; initial: true

If true, this option will define the number group in the xindy style file, which by default will

be placed before the “A” letter group. If you don’t want this letter group, set this option to false.

Note that the “A” letter group is only available with Latin alphabets, so if you are using a non-

Latin alphabet, you will either need to switch off the number group or identify the letter group

that it should come before with \GlsSetXdyNumberGroupOrder.

�

xindygloss
Option 3

This is equivalent to xindy without any value supplied and may be used as a document class

112

2. Package Options

option. The language and code page can be set via \GlsSetXdyLanguage and \Gls-
SetXdyCodePage if the defaults are inappropriate (see §14.2.)

�

xindynoglsnumbers
Option 3

This is equivalent to xindy={glsnumbers=false} and may be used as a document

class option.

�

automake=〈value〉 default: immediate; initial: false

This option will attempt to use the shell escape to run the appropriate indexing application. You

will still need to run LATEX twice. For example, if the document in the file myDoc.tex con-

tains:

�

\usepackage[automake]{glossaries}
\makeglossaries
\newglossaryentry{sample}{name={sample},description=
{an example}}
\begin{document}
\gls{sample}
\printglossaries
\end{document}

Then the document build is now:

�

pdflatex myDoc
pdflatex myDoc

This will run makeindex on every LATEX run. If you have a large glossary with a complex

document build, this can end up being more time-consuming that simply running makeindex
(either explicitly or via makeglossaries) the minimum number of required times.

�

Note that you will need to have the shell escape enabled (restricted mode for a direct call

tomakeindex and unrestricted mode forxindy, makeglossaries ormake-
glossaries-lite). If you switch this option on and you are using LuaLATEX, then
the shellesc package will be loaded.

If this option doesn’t seem to work, open the log file in your text editor and search for

“runsystem ”. For example, if the document is in a file called myDoc.tex and it has:

113

2. Package Options

�

\usepackage[automake]{glossaries}

and you run LATEX in restricted mode, then if call was successful, you should find the following

line in the file myDoc.log:

runsystem(makeindex -s myDoc.ist -t myDoc.glg -o
myDoc.gls myDoc.glo)...executed safely (allowed).

The parentheses immediately after “runsystem ” show how the command was called. The

bit after the three dots ... indicates whether or not the command was run and, if so, whether

it was successful. In the above case, it has “executed safely (allowed)”. This means that it was

allowed to run in restricted mode because makeindex is on the list of trusted applications.

If you change the package option to:

�

\usepackage[automake=makegloss]{glossaries}

and rerun LATEX in restricted mode, then the line in myDoc.log will now be:

runsystem(makeglossaries myDoc)...disabled
(restricted).

This indicates that an attempt was made to run makeglossaries (rather than a direct call

to makeindex), which isn’t permitted in restricted mode. There will be a similar message

with automake=lite or if the xindy option is used. These cases require the unrestricted

shell escape.

�

Think carefully before enabling unrestricted mode. Do you trust all the packages your

document is loading (either explicitly or implicitly via another package)? Do you trust

any code that you have copied and pasted from some third party? First compile your

document in restricted mode (or with the shell escape disabled) and search the log file

for “runsystem ” to find out exactly what system calls are being attempted.

If the document is compiled in unrestricted mode, the corresponding line in the log file

should now be:

runsystem(makeglossaries myDoc)...executed.

This means that makeglossaries was run. If it has “failed” instead of “executed”, then it

means there was a fatal error. Note that just because the log file has “executed” doesn’t mean

114

2. Package Options

that the application ran without a problem as there may have been some warnings or non-fatal

errors. If you get any unexpected results, check the indexing application’s transcript file (for

example, the glg file, myDoc.glg in the above, for the main glossary).

�

automake=false

No attempt is made to use the shell escape.

�

automake=true alias: delayed �

This is now a deprecated synonym for automake=delayed. This used to be the default

if the value to automake wasn’t supplied, but the default switched to the less problematic

automake=immediate in version 4.50.

�

automake=delayed

A direct call to makeindex or xindy (as appropriate) for each non-empty glossary will

be made at the end of the document using a delayed write to ensure that the glossary files are

complete. (It’s necessary to delay writing to the indexing files in order to ensure that \the-
page is correct.) Unfortunately, there are situations where the delayed write never occurs, for

example, if there are floats on the final page. In those cases, it’s better to use an immediate write

(any of the following options).

�

automake=immediate

A direct call to makeindex or xindy (as appropriate) for each non-empty glossary will be

made at the start of \makeglossaries using an immediate write. This ensures that the

indexing files are read by the indexing application before they are opened (which will clear their

content).

If you are using xindy, then automake=makegloss is a better option that this one.

Either way, you will need Perl and the unrestricted mode, but with makeglossaries you

get the benefit of the language mappings and diagnostics.

�

automake=makegloss

A call to makeglossaries will be made at the start of \makeglossaries using

an immediate write if the aux file exists. On the one hand, it’s better to use makeglos-
saries as it has some extra diagnostic functions, but on the other hand it both requires Perl

and the unrestricted shell escape.

�

automake=lite

A call to makeglossaries-lite will be made at the start of \makeglossaries

115

2. Package Options

using an immediate write if theaux file exists. There’s little benefit in this option overautomake
=immediate and it has the added disadvantage of requiring the unrestricted mode.

�

automakegloss alias: makegloss

This valueless option is equivalent to automake=makegloss.

�

automakeglosslite alias: lite

This valueless option is equivalent to automake=lite.

�

disablemakegloss

This valueless option indicates that\makeglossaries and\makenoidxglossaries
should be disabled. This option is provided in the event that you have to use a class or package that

disregards the advice in §1.3 and automatically performs \makeglossaries or \make-
noidxglossaries but you don’t want this. (For example, you want to use a different

indexing method or you want to disable indexing while working on a draft document.)

Naturally, if there’s a particular reason why the class or package insists on a specific indexing

method, for example, it’s an editorial requirement, then you will need to abide by that decision.

This option may be passed in the standard document class option list or passed using \Pass-
OptionsToPackage before glossaries is loaded. Note that this does nothing if \make-
glossaries or \makenoidxglossaries has already been used whilst enabled.

�

restoremakegloss

Cancels the effect of disablemakegloss. This option may be used in \setupglos-
saries. It issues a warning if \makeglossaries or \makenoidxglossaries
has already been used whilst enabled. Note that this option removes the check for \nofiles,
as this option is an indication that the output files are actually required.

For example, suppose the class customclass.cls automatically loads glossaries and does\make-
glossaries but you need an extra glossary, which has to be defined before\makeglossaries,
then you can do:

�

\documentclass[disablemakegloss]{customclass}
\newglossary*{functions}{Functions}
\setupglossaries{restoremakegloss}
\makeglossaries

or

116

2. Package Options

�

\PassOptionsToPackage{disablemakegloss}{glossaries}
\documentclass{customclass}
\newglossary*{functions}{Functions}
\setupglossaries{restoremakegloss}
\makeglossaries

Note that restoring these commands doesn’t necessarily mean that they can be used. It just

means that their normal behaviour given the current settings will apply. For example, if you use

the record=only or record=nameref options with glossaries-extra then you can’t

use \makeglossaries or \makenoidxglossaries regardless of restore-
makegloss.

2.6. Glossary Type Options

�

nohypertypes={〈list〉}

Use this option if you have multiple glossaries and you want to suppress the entry hyperlinks for

a particular glossary or glossaries. The value of this option should be a comma-separated list of

glossary types where \gls etc shouldn’t have hyperlinks by default. Make sure you enclose the

value in braces if it contains any commas. Example:

�

\usepackage[acronym,nohypertypes={acronym,notation}]
{glossaries}

\newglossary[nlg]{notation}{not}{ntn}{Notation}

As illustrated above, the glossary doesn’t need to exist when you identify it in nohyper-
types.

�

The values must be fully expanded, so don’t try, for example, nohypertypes=
\acronymtype.

You may also use:

�

\GlsDeclareNoHyperList{〈list〉}

instead or additionally. See §5.1 for further details.

117

2. Package Options

glossaries-extra

The glossaries-extra package has the nohyper category attribute which will suppress

the hyperlink for entries with the given category, which can be used as an alternative to

suppressing the hyperlink on a per-glossary basis.

�

nomain

This suppresses the creation of the main glossary and associated glo file, if unrequired. Note

that if you use this option, you must create another glossary in which to put all your entries (either

via the acronym (or acronyms) package option described in §2.7 or via the symbols,
numbers or index options described in §2.9 or via \newglossary described in §9).

Even if you don’t intend to display the glossary, a default glossary is still required.

If you don’t use the main glossary and you don’t use this option to suppress its creation,

makeglossaries will produce a warning:

Warning: File '〈filename〉.glo' is empty.
Have you used any entries defined in glossary
'main'?
Remember to use package option 'nomain' if
you don't want to use the main glossary.

If you did actually want to use the main glossary and you see this warning, check that you have

referenced the entries in that glossary via commands such as \gls.

�

symbols

This valueless option defines a new glossary type with the label symbols via

\newglossary[slg]{symbols}{sls}{slo}{\glssymbols-
groupname}

It also defines

�

\printsymbols[〈options〉]

which is a synonym for

\printglossary[type=symbols,〈options〉]

If you use Option 1, you need to use:

118

2. Package Options

\printnoidxglossary[type=symbols,〈options〉]

to display the list of symbols.

�

Remember to use the nomain package option if you’re only interested in using this

symbols glossary and don’t intend to use the main glossary.

glossaries-extra

The glossaries-extra package has a slightly modified version of this option which addi-

tionally provides \glsxtrnewsymbol as a convenient shortcut method for defining

symbols. See the glossaries-extra manual for further details.

�

numbers

This valueless option defines a new glossary type with the label numbers via

\newglossary[nlg]{numbers}{nls}{nlo}{\glsnumbers-
groupname}

It also defines

�

\printnumbers[〈options〉]

which is a synonym for

\printglossary[type=numbers,〈options〉]

If you use Option 1, you need to use:

\printnoidxglossary[type=numbers,〈options〉]

to display the list of numbers.

�

Remember to use the nomain package option if you’re only interested in using this

numbers glossary and don’t intend to use the main glossary.

119

2. Package Options

glossaries-extra

The glossaries-extra package has a slightly modified version of this option which addi-

tionally provides \glsxtrnewnumber as a convenient shortcut method for defining

numbers. See the glossaries-extra manual for further details.

�

index

This valueless option defines a new glossary type with the label index via

\newglossary[ilg]{index}{ind}{idx}{\indexname}

It also defines

�

\newterm[〈key=value list〉]{〈entry-label〉}

which is a synonym for

\newglossaryentry{〈entry-label〉}{type={index},name={entry-
label},
description={\nopostdesc},〈options〉}

and

�

\printindex[〈options〉] v4.02+

which is a synonym for

\printglossary[type=index,〈options〉]

If you use Option 1, you need to use:

\printnoidxglossary[type=index,〈options〉]

to display this glossary.

�

Remember to use the nomain package option if you’re only interested in using this

index glossary and don’t intend to use the main glossary. Note that you can’t mix this

option with \index. Either use glossaries for the indexing or use a custom indexing

package, such as makeidx, imakeidx. (You can, of course, load one of those packages and

load glossaries without the index package option.)

120

2. Package Options

Since the index isn’t designed for terms with descriptions, you might also want to disable

the hyperlinks for this glossary using the package option nohypertypes=index or the

command

\GlsDeclareNoHyperList{index}

However, it can also be useful to link to the index in order to look up the term’s location list to

find other parts of the document where it might be used. For example, this manual will have a

hyperlink to the index for general terms, such as “table of contents”, or general commands, such

as \index, that aren’t defined anywhere in the document.
The example file sample-index.tex illustrates the use of the index package option.

�

noglossaryindex

This valueless option switches off index if index has been passed implicitly (for example,

through global document options). This option can’t be used in \setupglossaries.

2.7. Acronym and Abbreviation Options

�

acronym=〈boolean〉 default: true; initial: false

If true, this creates a new glossary with the label acronym. This is equivalent to:

\newglossary[alg]{acronym}{acr}{acn}{\acronymname}

It will also provide (if not already defined)

�

\printacronyms[〈options〉]

that’s equivalent to

\printglossary[type=acronym,〈options〉]

If you are using Option 1, you need to use

\printnoidxglossary[type=acronym,〈options〉]

to display the list of acronyms.

If the acronym package option is used, \acronymtype is set to acronym otherwise

it is set to \glsdefaulttype (which is normally the main glossary.) Entries that are

121

2. Package Options

defined using \newacronym are placed in the glossary whose label is given by \acronym-
type, unless another glossary is explicitly specified with the type key.

�

Remember to use the nomain package option if you’re only interested in using this

acronym glossary. (That is, you don’t intend to use the main glossary.)

glossaries-extra

The glossaries-extra extension package comes with an analogous abbreviations
option, which creates a new glossary with the label abbreviations and sets the

command \glsxtrabbrvtype to this. If the acronym option hasn’t also been

used, then \acronymtype will be set to \glsxtrabbrvtype. This enables

both \newacronym and \newabbreviation to use the same glossary.

Make sure you have at least v1.42 of glossaries-extra if you use the acronym (or

acronyms) package option with the extension package to avoid a bug that interferes

with the abbreviation style.

�
acronyms

This is equivalent to acronym=true and may be used in the document class option list.

�

abbreviations

This valueless option provided by glossaries-extra creates a new glossary type with the label

abbreviations using:

\newglossary[glg-abr]{abbreviations}{gls-abr}{glo-
abr}{\abbreviationsname}

The label can be accessed with \glsxtrabbrvtype, which is analogous to \acronym-
type. See glossaries-extra manual for further details.

�

acronymlists={〈label-list〉}

This option is used to identify the glossaries that contain acronyms so that they can have their

entry format adjusted by \setacronymstyle. (It also enables \forallacronyms
to work.)

By default, if the list is empty when \setacronymstyle is used then it will automati-

cally add \acronymtype to the list.

If you have other lists of acronyms, you can specify them as a comma-separated list in the

value of acronymlists. For example, if you use the acronym package option but you

also want the main glossary to also contain a list of acronyms, you can do:

122

2. Package Options

�

\usepackage[acronym,acronymlists=main]{glossaries}

No check is performed to determine if the listed glossaries exist, so you can add glossaries you

haven’t defined yet. For example:

�

\usepackage[acronym,acronymlists={main,acronym2}]
{glossaries}

\newglossary[alg2]{acronym2}{acr2}{acn2}%
{Statistical Acronyms}

You can use

�

\DeclareAcronymList{〈list〉}

instead of or in addition to the acronymlists option. This will add the glossaries given

in 〈list〉 to the list of glossaries that are identified as lists of acronyms. To replace the list of

acronym lists with a new list use:

�

\SetAcronymLists{〈list〉}

If the list is changed after\setacronymstyle then it will result in inconsistencies in the

formatting. If this does happen, and is for some reason unavoidable (such as \setacronym-
style occurring in a package that loads glossaries), you will need to set the entry format to

match the style:

\DeclareAcronymList{〈glossary-label〉}
\defglsentryfmt[〈glossary-label〉]{\GlsUseAcrEntryDispStyle}
{〈style-name〉}

You can determine if a glossary has been identified as being a list of acronyms using:

�

\glsIfListOfAcronyms{〈glossary-label〉}{〈true〉}{〈false〉}

glossaries-extra

This option and associated commands are incompatible with glossaries-extra’s
abbreviation mechanism. Lists of abbreviations don’t need identifying.

123

2. Package Options

�

shortcuts={〈boolean〉} default: false; initial: false

This option provides shortcut commands for acronyms. See §6 for further details. Alternatively

you can use:

�

\DefineAcronymSynonyms

glossaries-extra

The glossaries-extra package provides additional shortcuts.

2.8. Deprecated Acronym Style Options

The package options listed in this section were deprecated in version 4.02 (2013-12-05) and have

now been removed. You will need to use rollback with them (see §1.1). These options started

generating warnings in version 4.47 (2021-09-20) and as from version 4.50 will now generate an

error unless you use rollback.

If you want to change the acronym style, use \setacronymstyle instead. See §6 for

further details.

��

description Deprecated

This option changed the definition of \newacronym to allow a description. This option may

be replaced by:

�

\setacronymstyle{long-short-desc}

or (with smallcaps)

�

\setacronymstyle{long-sc-short-desc}

or (with smaller)

�

\setacronymstyle{long-sm-short-desc}

or (with footnote)

124

2. Package Options

�

\setacronymstyle{footnote-desc}

or (with footnote and smallcaps)

�

\setacronymstyle{footnote-sc-desc}

or (with footnote and smaller)

�

\setacronymstyle{footnote-sm-desc}

or (with dua)

�

\setacronymstyle{dua-desc}

��

smallcaps Deprecated

This option changed the definition of\newacronym and the way that acronyms are displayed.

This option may be replaced by:

�

\setacronymstyle{long-sc-short}

or (with description)

�

\setacronymstyle{long-sc-short-desc}

or (with description and footnote)

�

\setacronymstyle{footnote-sc-desc}

��

smaller Deprecated

This option changed the definition of\newacronym and the way that acronyms are displayed.

This option may be replaced by:

125

2. Package Options

�

\setacronymstyle{long-sm-short}

or (with description)

�

\setacronymstyle{long-sm-short-desc}

or (with description and footnote)

�

\setacronymstyle{footnote-sm-desc}

��

footnote Deprecated

This option changed the definition of\newacronym and the way that acronyms are displayed.

This option may be replaced by:

�

\setacronymstyle{footnote}

or (with smallcaps)

�

\setacronymstyle{footnote-sc}

or (with smaller)

�

\setacronymstyle{footnote-sm}

or (with description)

�

\setacronymstyle{footnote-desc}

or (with smallcaps and description)

�

\setacronymstyle{footnote-sc-desc}

or (with smaller and description)

126

2. Package Options

�

\setacronymstyle{footnote-sm-desc}

��

dua Deprecated

This option changed the definition of \newacronym so that acronyms are always expanded.

This option may be replaced by:

�

\setacronymstyle{dua}

or (with description)

�

\setacronymstyle{dua-desc}

2.9. Other Options

Other available options that don’t fit any of the above categories are described below.

�
accsupp

Only available with glossaries-extra, this option loads the glossaries-accsupp package, which
needs to be loaded either before glossaries-extra or while glossaries-extra is loaded to ensure
both packages are properly integrated.

�

prefix

Only available with glossaries-extra, this option loads the glossaries-prefix package.

�

nomissingglstext=〈boolean〉 default: true; initial: false

This option may be used to suppress the boilerplate text generated by \printglossary
if the indexing file is missing.

�

mfirstuc=〈value〉 initial: unexpanded

The value may be either expanded or unexpanded and performs the same function

as mfirstuc’s expanded and unexpanded package options. Note that there’s no value

corresponding to mfirstuc’s other package option.

127

2. Package Options

The default is mfirstuc=unexpanded to safeguard against glossary styles that convert

the description to sentence case. With older versions of mfirstuc (pre v2.08), fragile commands

in the description would not have been affected by the case change, but now, if the entire de-

scription is passed to \MFUsentencecase, it will be expanded, which could break existing
documents.

��

compatible-2.07 Deprecated

Compatibility mode for old documents created using version 2.07 or below. This option is

now only available with rollback (see §1.1).

��

compatible-3.07 Deprecated

Compatibility mode for old documents created using version 3.07 or below. This option is now

only available with rollback (see §1.1).

�

kernelglossredefs=〈value〉 default: true; initial: false

As a legacy from the precursor glossary package, the standard glossary commands provided

by the LATEX kernel (\makeglossary and \glossary) are redefined in terms of the

glossaries package’s commands. However, they were never documented in this user manual,

and the conversion guide (“Upgrading from the glossary package to the glossaries package”

(glossary2glossaries.pdf)) explicitly discourages their use.
The redefinitions of these commands was removed in v4.10, but unfortunately it turned out

that some packages had hacked the internal commands provided by glossaries and no longer

worked when they were removed, so they were restored in v4.41 with this option to undo the

effect with kernelglossredefs=true as the default. As from v4.50, the default is

now kernelglossredefs=false.

�

kernelglossredefs=false

Don’t redefine \glossary and \makeglossary. If they have been previously redefined
by kernelglossredefs their original definitions (at the time glossaries was loaded) will

be restored.

�

kernelglossredefs=true

Redefine \glossary and \makeglossary, but their use will trigger warnings.

�

kernelglossredefs=nowarn

Redefine \glossary and \makeglossary without any warnings.

128

2. Package Options

The only glossary-related commands provided by the LATEX kernel are \makeglossary
and \glossary. Other packages or classes may provide additional glossary-related com-

mands or environments that conflict with glossaries (such as \printglossary and the-

glossary). These non-kernel commands aren’t affected by this package option, and you will have

to find some way to resolve the conflict if you require both glossary mechanisms. (The glossaries

package will override the existing definitions of \printglossary and theglossary.)

In general, if possible, it’s best to stick with just one package that provides a glossary mecha-

nism. (The glossaries package does check for the doc package and patches\PrintChanges.)

2.10. Setting Options After the Package is Loaded

Some of the options described abovemay also be set after the glossaries package has been loaded

using

�

\setupglossaries{〈options〉}

The following package options can’t be used in \setupglossaries: xindy, xindy-
gloss,xindynoglsnumbers,makeindex,nolong,nosuper,nolist,notree,
nostyles,nomain,compatible-2.07,translate,notranslate,languages,
acronym. These options have to be set while the package is loading, except for the xindy
sub-options which can be set using commands like \GlsSetXdyLanguage (see §14 for

further details).

�

If you need to use this command, use it as soon as possible after loading glossaries other-

wise you might end up using it too late for the change to take effect. If you try changing

the sort option after you have started to define entries, you may get unexpected results.

glossaries-extra

With glossaries-extra, use \glossariesextrasetup instead.

129

3. Setting Up

In the preamble you need to indicate which method you want to use to generate the glossary (or

glossaries). The available options with both glossaries and glossaries-extra are summarized in
§1.3. This chapter documents Options 1, 2 and 3, which are provided by the base package. See

the glossaries-extra and bib2gls manuals for the full documentation of the other options.

If you don’t need to display any glossaries, for example, if you are just using the glossaries

package to enable consistent formatting, then skip ahead to §4.

3.1. Option 1

The command

�

\makenoidxglossaries

must be placed in the document preamble. This sets up the internal commands required to make

Option 1 work. If you omit \makenoidxglossaries none of the glossaries will be

displayed.

3.2. Options 2 and 3

The command

�

\makeglossaries

must be placed in the document preamble in order to create the customised makeindex
(ist) or xindy (xdy) style file (for Options 2 or 3, respectively) and to ensure that glossary
entries are written to the appropriate output files. If you omit \makeglossaries none of

the indexing files will be created.

glossaries-extra

If you are using glossaries-extra, \makeglossaries has an optional argument that

allows you to have a hybrid of Options 1 or 2 or Options 1 or 3. See glossaries-extra
manual for further details.

130

3. Setting Up

�

Note that some of the commands provided by the glossaries package must not be used

after\makeglossaries as they are required when creating the customised style file.

If you attempt to use those commands after \makeglossaries you will generate

an error. Similarly, there are some commands that must not be used before \make-
glossaries because they require the associated indexing files to be open, if those files

should be created. These may not necessarily generate an error or warning as a different

indexing option may be chosen that doesn’t require those files (such as Options 5 or 6).

The \makeglossaries command internally uses:

�

\writeist

to create the custom makeindex/xindy style file. This command disables itself by setting

itself to \relax so that it can only be used once. In general, there should be no reason to use

or alter this command.

The default name for the customised style file is given by \jobname.ist (Option 2) or

\jobname.xdy (Option 3). This name may be changed using:

�

\setStyleFile{〈name〉}

where 〈name〉 is the name of the style file without the extension.
There is a hook near the end of \writeist that can be set with:

�

\GlsSetWriteIstHook{〈code〉}

The 〈code〉 will be performed while the style file is still open, which allows additional content to
be added to it. The associated write register is:

�

\glswrite

Note that this register is defined by \writeist to prevent an unnecessary write register from

being created in the event that neither makeindex nor xindy is required.

If you use the \GlsSetWriteIstHook hook to write extra information to the style file,

make sure you use the appropriate syntax for the desired indexing application. For example, with

makeindex:

�

\GlsSetWriteIstHook{%
\write\glswrite{page_precedence "arnAR"}%
\write\glswrite{line_max 80}%

131

3. Setting Up

}

This changes the page precedence and the maximum line length used by makeindex.
Remember that if you switch to xindy, this will no longer be valid code.
You can suppress the creation of the customised xindy or makeindex style file using:

�

\noist

This is provided in the event that you want to supply your own customized style file that can’t

be replicated with the available options and commands provided by the glossaries package.

This command sets \writeist to \relax (making it do nothing) but will also update

the xindy attribute list if applicable.

If you have a custom xdy file created when using glossaries version 2.07 (2010-0710) or

below, you will need to use rollback and the compatible-2.07 package option with it.

However, that is now so dated and the LATEX kernel has changed significantly since that time

that you may need to use a legacy distribution (see Legacy Documents and TeX Live Docker

Images1).

Each glossary entry is assigned a number list that lists all the locations in the document where

that entry was used. By default, the location refers to the page number but this may be overridden

using the counter package option. The default form of the location number assumes a full

stop compositor (for example, 1.2), but if your location numbers use a different compositor (for

example, 1-2) you need to set this using

�

\glsSetCompositor{〈character〉}

{symbol} For example:

�

\glsSetCompositor{-}

This command must not be used after \makeglossaries. Note that with makeindex,
any locations with the wrong compositor (or one that hasn’t been correctly identified with\gls-
SetCompositor) will cause makeindex to reject the location with an invalid number/

digit message. As from v4.50, makeglossaries will check for this message and attempt

a correction, but this can result in an incorrectly formatted location in the number list. See the

information about makeglossaries’s -e switch in §1.6.1 for further details.

An invalid page number will also cause xindy to fail with a “did not match any location-

class” warning. This is also something that makeglossaries will check for and will pro-

vided diagnostic information, but it won’t attempt to make any correction.

If you use Option 3, you can have a different compositor for page numbers starting with an

upper case alphabetical character using:

1dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images

132

https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images
https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images
https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images

3. Setting Up

�

\glsSetAlphaCompositor{〈character〉}

This command is only available with xindy. For example, if you want number lists containing
a mixture of A-1 and 2.3 style formats, then do:

�

\glsSetCompositor{.}\glsSetAlphaCompositor{-}

See §12 for further information about number lists.

133

4. Defining Glossary Entries

bib2gls

If you want to use bib2gls, entries must be defined in bib files using the syntax

described in the bib2gls user manual.

Acronyms are covered in §6 but they use the same underlying mechanism as all the other

glossary entries, so it’s a good idea to read this chapter first. The keys provided for \new-
glossaryentry can also be used in the optional argument of \newacronym, although
some of them, such as first and plural, interfere with the acronym styles.

All glossary entries must be defined before they are used, so it is better to define them in the

document preamble to ensure this. In fact, some commands such as \longnewglossary-
entry may only be used in the preamble. See §4.8 for a discussion of the problems with

defining entries within the document instead of in the preamble. (The glossaries-extra package
has an option that provides a restricted form of document definitions that avoids some of the

issues discussed in §4.8.)

�

Option 1 enforces the preamble-only restriction on\newglossaryentry. Option 4
requires that definitions are provided inbib format. Options 5 and 6work best with either

preamble-only definitions or the use of the glossaries-extra package option docdef=
restricted.

Bear in mind that with docdef=restricted, the entries must be defined before any

entries are used, including when they are displayed in the glossary (for example, with \print-
unsrtglossary) or where they appear in the table of contents or list of floats. This is

essentially the same problem as defining a robust command mid-document and using it in a

section title or caption.

Only those entries that are indexed in the document (using any of the commands described in

§5.1, §10 or §11) will appear in the glossary. See §8 to find out how to display the glossary.

New glossary entries are defined using the command:

�

\newglossaryentry{〈entry-label〉}{〈key=value list〉}

This is a short command, so values in 〈key=value list〉 can’t contain any paragraph breaks. Take
care to enclose values containing any commas (,) or equal signs (=) with braces to hide them

from the 〈key〉=〈value〉 list parser.
If you have a long description that needs to spanmultiple paragraphs, use the following instead:

134

4. Defining Glossary Entries

�

\longnewglossaryentry{〈entry-label〉}{〈key=value list〉}{〈description〉}

Note that this command may only be used in the preamble (regardless of docdef).

�

Be careful of unwanted spaces.

\longnewglossaryentry will remove trailing spaces in the description (via \un-
skip) but won’t remove leading spaces. This command also appends \nopostdesc to

the end of the description, which suppresses the post-description hook (since the terminating

punctuation is more likely to be included in a multi-paragraph description). The glossaries-extra
package provides a starred version of \longnewglossaryentry that doesn’t append

either \unskip or \nopostdesc.
There are also commands that will only define the entry if it hasn’t already been defined:

�

\provideglossaryentry{〈entry-label〉}{〈key=value list〉}

and

�

\longprovideglossaryentry{〈entry-label〉}{〈key=value
list〉}{〈description〉}

(These are both preamble-only commands.)

For all the above commands, the first argument, 〈entry-label〉, must be a unique label with
which to identify this entry. This can’t contain any non-expandable or fragile commands.

The reason for this restriction is that the label is used to construct internal commands that store

the associated information (similarly to commands like \label) and therefore must be able to
expand to a valid control sequence name. With modern LATEX kernels, you should now be able

to use UTF-8 characters in the label.

�

Be careful of babel’s options that change certain punctuation characters, such as colon (:)
or double-quote ("), to active characters.

The second argument, 〈key=value list〉, is a 〈key〉=〈value〉 list that supplies the relevant infor-
mation about this entry. There are two required fields: description and either name or

parent. The description is set in the third argument of \longnewglossaryentry
and\longprovideglossaryentry. With the other commands it’s set via thedescription
key.

As is typical with 〈key〉=〈value〉 lists, values that contain a comma (,) or equal sign (=)
must be enclosed in braces. Available fields are listed below. Additional fields are provided by

135

4. Defining Glossary Entries

the supplementary packages glossaries-prefix (§16) and glossaries-accsupp (§17) and also by
glossaries-extra. You can also define your own custom keys (see §4.3).

�

name={〈text〉}

The name of the entry (as it will appear in the glossary). If this key is omitted and the parent
key is supplied, this value will be the same as the parent’s name.

�

If the name key contains any commands, you must also use the sort key (described

below) if you intend sorting the entries alphabetically with Options 1, 2 or 3, otherwise

the entries can’t be sorted correctly.

�

description={〈text〉}

A brief description of this term (to appear in the glossary). Within this value, you can use:

�

\nopostdesc

to suppress the description terminator for this entry. For example, if this entry is a parent entry

that doesn’t require a description, you can do description={\nopostdesc}. If you
want a paragraph break in the description use:

�

\glspar

or, better, use \longnewglossaryentry. However, note that not all glossary styles

support multi-line descriptions. If you are using one of the tabular-like glossary styles that permit

multi-line descriptions and you really need an explicit line break, use \newline not \\ (but

in general, avoid \\ outside of tabular contexts anyway and use a ragged style if you are having

problems with line breaks in a narrow column).

glossaries-extra

With glossaries-extra, use \glsxtrnopostpunc instead of \nopostdesc to

suppress the post-description punctuation.

�

parent=〈parent-label〉

This key establishes the entry’s hierarchical level. The value must be the label of the parent

entry (not the name, although they may be the same). The 〈parent-label〉 value must match the
〈entry-label〉 used when the parent entry was defined. See §4.5 for further details.

136

4. Defining Glossary Entries

�

The parent entry must be defined before it’s referenced in the parent key of another

entry.

�

descriptionplural={〈text〉}

The plural form of the description, if required. If omitted, the value is set to the same as the

description key.

�

text={〈text〉}

How this entry will appear in the document text when using \gls on subsequent use. If this

field is omitted, the value of the name key is used.

This key is automatically set by \newacronym. Although it is possible to override it by

using text in the optional argument of \newacronym, it will interfere with the acronym
style and cause unexpected results.

�

first={〈first〉}

How the entry will appear in the document text on first use with \gls. If this field is omitted,
the value of the text key is used. Note that if you use \glspl, \Glspl, \GLSpl,
\glsdisp before using \gls, the first value won’t be used with \gls.
You may prefer to use acronyms (§6) or the abbreviations or the category post-link hook

(\glsdefpostlink) provided by glossaries-extra if you would like to automatically ap-
pend content on first use in a consistent manner. See, for example, Gallery: Units (glossaries-

extra.sty).1

Although it is possible to use first in the optional argument of \newacronym, it can
interfere with the acronym style and cause unexpected results.

�

plural={〈text〉}

How the entry will appear in the document text when using \glspl on subsequent use. If this

field is omitted, the value is obtained by appending \glspluralsuffix to the value of

the text field.

Although it is possible to use plural in the optional argument of \newacronym, it can
interfere with the acronym style and cause unexpected results. Use shortplural instead,

if the default value is inappropriate.

1dickimaw-books.com/gallery/index.php?label=sample-units

137

https://www.dickimaw-books.com/gallery/index.php?label=sample-units
https://www.dickimaw-books.com/gallery/index.php?label=sample-units
https://www.dickimaw-books.com/gallery/index.php?label=sample-units

4. Defining Glossary Entries

�

firstplural={〈text〉}

How the entry will appear in the document text on first use with\glspl. If this field is omitted,
the value is obtained from the plural key, if the first key is omitted, or by appending

\glspluralsuffix to the value of the first field, if the first field is present.

Note that if you use \gls, \Gls, \GLS, \glsdisp before using \glspl, the first-
plural value won’t be used with \glspl.
Although it is possible to usefirstplural in the optional argument of\newacronym,

it can interfere with the acronym style and cause unexpected results. Use shortplural and

longplural instead, if the default value is inappropriate.

�

Prior to version 1.13, the default value of firstplural was always taken by ap-

pending “s” to the first key, which meant that you had to specify both plural and

firstplural, even if you hadn’t used the first key.

�

symbol={〈symbol〉} initial: \relax

This field is provided to allow the user to specify an associated symbol. If omitted, the value is

set to \relax. Note that not all glossary styles display the symbol.

�

symbolplural={〈symbol plural〉}

This is the plural form of the symbol. If omitted, the value is set to the same as the symbol
key.

�

sort=〈value〉 initial: 〈entry name〉

This value indicates the text to be used by the sort comparator when ordering all the glossary

entries. If omitted, the value is given by the name field unless one of the package options sort
=def and sort=use have been used. With Option 2 it’s best to use the sort key if the

name contains commands (for example, \ensuremath{\alpha}) and with Options 2
and 3, it’s strongly recommended as the indexing may fail if you don’t (see below).

You can also override thesort key by redefining\glsprestandardsort (see §2.5).

bib2gls

The sort key shouldn’t be used with bib2gls. It has a system of fallbacks that allow

different types of entries to obtain the sort value from the most relevant field. See the

bib2gls manual for further details, and see also bib2gls gallery: sorting.a

138

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

4. Defining Glossary Entries

adickimaw-books.com/gallery/index.php?label=bib2gls-sorting

Option 1 by default strips the standard LATEX accents (that is, accents generated by core LATEX

commands) from the name key when it sets the sort key. So with Option 1:

�

\newglossaryentry{elite}{
name={\'elite},
description={select group of people}

}

This is equivalent to:

�

\newglossaryentry{elite}{
name={\'elite},
description={select group of people}
sort={elite}

}

Unless you use the package option sanitizesort=true, in which case it’s equivalent to:

�

\newglossaryentry{elite}{
name={\'elite},
description={select group of people}
sort={\'elite},

}

This will place the entry before the “A” letter group since the sort value starts with a symbol (a

literal backslash \). Note that Option 1 shouldn’t be used with UTF-8 characters. With old LATEX

kernels, it was able to convert a UTF-8 character, such as é, to an ASCII equivalent but this is no

longer possible.

With Options 2 and 3, the default value of sort will either be set to the name key (if

sanitizesort=true) or it will set it to the expansion of the name key (if sanitize-
sort=false).

�

Take care with xindy (Option 3): if you have entries with the same sort value they

will be treated as the same entry. If you usexindy and aren’t using thedef oruse sort

methods, always use the sort key for entries where the name just consists of commands

(for example name={\alpha}).

139

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

4. Defining Glossary Entries

Take care if you use Option 1 and the name contains fragile commands. You will

either need to explicitly set thesort key or use thesanitizesort=true package

option (unless you use the def or use sort methods).

�

type=〈glossary-label〉 initial: \glsdefaulttype

This specifies the label of the glossary in which this entry belongs. If omitted, the default glossary

identified by \glsdefaulttype is assumed unless \newacronym is used (see §6).

Six keys are provided for any additional information the user may want to specify. (For ex-

ample, an associated dimension or an alternative plural or some other grammatical construct.)

Alternatively, you can add new keys using \glsaddkey or \glsaddstoragekey (see

§4.3).

�

user1={〈text〉}

The first user key.

�

user2={〈text〉}

The second user key.

�

user3={〈text〉}

The third user key.

�

user4={〈text〉}

The fourth user key.

�

user5={〈text〉}

The fifth user key.

�

user6={〈text〉}

The sixth user key.

�

nonumberlist={〈boolean〉} default: true; initial: false

If the value is missing or is true, this will suppress the number list just for this entry. Con-

140

4. Defining Glossary Entries

versely, if you have used the package option nonumberlist=true, you can activate the
number list just for this entry with nonumberlist={false}. (See §12.)
This keyworks by adding\glsnonextpages (nonumberlist={true}) or\gls-

nextpages (nonumberlist={false}) to the indexing information for Options 2

and 3. Note that this means that if the entry is added to the glossary simply because it has an

indexed descendent (and has not been indexed itself) then the first indexed sub-entry that follows

will have its number list suppressed instead.

With Option 1, this key saves the appropriate command in the prenumberlist internal

field, which is used by \glsnoidxprenumberlist.

�

see={[〈tag〉]〈xr-list〉}

This key essentially provides a convenient shortcut that performs

\glssee[〈tag〉]{〈entry-label〉}{〈xr-list〉}

after the entry has been defined. (See §11.) It was originally designed for synonyms that may

not occur in the document text but needed to be included in the glossary in order to redirect the

reader. Note that it doesn’t index the cross-referenced entry (or entries) as that would interfere

with their number lists.

�

Using the see key will automatically add this entry to the glossary, but will not automat-

ically add the cross-referenced entry.

For example:

�

\newglossaryentry{courgette}{name={courgette},
description={variety of small marrow}}

\newglossaryentry{zucchini}{name={zucchini},
description={(North American)},
see={courgette}}

This defines two entries (courgette and zucchini) and automatically adds a cross-reference from

zucchini to courgette. (That is, it adds “see courgette” to zucchini’s number list.) This doesn’t

automatically index courgette since this would create an unwanted location in courgette’s number

list. (Page 1, if the definitions occur in the preamble.)

Note that while it’s possible to put the cross-reference in the description instead, for example:

141

4. Defining Glossary Entries

�

\newglossaryentry{zucchini}{name={zucchini},
description={(North American) see \gls{courgette}}

}

this won’t index the zucchini entry, so if zucchini isn’t indexed elsewhere (with commands like

\gls or \glsadd) then it won’t appear in the glossary even if courgette does.
The referenced entry should be supplied as the value to this key. If you want to override the

“see” tag, you can supply the new tag in square brackets before the label. For example see=
{[see also]{anotherlabel}}.

�

If you have suppressed the number list, the cross-referencing information won’t appear in

the glossary, as it forms part of the number list.

You can override this for individual glossary entries using nonumberlist={false}.
Alternatively, you can use the seeautonumberlist package option. For further details,

see §11.

�

For Options 2 and 3, \makeglossaries must be used before any occurrence of

\newglossaryentry that contains the see key.

Since it’s useful to suppress the indexing while working on a draft document, consider us-

ing the seenoindex package option to warn about or ignore the see key while \make-
glossaries is commented out.

If you use the see key, you may want to consider using the glossaries-extra package which
additionally provides aseealso andalias key. If you want to avoid the automatic indexing

triggered by the see key, consider using Option 4. See also the FAQ item Why does the see

key automatically index the entry?2

bib2gls

The analogous bib2gls see, seealso and alias fields have a slightly different

meaning. The selection resource option determines the behaviour.

�

seealso={〈xr-list〉}

This key is only available with glossaries-extra and is similar to see but it doesn’t allow for

the optional tag. The glossaries-extra package provides \seealsoname and seealso
={xr-list} is essentially like see={[\seealsoname]〈xr-list〉} (Options 3 and 4

2dickimaw-books.com/faq.php?itemlabel=whyseekeyautoindex

142

https://www.dickimaw-books.com/faq.php?itemlabel=whyseekeyautoindex
https://www.dickimaw-books.com/faq.php?itemlabel=whyseekeyautoindex
https://www.dickimaw-books.com/faq.php?itemlabel=whyseekeyautoindex

4. Defining Glossary Entries

may treat these differently).

�

alias={〈xr-label〉}

This key is only available with glossaries-extra and is another form of cross-referencing. An en-

try can be aliased to another entry with alias={other-label}. This behaves like see
={other-label} but also alters the behaviour of commands like \gls so that they index

the entry given by 〈label〉 instead of the original entry. (See, for example, Gallery: Aliases.3)

bib2gls

More variations with the alias key are available with bib2gls.

�

counter={〈counter-name〉}

This key will set the default location counter for the given entry. This will override the counter

assigned to the entry’s glossary in the final optional argument of \newglossary (if pro-

vided) and the counter identified by the counter package option. The location counter can

be overridden by the counter option when using the \gls-like and \glstext-like com-
mands.

�

category=〈category-label〉 initial: general

This key is only available with glossaries-extra and is used to assign a category to the entry. The
value should be a label that can be used to identify the category. See glossaries-extra manual

for further details.

The following keys are reserved for\newacronym (see §6) and also for\newabbreviation
(see the glossaries-extra manual): long, longplural, short and shortplural.
You can uselongplural andshortplural in the optional argument of\newacronym
(or \newabbreviation) to override the defaults, but don’t explicitly use the long or

short keys as that may interfere with acronym style (or abbreviation style).

bib2gls

There are also special internal field names used by bib2gls. See the bib2glsman-

ual for further details.

The supplementary packages glossaries-prefix (§16) and glossaries-accsupp (§17) provide
additional keys.

3dickimaw-books.com/gallery/index.php?label=aliases

143

https://www.dickimaw-books.com/gallery/index.php?label=aliases
https://www.dickimaw-books.com/gallery/index.php?label=aliases

4. Defining Glossary Entries

�

Avoid using any of the \gls-like or \glstext-like commands within the text,
first, short or long keys (or their plural equivalent) or any other key that you

plan to access through those commands. (For example, the symbol key if you intend to

use \glssymbol.) Otherwise you can up with nested links, which can cause compli-
cations. You can use them within the value of keys that won’t be accessed through those

commands. For example, the description key if you don’t use \glsdesc. Ad-
ditionally, they’ll confuse the formatting placeholder commands, such as \glslabel.
The glossaries-extra package provides \glsxtrp for this type of situation.

With older LATEX kernels and pre-2.08 versions of mfirstuc, if the name starts with non-Latin

character, you need to group the character, otherwise it will cause a problem for commands like

\Gls and \Glspl. For example:

�

% mfirstuc v2.07
\newglossaryentry{elite}{name={{\'e}lite},
description={select group or class}}

Note that the same applies with inputenc:

�

% mfirstuc v2.07
\newglossaryentry{elite}{name={{é}lite},
description={select group or class}}

This doesn’t apply for XƎLATEX or LuaLATEX documents or with mfirstuc v2.08+.

�

% mfirstuc v2.08
\newglossaryentry{elite}{name={élite},
description={select group or class}}

See the mfirstuc manual for further details.

Note that in the above UTF-8 examples, you will also need to supply the sort key if you

are using Options 1 or 2 whereas xindy (Option 3) is usually able to sort non-Latin characters

correctly.

4.1. Plurals

You may have noticed from above that you can specify the plural form when you define an entry.

If you omit this, the plural will be obtained by appending:

144

4. Defining Glossary Entries

�

\glspluralsuffix initial: s

to the singular form. This command may expand when the entry is defined, if expansion is on

for the relevant keys, or may not expand until the entry is referenced, if expansion is off or if the

suffix has been hidden inside non-expanding context (which can happen when defining acronyms

or abbreviations).

For example:

�

\newglossaryentry{cow}{name={cow},description=
{a fully grown
female of any bovine animal}}

defines a new entry whose singular form is “cow” and plural form is “cows”. However, if you

are writing in archaic English, you may want to use “kine” as the plural form, in which case you

would have to do:

�

\newglossaryentry{cow}{name={cow},plural={kine},
description=
{a fully grown female of any bovine animal}}

If you are writing in a language that supports multiple plurals (for a given term) then use the

plural key for one of them and one of the user keys to specify the other plural form. For

example:

�

\newglossaryentry{cow}{
name={cow},
description=

{a fully grown female of any bovine animal
(plural cows, archaic plural kine)},

user1={kine}}

You can then use \glspl{cow} to produce “cows” and \glsuseri{cow} to produce

“kine”. You can, of course, define an easy to remember synonym. For example:

�

\let\glsaltpl\glsuseri

Then you don’t have to remember which key you used to store the second plural. (Be careful

with using \let as it doesn’t check if the command already exists.)

145

4. Defining Glossary Entries

Alternatively, you can define your own keys using \glsaddkey, described in §4.3 (or

simply use \glsdisp or \glslink with the appropriate text).

If you are using a language that usually forms plurals by appending a different letter, or se-

quence of letters, you can redefine \glspluralsuffix as required. However, this must

be done before the entries are defined and is unreliable for multilingual documents. For languages

that don’t form plurals by simply appending a suffix, all the plural forms must be specified using

the plural key (and the firstplural key where necessary).

4.2. Other Grammatical Constructs

You can use the six user keys to provide alternatives, such as participles. For example:

�

\let\glsing\glsuseri
\let\glsd\glsuserii

\newcommand*{\ingkey}{user1}
\newcommand*{\edkey}{user2}

\newcommand*{\newword}[3][]{%
\newglossaryentry{#2}{%
name={#2},%
description={#3},%
\edkey={#2ed},%
\ingkey={#2ing},#1%
}}

With the above definitions, I can now define terms like this:

�

\newword{play}
{to take part in activities for enjoyment}
\newword[\edkey={ran},\ingkey={running}]{run}
{to move fast using
the legs}

and use them in the text:

�

Peter is \glsing{play} in the park today.

Jane \glsd{play} in the park yesterday.

146

4. Defining Glossary Entries

Peter and Jane \glsd{run} in the park last week.

Alternatively, you can define your own keys using \glsaddkey, described below in §4.3.

It may, however, be simpler just to use \glslink or \glsdisp with the appropriate link

text.

4.3. Additional Keys

You can define your own custom keys using the commands described in this section. There are

two types of keys: those for use within the document and those to store information used behind

the scenes by other commands.

For example, if you want to add a key that indicates the associated unit for a term, you might

want to reference this unit in your document. In this case use \glsaddkey described in

§4.3.1. If, on the other hand, you want to add a key to indicate to a glossary style or acronym

style that this entry should be formatted differently to other entries, then you can use \gls-
addstoragekey described in §4.3.2.

In both cases, a new command 〈no link cs〉 will be defined that can be used to access the value
of this key (analogous to commands such as \glsentrytext). This can be used in an

expandable context (provided any fragile commands stored in the key have been protected). The

new keys must be added using \glsaddkey or \glsaddstoragekey before glossary

entries are defined.

4.3.1. Document Keys

A custom key that can be used in the document is defined using:

�

\glsaddkey{〈key〉}{〈default value〉}{〈no link cs〉}{〈no link ucfirst cs〉}{〈link
cs〉}{〈link ucfirst cs〉}{〈link allcaps cs〉}

where the arguments are as follows:

〈key〉 is the new key to use in\newglossaryentry (or similar commands such as\long-
newglossaryentry);

〈default value〉 is the default value to use if this key isn’t used in an entry definition (this may ref-

erence the current entry label via \glslabel, but you will have to switch on expansion
via the starred version of \glsaddkey and protect fragile commands);

〈no link cs〉 is the control sequence to use analogous to commands like \glsentrytext;

〈no link ucfirst cs〉 is the control sequence to use analogous to commands like \Glsentry-
text;

〈link cs〉 is the control sequence to use analogous to commands like \glstext;

147

4. Defining Glossary Entries

〈link ucfirst cs〉 is the control sequence to use analogous to commands like \Glstext;

〈link allcaps cs〉 is the control sequence to use analogous to commands like \GLStext.

The starred version of\glsaddkey switches on expansion for this key. The unstarred version

doesn’t override the current expansion setting.

Example 13: Defining Custom Keys

Suppose I want to define two new keys, ed and ing, that default to the entry text followed
by “ed” and “ing”, respectively. The default value will need expanding in both cases, so I need

to use the starred form:

�

% Define "ed" key:
\glsaddkey*
{ed}% key
{\glsentrytext{\glslabel}ed}% default value
{\glsentryed}% command analogous to \glsentrytext
{\Glsentryed}% command analogous to \Glsentrytext
{\glsed}% command analogous to \glstext
{\Glsed}% command analogous to \Glstext
{\GLSed}% command analogous to \GLStext

% Define "ing" key:
\glsaddkey*
{ing}% key
{\glsentrytext{\glslabel}ing}% default value
{\glsentrying}% command analogous to \glsentrytext
{\Glsentrying}% command analogous to \Glsentrytext
{\glsing}% command analogous to \glstext
{\Glsing}% command analogous to \Glstext
{\GLSing}% command analogous to \GLStext

Now I can define some entries:

�

% No need to override defaults for this entry:
\newglossaryentry{jump}{name={jump},description={}}

% Need to override defaults on these entries:
\newglossaryentry{run}{name={run},
ed={ran},
ing={running},

148

4. Defining Glossary Entries

description={}}

\newglossaryentry{waddle}{name={waddle},
ed={waddled},
ing={waddling},
description={}}

These entries can later be used in the document:

�

The dog \glsed{jump} over the duck.

The duck was \glsing{waddle} round the dog.

The dog \glsed{run} away from the duck.

For a complete document, see the sample file sample-newkeys.tex.

4.3.2. Storage Keys

A custom key that can be used for simply storing information is defined using:

�

\glsaddstoragekey{〈key〉}{〈default value〉}{〈no link cs〉}

where the arguments are as the first three arguments of \glsaddkey, described above in

§4.3.1.

This is essentially the same as \glsaddkey except that it doesn’t define the additional

commands. You can access or update the value of your new field using the commands described

in §15.6.

Example 14: Defining Custom Storage Key (Acronyms and Initialisms)

Suppose I want to define acronyms (an abbreviation that is pronounced as a word) and other

forms of abbreviations, such as initialisms, but I want them all in the same glossary and I want the

acronyms on first use to be displayedwith the short form followed by the long form in parentheses,

but the opposite way round for other forms of abbreviations. (The glossaries-extra package

provides a simpler way of achieving this.)

Here I can define a new key that determines whether the term is actually an acronym rather

than some other form of abbreviation. I’m going to call this key abbrtype (since type
already exists):

149

4. Defining Glossary Entries

�

\glsaddstoragekey
{abbrtype}% key/field name
{word}% default value if not explicitly set
{\abbrtype}
% custom command to access the value if required

Now I can define a style that looks up the value of this new key to determine how to display

the full form:

�

\newacronymstyle
{mystyle}% style name
{% Use the generic display
\ifglshaslong{\glslabel}{\glsgenacfmt}{\glsgen-

entryfmt}%
}%
{% Put the long form in the description
\renewcommand*{\GenericAcronymFields}{%

description={\the\glslongtok}}%
% For the full format, test the value of the "abbrtype" key.
% If it's set to "word" put the short form first with
% the long form in brackets.
\renewcommand*{\genacrfullformat}[2]{%
\ifglsfieldeq{##1}{abbrtype}{word}
{% is a proper acronym

\protect\firstacronymfont{\glsentryshort{##1}}
##2\space

(\glsentrylong{##1})%
}%
{% is another form of abbreviation
\glsentrylong{##1}##2\space
(\protect\firstacronymfont{\glsentryshort{##1}

})%
}%

}%
% sentence case version:
\renewcommand*{\Genacrfullformat}[2]{%
\ifglsfieldeq{##1}{abbrtype}{word}
{% is a proper acronym

\protect\firstacronymfont{\Glsentryshort{##1}}
##2\space

150

4. Defining Glossary Entries

(\glsentrylong{##1})%
}
{% is another form of abbreviation
\Glsentrylong{##1}##2\space
(\protect\firstacronymfont{\glsentryshort{##1}

})%
}%

}%
% plural
\renewcommand*{\genplacrfullformat}[2]{%
\ifglsfieldeq{##1}{abbrtype}{word}%
{% is a proper acronym

\protect\firstacronymfont{\glsentryshortpl
{##1}}##2\space

(\glsentrylong{##1})%
}%
{% is another form of abbreviation
\glsentrylongpl{##1}##2\space
(\protect\firstacronymfont{\glsentryshortpl

{##1}})%
}%

}%
% plural and sentence case
\renewcommand*{\Genplacrfullformat}[2]{%
\ifglsfieldeq{##1}{abbrtype}{word}%
{% is a proper acronym

\protect\firstacronymfont{\Glsentryshortpl
{##1}}##2\space

(\glsentrylong{##1})%
}%
{% is another form of abbreviation
\Glsentrylongpl{##1}##2\space
(\protect\firstacronymfont{\glsentryshortpl

{##1}})%
}%

}%
% Just use the short form as the name part in the glossary:
\renewcommand*{\acronymentry}[1]{%

\acronymfont{\glsentryshort{##1}}}%
% Sort by the short form:
\renewcommand*{\acronymsort}[2]{##1}%
% Just use the surrounding font for the short form:

151

4. Defining Glossary Entries

\renewcommand*{\acronymfont}[1]{##1}%
% Same for first use:
\renewcommand*{\firstacronymfont}[1]{\acronymfont

{##1}}%
% Default plural suffix if the plural isn't explicitly set
\renewcommand*{\acrpluralsuffix}{\glspluralsuffix}

%
}

Remember that the new style needs to be set before defining any terms:

�

\setacronymstyle{mystyle}

Since it may be a bit confusing to use \newacronym for something that’s not technically

an acronym, let’s define a new command for initialisms:

�

\newcommand*{\newinitialism}[4][]{%
\newacronym[abbrtype=initialism,#1]{#2}{#3}{#4}%

}

Now the entries can all be defined:

�

\newacronym{radar}{radar}
{radio detecting and ranging}
\newacronym{laser}{laser}
{light amplification by stimulated
emission of radiation}
\newacronym{scuba}{scuba}{self-
contained underwater breathing
apparatus}
\newinitialism{dsp}{DSP}{digital signal processing}
\newinitialism{atm}{ATM}{automated teller machine}

On first use, \gls{radar} will produce “radar (radio detecting and ranging)” but \gls
{dsp} will produce “DSP (digital signal processing)”.

For a complete document, see the sample file sample-storage-abbr.tex.

In the above example, if \newglossaryentry is explicitly used (instead of through

\newacronym) the abbrtype key will be set to its default value of “word” but the \if-
glshaslong test in the custom acronym style will be false (since the long key hasn’t been

152

4. Defining Glossary Entries

set) so the display style will switch to that given by \glsgenentryfmt and they’ll be no

test performed on the abbrtype field.

Example 15: Defining Custom Storage Key (Acronyms and Non-

Acronyms with Descriptions)

The previous example can be modified if the description also needs to be provided.

Here I’ve changed “word” to “acronym”:

�

\glsaddstoragekey
{abbrtype}% key/field name
{acronym}% default value if not explicitly set
{\abbrtype}
% custom command to access the value if required

This may seem a little odd for non-abbreviated entries that are defined using\newglossary-
entry directly, but\ifglshaslong can be used to determine whether or not to reference

the value of this new abbrtype field.

The new acronym style has a minor modification that forces the user to specify a description.

In the previous example, the line:

�

\renewcommand*{\GenericAcronymFields}{%
description={\the\glslongtok}}%

needs to be changed to:

�

\renewcommand*{\GenericAcronymFields}{}%

Additionally, to accommodate the change in the default value of the abbrtype key, all in-

stances of

�

\ifglsfieldeq{##1}{abbrtype}{word}

need to be changed to:

�

\ifglsfieldeq{##1}{abbrtype}{acronym}

Once this new style has been set, the new acronyms can be defined using the optional argument

to set the description:

153

4. Defining Glossary Entries

�

\newacronym[description=
{system for detecting the position and
speed of aircraft, ships, etc}]{radar}{radar}
{radio detecting
and ranging}

No change is required for the definition of \newinitialism but again the optional ar-

gument is required to set the description:

�

\newinitialism[description=
{mathematical manipulation of an
information signal}]{dsp}{DSP}
{digital signal processing}

We can also accommodate contractions in a similar manner to the initialisms:

�

\newcommand*{\newcontraction}[4][]{%
\newacronym[abbrtype=contraction,#1]{#2}{#3}{#4}%

}

The contractions can similarly been defined using this new command:

�

\newcontraction[description=
{front part of a ship below the
deck}]{focsle}{fo'c's'le}{forecastle}

Since the custom acronym style just checks if abbrtype is “acronym”, the contractions

will be treated the same as the initialisms, but the style could be modified by a further test of the

abbrtype value if required.

To test regular non-abbreviated entries, I’ve also defined a simple word:

�

\newglossaryentry{apple}{name={apple},description=
{a fruit}}

Now for a new glossary style that provides information about the abbreviation (in addition to

the description):

154

4. Defining Glossary Entries

�

\newglossarystyle
{mystyle}% style name
{% base it on the "list" style
\setglossarystyle{list}%
\renewcommand*{\glossentry}[2]{%
\item[\glsentryitem{##1}%

\glstarget{##1}{\glossentryname{##1}}]
\ifglshaslong{##1}%
{ (\abbrtype{##1}: \glsentrylong{##1})\space}

{}%
\glossentrydesc{##1}\glspostdescrip-

tion\space ##2}%
}

This uses \ifglshaslong to determine whether or not the term is an abbreviation. (An

alternative is to use \ifglshasshort. The long and short keys are only set for

acronyms/abbreviations.)

If the entry has anshort/long value, the full form is supplied in parentheses and\abbrtype
(defined by \glsaddstoragekey earlier) is used to indicate the type of abbreviation.

With this style set, the “apple” entry is simply displayed in the glossary as:

apple a fruit.

but the abbreviations are displayed in the form

laser (acronym: light amplification by stimulated emission of radiation) device that creates a

narrow beam of intense light.

(for acronyms) or

DSP (initialism: digital signal processing) mathematical manipulation of an information signal.

(for initalisms) or

fo’c’s’le (contraction: forecastle) front part of a ship below the deck.

(for contractions).

For a complete document, see sample-storage-abbr-desc.tex.

4.4. Expansion

When you define new glossary entries expansion is performed by default, except for the name,
description,descriptionplural,symbol,symbolplural andsort keys

(these keys all have expansion suppressed via \glssetnoexpandfield).

155

4. Defining Glossary Entries

You can switch expansion on or off for individual keys using:

�

\glssetexpandfield{〈field〉}

or

�

\glssetnoexpandfield{〈field〉}

respectively, where 〈field〉 is the internal field label corresponding to the key. In most cases, this
is the same as the name of the key except for those listed in Table 4.1.

Table 4.1.: Key to Field Mappings

Key Field

sort sortvalue
firstplural firstpl
description desc
descriptionplural descplural
user1 useri
user2 userii
user3 useriii
user4 useriv
user5 userv
user6 uservi
longplural longpl
shortplural shortpl

Any keys that haven’t had the expansion explicitly set using \glssetexpandfield or

\glssetnoexpandfield are governed by

�

\glsexpandfields

and

�

\glsnoexpandfields

If your entries contain any fragile commands, I recommend you switch off expansion via

\glsnoexpandfields. (This should be used before you define the entries.)

156

4. Defining Glossary Entries

�

Both \newacronym and \newabbreviation partially suppress expansion of

some keys regardless of the above expansion settings.

4.5. Sub-Entries

A sub-entry is created by setting theparent key. These will normally be sorted so that they are

placed immediately after their parent entry. However, some sort methods aren’t suitable when

there are sub-entries. In particular, sub-entries are problematic with Option 1, and with Option 5

the sub-entries must be defined immediately after their parent entry (rather than at any point after

the parent entry has been defined).

The hierarchical level indicates the sub-entry level. An entry with no parent (a top level entry)

is a hierarchical level 0 entry. An entry with a parent has a hierarchical level that’s one more than

its parent’s level. The level is calculated when an entry is defined.

�

The hierarchical level is stored in the level internal field. It can be accessed using com-

mands like \glsfieldfetch or (with glossaries-extra) \glsxtrusefield,
but neither the level nor the parent values should be altered as it can cause in-

consistencies in the sorting and glossary formatting. The indexing syntax for Options 2

and 3 is generated when the entry is first defined, so it’s too late to change the hierarchy

after that, and bib2gls obtains the hierarchical information from the bib files and

the resource options. Note, however, that glossaries-extra does allow the ability to lo-

cally alter the level with theleveloffset option, which is mainly intended for nested

glossary. See the glossaries-extra manual for further details and also Gallery: Inner or

Nested Glossaries.a

adickimaw-books.com/gallery/index.php?label=bib2gls-inner

There are two different types of sub-entries: those that have the same name as their parent

(homographs, see §4.5.2) and those that establish a hierarchy (see §4.5.1). Both types are con-

sidered hierarchical entries from the point of view of the glossaries package and the indexing

applications, but typically homographs will have the name key obtained from the parent, rather

than have it explicitly set, and have a maximum hierarchical level of 1.

Not all glossary styles support hierarchical entries and may display all the entries in a flat

format. Of the styles that support sub-entries, some display the sub-entry’s name whilst others

don’t. Therefore you need to ensure that you use a suitable style. (See §13 for a list of predefined

glossary styles.) If you want level 1 sub-entries automatically numbered (in glossary styles that

support it) use the subentrycounter package option (see §2.3 for further details).

Note that the parent entry will automatically be added to the glossary if any of its child entries

are used in the document. If the parent entry is not referenced in the document, it will not have a

number list. Note also that makeindex has a restriction on the maximum hierarchical depth.

157

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-inner
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-inner
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-inner

4. Defining Glossary Entries

4.5.1. Hierarchy

To create a glossary with hierarchical divisions, you need to first define the division, which will be

a top level (level 0) entry, and then define the sub-entries using the relevant higher level entry as

the value of the parent key. (In a hierarchical context, a higher level indicates a numerically

smaller level number, so level 0 is one level higher than level 1.) The top level entrymay represent,

for example, a topic or classification. A level 1 entry may represent, for example, a sub-topic or

sub-classification.

Example 16: Hierarchical Divisions—Greek and Roman Mathematical

Symbols

Suppose I want a glossary of mathematical symbols that are divided into Greek letters and

Roman letters. Then I can define the divisions as follows:

�

\newglossaryentry{greekletter}{name={Greek letters},
description={\nopostdesc}}

\newglossaryentryromanletter{name={Roman letters},
description={\nopostdesc}}

Note that in this example, the top level entries don’t need a description so I have set the de-

scriptions to \nopostdesc. This gives a blank description and suppresses the description

terminator.

I can now define my sub-entries as follows:

�

\newglossaryentry{pi}name={\ensuremath{\pi}},sort=
{pi},
description=
{ratio of the circumference of a circle to
the diameter},
parent={greekletter}

\newglossaryentry{C}{name={\ensuremath{C}},sort={C},
description={Euler's constant},
parent={romanletter}}

For a complete document, see the sample file sampletree.tex.

158

4. Defining Glossary Entries

glossaries-extra

If you want to switch to Option 5, you will need to move the definitions of the sub-entries

to immediately after the definition of their parent entry. So, in this case, “pi” needs to be

defined after “greekletter” and before “romanletter”.

4.5.2. Homographs

Sub-entries that have the same name as the parent entry don’t need to have the name key ex-

plicitly set. For example, the word “glossary” can mean a list of technical words or a collection

of glosses. In both cases the plural is “glossaries”. So first define the parent entry:

�

\newglossaryentry{glossary}{name={glossary},
description={\nopostdesc},
plural={glossaries}}

As in the previous example, the parent entry has no description, so the description terminator

needs to be suppressed using \nopostdesc.
Now define the two different meanings of the word with the parent key set to the above

parent entry label:

�

\newglossaryentry{glossarylist}{
description={list of technical words},
sort={1},
parent={glossary}}

\newglossaryentry{glossarycol}{
description={collection of glosses},
sort={2},
parent={glossary}}

Note that if I reference the parent entry (for example, \gls{glossary}), the location will
be added to the parent’s number list, whereas if I reference any of the child entries (for example,

\gls{glossarylist}), the location will be added to the child entry’s number list. Note
also that since the sub-entries have the same name, the sort key is required with Option 3

(xindy) and recommended with Option 2 (makeindex). You can use the subentry-
counter package option to automatically number the level 1 child entries in the glossary (if

you use a glossary style that supports it). See §2.3 for further details.

159

4. Defining Glossary Entries

In the above example, the plural form for both of the child entries is the same as the parent

entry, so the plural key was not required for the child entries. However, if the sub-entries

have different plurals, they will need to be specified. For example:

�

\newglossaryentry{bravo}{name={bravo},
description={\nopostdesc}}

\newglossaryentry{bravocry}{description=
{cry of approval
(pl. bravos)},
sort={1},
plural={bravos},
parent={bravo}}

\newglossaryentry{bravoruffian}{description={hired
ruffian or killer (pl. bravoes)},
sort={2},
plural={bravoes},
parent={bravo}}

For a complete document, see the sample file sample.tex.

4.6. Loading Entries From a File

You can store all your glossary entry definitions in another file and use:

�

\loadglsentries[〈type〉]{〈filename〉}

where 〈filename〉 is the name of the file containing all the\newglossaryentry,\long-
newglossaryentry, \newacronym etc commands. The optional argument 〈type〉
is the name of the glossary to which those entries should belong, for those entries where the

type key has been omitted (or, more specifically, for those entries whose type has been set

to \glsdefaulttype, which is what \newglossaryentry uses by default). See

sampleDB.tex for a complete example document.

�

Commands like \newacronym, \newabbreviation, \newterm, \gls-
xtrnewsymbol and\glsxtrnewnumber all set thetype key to the appropri-

ate glossary. This means that the 〈type〉 optional argument won’t apply to those commands,
unless they have type={\glsdefaulttype}.

160

4. Defining Glossary Entries

This is a preamble-only command. You may also use \input to load the file but don’t

use \include. If you find that your file is becoming unmanageably large, you may want to
consider switching to bib2gls and use an application such as JabRef to manage the entry

definitions.

�

If you want to use \AtBeginDocument to \input all your entries automatically

at the start of the document, add the\AtBeginDocument command before you load

the glossaries package (and babel, if you are also loading that) to avoid the creation of the

glsdefs file and any associated problems that are caused by defining commands in the

document environment. (See §4.8.) Alternatively, if you are using glossaries-extra, use
the docdef=restricted package option.

Example 17: Loading Entries from Another File

Suppose I have a file called myentries.tex which contains:

�

\newglossaryentry{perl}{type={main},
name={Perl},
description={A scripting language}}

\newglossaryentry{tex}{name={\TeX},
description={A typesetting language},sort={TeX}}

\newglossaryentry{html}{type={\glsdefaulttype},
name={html},
description={A mark up language}}

and suppose in my preamble I use the command:

�

\loadglsentries[languages]{myentries}

then this will add the entries “tex” and “html” to the glossarywhose type is given bylanguages,
but the entry “perl” will be added to the main glossary, since it explicitly sets the type to

main.

Now suppose I have a file myacronyms.tex that contains:

�

\newacronym{aca}{aca}{a contrived acronym}

161

4. Defining Glossary Entries

then (supposing I have defined a new glossary type called altacronym)

�

\loadglsentries[altacronym]{myacronyms}

will add “aca” to the glossary type acronym, if the package option acronym has been spec-

ified, or will add “aca” to the glossary type altacronym, if the package option acronym
is not specified. This is because \acronymtype is set to \glsdefaulttype if the

acronym package option is not used so the optional argument of \loadglsentries
will work in that case, but if the acronym option is used then \acronymtype will be

redefined to acronym.
If you want to use \loadglsentries with the acronym package option set, there

are two possible solutions to this problem:

1. Change myacronyms.tex so that entries are defined in the form:

�

\newacronym[type={\glsdefaulttype}]{aca}{aca}{a
contrived acronym}

and do:

�

\loadglsentries[altacronym]{myacronyms}

2. Temporarily change \acronymtype to the target glossary:

�

\let\orgacronymtype\acronymtype
\renewcommand{\acronymtype}{altacronym}
\loadglsentriesmyacronyms
\let\acronymtype\orgacronymtype

Note that only those entries that have been indexed in the text will appear in the relevant

glossaries. Note also that \loadglsentries may only be used in the preamble.

�

Don’t use the see key in a large file of entries that may or may not be indexed in the

document. Similarly for seealso and alias with glossaries-extra. If you need

them and you need a large database of entries, consider switching to bib2gls.

162

4. Defining Glossary Entries

Remember that you can use\provideglossaryentry rather than\newglossary-
entry. Suppose you want to maintain a large database of acronyms or terms that you’re likely
to use in your documents, but you may want to use a modified version of some of those entries.

(Suppose, for example, one document may require a more detailed description.) Then if you de-

fine the entries using \provideglossaryentry in your database file, you can override

the definition by simply using \newglossaryentry before loading the file. For example,

suppose your file (called, say, terms.tex) contains:

�

\provideglossaryentry{mallard}{name={mallard},
description={a type of duck}}

but suppose your document requires a more detailed description, you can do:

�

\usepackage{glossaries}
\makeglossaries

\newglossaryentry{mallard}{name={mallard},
description=
{a dabbling duck where the male has a green head}}

\loadglsentries{terms}

Now the “mallard” definition in the terms.tex file will be ignored.

4.7. Moving Entries to Another Glossary

You can move an entry from one glossary to another using:

�

\glsmoveentry{〈entry-label〉}{〈target glossary label〉}

where 〈entry-label〉 is the unique label identifying the required entry and 〈target glossary label〉 is
the unique label identifying the glossary in which to put the entry. If you are using Options 2 or 3,

entries shouldn’t bemoved after the indexing files have been opened by\makeglossaries.

�

Simply changing the value of the type field using a command like \glsfield-
def won’t correctly move the entry, since the label needs to be removed from the old

glossary’s internal list and added to the new glossary’s internal list to allow commands

such as \glsaddall and \glsunsetall to work.

163

4. Defining Glossary Entries

Note that no check is performed to determine the existence of the target glossary. If you

want to move an entry to a glossary that’s skipped by \printglossaries, then define an
ignored glossary with \newignoredglossary. (See §9.) With Options 4 and 5, it’s also

possible to copy an entry to another glossary with \glsxtrcopytoglossary. See the
glossaries-extra manual for further details.

�

Unpredictable results may occur if youmove an entry to a different glossary from its parent

or children.

4.8. Drawbacks With Defining Entries in the Document

Environment

Originally,\newglossaryentry (and\newacronym) could only be used in the preamble.
I reluctantly removed this restriction in version 1.13, but there are issues with defining commands

in the document environment instead of the preamble, which is why the restriction is main-

tained for newer commands. This restriction is also reimposed for \newglossaryentry
by Option 1 because in that case the entries must be defined before the aux file is input. (The

glossaries-extra package automatically reimposes the preamble-only restriction but provides the
docdef package option to allow document definitions for Options 2 and 3 if necessary.)

bib2gls

With Option 4, all entry data should be supplied in bib files. From bib2gls’s point
of view, the entries are defined in the bib files. From TEX’s point of view, the entries are

defined in the glstex files that are input by \GlsXtrLoadResources, which
is a preamble-only command.

4.8.1. Technical Issues

1. If you define an entry mid-way through your document, but subsequently shuffle sections

around, you could end up using an entry before it has been defined. This is essentially

the same problem as defining a command with \newcommand in the middle of the

document and then moving things around so that the command is used before it has been

defined.

2. Entry information is required when displaying the glossary. If this occurs at the start of

the document, but the entries aren’t defined until later, then the entry details are being

looked up before the entry has been defined. This means that it’s not possible to display

the content of the glossary unless the entry definitions are saved on the previous LATEX run

and can be picked up at the start of the document environment on the next run (in a similar

way that \label and \ref work).

164

4. Defining Glossary Entries

3. If you use a package, such as babel, that makes certain characters active at the start of

the document environment, there can be a problem if those characters have a special sig-

nificance when defining glossary entries. These characters include " (double-quote), !
(exclamation mark), ? (question mark), and | (pipe). They must not be active when

defining a glossary entry where they occur in the sort key (and they should be avoided

in the label if they may be active at any point in the document). Additionally, the comma

(,) character and the equals (=) character should not be active when using commands that
have 〈key〉=〈value〉 arguments.

To overcome the first two problems, as from version 4.0 the glossaries package modifies the

definition of \newglossaryentry at the beginning of the document environment so that

the definitions are written to an external file (\jobname.glsdefs) which is then read in
at the start of the document on the next run. This means that the entry can now be looked up in

the glossary, even if the glossary occurs at the beginning of the document.

There are drawbacks to this mechanism: if you modify an entry definition, you need a second

run to see the effect of your modification in\printglossary (if it occurs at the start of the

document); this method requires an extra \newwrite, which may exceed TEX’s maximum

allocation; unexpected expansion issues could occur.

Version 4.47 has introduced changes that have removed some of the issues involved, and there

are now warning messages if there is an attempt to multiply define the same entry label.

The glossaries-extra package provides a setting (but not for Options 1 or 4) that allows\new-
glossaryentry to occur in the document environment but doesn’t create the glsdefs
file. This circumvents some problems but it means that you can’t display any of the glossaries

before all the entries have been defined (so it’s all right if all the glossaries are at the end of the

document but not if any occur in the front matter).

4.8.2. Good Practice Issues

§4.8.1 above covers technical issues that can cause your document to have compilation errors or

produce incorrect output. This section focuses on good writing practice. The main reason cited

by users wanting to define entries within the document environment rather than in the preamble

is that they want to write the definition as they type in their document text. This suggests a

“stream of consciousness” style of writing that may be acceptable in certain literary genres but

is inappropriate for factual documents.

When you write technical documents, regardless of whether it’s a PhD thesis or an article for

a journal or proceedings, you must plan what you write in advance. If you plan in advance, you

should have a fairly good idea of the type of terminology that your document will contain, so

while you are planning, create a new file with all your entry definitions. If, while you’re writing

your document, you remember another term you need, then you can switch over to your definition

file and add it. Most text editors have the ability to have more than one file open at a time. The

other advantage to this approach is that if you forget the label, you can look it up in the definition

file rather than searching through your document text to find the definition.

165

5. Referencing Entries in the Document

Once you have defined a glossary entry using a command such as \newglossaryentry
(§4) or \newacronym (§6), you can refer to that entry in the document with one of the

provided commands that are describe in this manual. (There are some additional commands

provided by glossaries-extra.) The text produced at that point in the document (the link text)

is determined by the command and can also be governed by whether or not the entry has been

marked as used.

Some of these commands are more complicated than others. Many of them are robust and

can’t be used in fully expandable contexts, such as in PDF bookmarks.

The commands are broadly divided into:

1. Those that display text in the document (where the formatting can be adjusted by a style

or hook) and also index the entry (so that it’s added to the glossary) are described in §5.1.

This set of commands can be further sub-divided into those that mark the entry as having

been used (the \gls-like commands, §5.1.2) and those that don’t (the \glstext-like
commands, §5.1.3).

2. Those that display text in the document without indexing or applying any additional for-

matting (§5.2). These typically aren’t robust or can partially expand so that they can be

used in PDF bookmarks (with a few exceptions).

There are additional commands specific to entries defined with \newacronym that are de-

scribed in §6.1.

5.1. Links to Glossary Entries

The text which appears at the point in the document when using any of the commands described in

§5.1.2 or §5.1.3 is referred to as the link text (even if there are no hyperlinks). These commands

also add content to an external indexing file that is used to generate the relevant entry line in

the glossary. This information includes an associated location that is added to the number list

for that entry. By default, the location refers to the page number. For further information on

number lists, see §12. These external indexing file need to be post-processed by makeindex
or xindy if you have chosen Options 2 or 3. If you don’t use \makeglossaries these

external files won’t be created. (Options 1 and 4 write the information to the aux file instead.)

�

The link text isn’t scoped by default as grouping can interfere with spacing in math mode.

Any unscoped declarations in the link text may affect subsequent text.

166

5. Referencing Entries in the Document

Note that repeated use of these commands for the same entry can cause the number list to

become quite long, which may not be particular helpful to the reader. In this case, you can use the

non-indexing commands described in §5.2 or you can use the glossaries-extra package, which
provides a means to suppress the automated indexing of the commands listed in this chapter.

(For example, in this manual, common terms such as glossary have too many references in the

document to list them all in their number list in the index. They have a custom key created with

\glsaddstoragekey that’s used to set their default indexing option.)

�

I strongly recommend that you don’t use the commands defined in this chapter in the

arguments of sectioning or caption commands, such as \chapter or \caption.
Aside from problems with expansion issues, PDF bookmarks and possible nested

hyperlinks in the table of contents (or list of whatever) any use of the commands described

in §5.1.2 will have their first use flag unset when they appear in the table of contents (or

list of whatever) which is usually too soon and will not match the actual heading or caption

in the document if there is a different first/subsequent use.

The above warning is particularly important if you are using the glossaries package in con-

junction with the hyperref package. Instead, use one of the expandable commands listed in §5.2

(such as \glsentrytext). Alternatively, provide an alternative via the optional argument
to the sectioning/caption command or use hyperref’s \texorpdfstring. Examples:

�

\chapterAn overview of \glsentrytext{perl}
\chapter[An overview of Perl]An overview of \gls
{perl}
\chapter{An overview of \texorpdfstring{\gls{perl}}
{Perl}}

(You can use \glstexorpdfstring instead of \texorpdfstring if you don’t

know whether or not hyperref will be needed.)

glossaries-extra

The glossaries-extra package provides commands for use in captions and section head-
ings, such as \glsfmttext, that overcome some of the problems.

If you want the link text to produce a hyperlink to the corresponding entry line in the glossary,

you should load the hyperref package before the glossaries package. That’s what I’ve done in

this manual, so if you encounter a hyperlinked term, such as link text, you can click on the word

or phrase and it will take you to a brief description in this document’s glossary or you can click

on a command name, such as \gls, and it will take you to the relevant part of the document
where the command is described or you can click on a general word or phrase, such as table of

contents, and it will take you to the relevant line in the index where you can find the number list

to navigate to other parts of the document that are pertinent. If, however, you click on “number

167

5. Referencing Entries in the Document

list”, you’ll find it leads you to the location list entry in the index instead. This is because number

list has been aliased to location list using the alias key. Whereas if you click on “page list”

it will take you to the corresponding page list entry in the glossary that has a cross-reference to

location list, because the see key was used instead.

�

If you use the hyperref package, I strongly recommend you use pdflatex rather than

latex to compile your document, if possible. The DVI format of LATEX has limitations

with the hyperlinks that can cause a problem when used with the glossaries package.

Firstly, the DVI format can’t break a hyperlink across a line whereas pdfLATEX can. This

means that long glossary entries (for example, the full form of an acronym) won’t be able

to break across a line with the DVI format. Secondly, the DVI format doesn’t correctly size

hyperlinks in subscripts or superscripts. This means that if you define a term that may be

used as a subscript or superscript, if you use the DVI format, it won’t come out the correct

size.

These are limitations of the DVI format not of the glossaries package.

It may be that you only want terms in certain glossaries to have hyperlinks, but not for other

glossaries. In this case, you can use the package option nohypertypes to identify the

glossary lists that shouldn’t have hyperlinked link text. See §2.1 for further details.

The way the link text is displayed depends on

�

\glstextformat{〈text〉}

For example, to make all link text appear in a sans-serif font, do:

�

\renewcommand*{\glstextformat}[1]{\textsf{#1}}

Further customisation can be done via\defglsentryfmt or by redefining\glsentry-
fmt. See §5.1.4 for further details.
Each entry has an associated conditional referred to as the first use flag. Some of the commands

described in this chapter automatically unset this flag and can also use it to determine what text

should be displayed. These types of commands are the \gls-like commands and are described
in §5.1.2. The commands that don’t reference or change the first use flag are \glstext-like
commands and are described in §5.1.3. See §7 for commands that unset (mark the entry as

having been used) or reset (mark the entry as not used) the first use flag without referencing the

entries.

The \gls-like and \glstext-like commands all take a first optional argument that is a
comma-separated list of 〈key〉=〈value〉 options, described below. They also have a star-variant,
which inserts hyper=false at the start of the list of options and a plus-variant, which in-

serts hyper=true at the start of the list of options. For example \gls*{sample} is

the same as \gls[hyper=false]{sample} and \gls+{sample} is the same as

168

5. Referencing Entries in the Document

\gls[hyper=true]{sample}, whereas just \gls{sample} will use the default

hyperlink setting which depends on a number of factors (such as whether the entry is in a glossary

that has been identified in the nohypertypes list). You can override the hyper key in

the variant’s optional argument, for example, \gls*[hyper=true]{sample} but this

creates redundancy and is best avoided. The glossaries-extra package provides the option to add
a third custom variant and commands to override the behaviour of the star and plus variants.

�

Avoid nesting these commands. For example don’t do \glslink{〈label〉}{\gls
{〈label2〉}} as this is likely to cause problems. By implication, this means that you

should avoid using any of these commands within the text, first, short or long
keys (or their plural equivalent) or any other key that you plan to access through these

commands. (For example, the symbol key if you intend to use \glssymbol.) The
glossaries-extra package provides \glsxtrp to use instead, which helps to mitigate

against nesting problems.

5.1.1. Options

The keys listed below are available for the optional first argument of the\gls-like and\glstext-
like commands. The glossaries-extra package provides additional keys. (See the glossaries

-extra manual for further details.)
�

hyper=〈boolean〉 default: true; initial: true

If true, this option can be used to enable/disable the hyperlink to the relevant entry line in the

glossary. If this key is omitted, the value is determined by the current settings. For example,

when used with a \gls-like command, if this is the first use and the hyperfirst=false
package option has been used, then the default value is hyper=false. The hyperlink can

be forced on using hyper=true unless the hyperlinks have been suppressed using \gls-
disablehyper. Youmust load the hyperref package before the glossaries package to ensure
the hyperlinks work.

�

format=〈cs-name〉

This specifies how to format the associated location number within the location list (see §12.1).

�

There is a special format glsignore which simply ignores its argument to create an

invisible location.

169

5. Referencing Entries in the Document

�

counter=〈counter-name〉

This specifies which counter to use for this location. This overrides the default counter used

by the entry, the default counter associated with the glossary (supplied in the final optional ar-

gument of \newglossary) and the default counter identified by the counter package

option. See also §12. The glossaries-extra package has additional options that affect the counter
used, such as floats and equations. This manual uses the floats option to automat-

ically switch the counter to table for any entries indexed in tables (such as those in Table 12.1 on

page 274).

�

local=〈boolean〉 default: true; initial: false

This is a boolean key that only makes a difference when used with \gls-like commands that
change the entry’s first use flag. If local=true, the change to the first use flag will be

localised to the current scope.

�

noindex=〈boolean〉 default: true; initial: false

If true, this option will suppress the indexing. Only available with glossaries-extra. This manual
doesn’t use noindex for common entries. Instead it uses format=glsignore, which
is preferable with bib2gls.

�

hyperoutside=〈boolean〉 default: true; initial: true

If true, this will put the hyperlink outside of\glstextformat. Only available with glossaries
-extra.

�

wrgloss=〈position〉 initial: before

This key determines whether to index before (wrgloss=before) or after (wrgloss=
after) the link text, which alters where the whatsit occurs. Only available with glossaries

-extra.
�

textformat=〈csname〉

The value is the name of the control sequence (without the leading backslash) to encapsulate the

link text instead of the default \glstextformat. Only available with glossaries-extra.

170

5. Referencing Entries in the Document

�

prefix=〈link-prefix〉

This key locally redefines\glolinkprefix to the given value. Only available with glossaries

-extra.
�

thevalue=〈location〉

This key explicitly sets the location value instead of obtaining it from the location counter. Only

available with glossaries-extra.

�

theHvalue=〈the-H-value〉

This key explicitly sets the hyperlink location value instead of obtaining it from the location

counter. Only available with glossaries-extra.

�

prereset=〈value〉 default: local; initial: none

Determines whether or not to reset the first use flag before the link text. Only available with

glossaries-extra.

�

preunset=〈value〉 default: local; initial: none

Determines whether or not to unset the first use flag before the link text. Only available with

glossaries-extra.

�

postunset=〈value〉 default: global; initial: global

Determines whether or not to unset the first use flag after the link text. Only available with

glossaries-extra.

5.1.2. The \gls-Like Commands (First Use Flag Queried)

This section describes the \gls-like commands that unset (mark as used) the first use flag after
the link text, and in most cases they use the current state of the flag to determine the text to be

displayed. As described above, these commands all have a star-variant (hyper=false) and
a plus-variant (hyper=true) and have an optional first argument that is a 〈key〉=〈value〉 list.
These commands use \glsentryfmt or the equivalent definition provided by \defgls-
entryfmt to determine the automatically generated text and its format (see §5.1.4).

Apart from \glsdisp, the commands described in this section also have a final optional
argument 〈insert〉 which may be used to insert material into the automatically generated text.

171

5. Referencing Entries in the Document

�

Since the commands have a final optional argument, take care if you actually want to

display an open square bracket after the command when the final optional argument is

absent. Insert an empty optional argument or \relax or an empty set of braces {}
immediately before the opening square bracket to prevent it from being interpreted as the

final argument. For example:

�

\gls{sample}[] [Editor's comment]
\gls{sample}{} [Editor's comment]
\gls{sample} \relax[Editor's comment]

Use of a semantic command can also help avoid this problem. For example:

�

\newcommand{\edcom}[1][#1]
% later:
\gls{sample} \edcom{Editor's comment}

Don’t use any of the \gls-like or \glstext-like commands in the 〈insert〉 argu-
ment.

Take care using these commands within commands or environments that are processed multi-

ple times as this can confuse the first use flag query and state change. This includes frames with

overlays in beamer and the tabularx environment provided by tabularx. The glossaries package

automatically deals with this issue in amsmath’s align environment. You can apply a patch to

tabularx by placing the command \glspatchtabularx in the preamble. This does noth-

ing if tabularx hasn’t been loaded. There’s no patch available for beamer. See §7 for more details

and also §15.5.

Most of the commands below have case-changing variants to convert the link text to sentence

case or all caps. The sentence case conversion is performed by \glssentencecase and

the all caps is performed by \glsuppercase. Ensure you have at least version 2.08 of

mfirstuc to use the modern LATEX3 case-changing commands instead of the now deprecated text-

case package. See the mfirstuc manual for further details.

�

\gls[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

This command typically determines the link text from the values of the text or first
keys supplied when the entry was defined using \newglossaryentry. However, if the
entry was defined using \newacronym and \setacronymstyle was used, then the

link text will usually be determined from the long or short keys (similarly for \new-
abbreviation).
The case-changing variants:

172

5. Referencing Entries in the Document

�

\Gls[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(sentence case) and

�

\GLS[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(all caps).

There are plural forms that are analogous to \gls:

�

\glspl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

Sentence case:

�

\Glspl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

All caps:

�

\GLSpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

These typically determine the link text from the plural or firstplural keys supplied

when the entry was defined using \newglossaryentry or, if the entry was defined with

\newacronym and\setacronymstylewas used, from thelongplural orshort-
plural keys. (Similarly for \newabbreviation.)

�

Be careful when you use glossary entries in math mode especially if you are using hyper-

ref as it can affect the spacing of subscripts and superscripts in math mode. For example,

suppose you have defined the following entry:

�

\newglossaryentry{Falpha}{name={F\alpha},
description={sample}}

and later you use it in math mode:

�

$\gls{Falpha}2$

This will result in Fα
2 instead of F 2

α . In this situation it’s best to bring the superscript into

the hyperlink using the final 〈insert〉 optional argument:

173

5. Referencing Entries in the Document

�

$\gls{Falpha}[^2]$

�

\glsdisp[〈options〉]{〈entry-label〉}{〈text〉} modifiers: * +

This behaves in the same way as \gls, except that the 〈link text〉 is explicitly set. There’s no
final optional argument as any inserted material can be added to the 〈link text〉 argument. Even
though the first use flag doesn’t influence the link text, it’s still unset after the link text and so may

influence the post-link hook.

For example:

�

\newglossaryentry{locationcounter}{
name={location counter},
description={...}

}
% later in the document:
The \glsdisp{locationcounter}{counter}
identifying the location.

This ensures that the entry is indexed and, if enabled, creates a hyperlink to the entry line in the

glossary. It will also follow the display style and have the link text encapsulated with \gls-
textformat.
Since the actual text is being supplied, any case-changing can be placed in the argument. For

example:

�

\glsdisp{locationcounter}{Counters}
associated with locations

However, a sentence case variant is provided:

�

\Glsdisp[〈options〉]{〈entry-label〉}{〈text〉} modifiers: * +

This essentially does:

\glsdisp[〈options〉]{〈entry-label〉}{\glssentencecase{〈text〉}}

The main reason for providing this command is to set up a mapping for \makefirstuc.
See the mfirstuc manual for further details about mappings.

174

5. Referencing Entries in the Document

�

Don’t use any of the \gls-like or \glstext-like commands in the 〈link text〉 argu-
ment of \glsdisp.

5.1.3. The \glstext-Like Commands (First Use Flag Not Queried)

This section describes the commands that don’t change or reference the first use flag. As de-

scribed above, these commands all have a star-variant (hyper=false) and a plus-variant

(hyper=true) and have an optional first argument that is a 〈key〉=〈value〉 list. These com-
mands also don’t use \glsentryfmt or the equivalent definition provided by \defgls-
entryfmt (see §5.1.4). They do, however, have their link text encapsulated with \gls-
textformat.
Additional commands for acronyms are described in §6. (Additional commands for abbreviations

are described in the glossaries-extra manual.)
Apart from \glslink, the commands described in this section also have a final optional

argument 〈insert〉 which may be used to insert material into the automatically generated text.

See the caveat above in §5.1.2. As with the \gls-like commands described in §5.1.2, these

commands also have case-changing variants.

�

\glslink[〈options〉]{〈entry-label〉}{〈text〉} modifiers: * +

This command explicitly sets the link text as given in the final argument. As with \glsdisp,
there’s a sentence case variant to allow a sentence case mapping to be established:

�

\Glslink[〈options〉]{〈entry-label〉}{〈text〉} modifiers: * +

See the mfirstuc package for further details.

�

Don’t use any of the \gls-like or \glstext-like commands in the argument of

\glslink. By extension, this means that you can’t use them in the value of fields

that are used to form link text.

�

\glstext[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

This command always uses the value of the text key as the link text.

The case-changing variants are:

�

\Glstext[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

175

5. Referencing Entries in the Document

(sentence case) and

�

\GLStext[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(all caps).

There’s no equivalent command for title case, but you can use the more generic command

\glsentrytitlecase in combination with \glslink. For example:

�

\glslink{sample}{\glsentrytitlecase{sample}{text}}

(See §5.2.)

�

\glsfirst[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

This command always uses the value of the first key as the link text.

The case-changing variants are:

�

\Glsfirst[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(sentence case) and

�

\GLSfirst[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(all caps).

�

The value of the first key (and firstplural key) doesn’t necessarily match the

link text produced by\gls (or\glspl) on first use as the link text used by\glsmay

be modified through entry formatting commands like \defglsentryfmt. (Simi-

larly, the value of the text and plural keys don’t necessarily match the link text

used by \gls or \glspl on subsequent use.)

�

\glsplural[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

This command always uses the value of the plural key as the link text.

The case-changing variants are:

�

\Glsplural[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

176

5. Referencing Entries in the Document

(sentence case) and

�

\GLSplural[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(all caps).

�

\glsfirstplural[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

This command always uses the value of the firstplural key as the link text.

The case-changing variants are:

�

\Glsfirstplural[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(sentence case) and

�

\GLSfirstplural[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(all caps).

�

\glsname[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

This command always uses the value of the name key as the link text. Note that this may be

different from the values of the text or first keys. In general it’s better to use \glstext
or\glsfirst instead of\glsname, unless you have a particular need for the actual name.

�

The name is displayed in the glossary using \glossentryname not \glsname.

The case-changing variants are:

�

\Glsname[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(sentence case) and

�

\GLSname[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(all caps).

177

5. Referencing Entries in the Document

�

In general it’s best to avoid \glsname with acronyms. Instead, consider using \acr-
long, \acrshort or \acrfull. Alternatively, for abbreviations defined with

glossaries-extra, use \glsxtrlong, \glsxtrshort or \glsxtrfull.

�

\glssymbol[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

This command always uses the value of the symbol key as the link text.

�

The symbol is displayed in the glossary using \glossentrysymbol not \gls-
symbol.

The case-changing variants are:

�

\Glssymbol[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(sentence case) and

�

\GLSsymbol[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(all caps).

�

\glsdesc[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

This command always uses the value of the description key as the link text.

�

The description is displayed in the glossary using \glossentrydesc not \gls-
desc.

The case-changing variants are:

�

\Glsdesc[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(sentence case) and

�

\GLSdesc[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(all caps).

178

5. Referencing Entries in the Document

�

\glsuseri[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

This command always uses the value of the user1 key as the link text.

The case-changing variants are:

�

\Glsuseri[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(sentence case) and

�

\GLSuseri[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(all caps).

�

\glsuserii[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

This command always uses the value of the user2 key as the link text.

The case-changing variants are:

�

\Glsuserii[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(sentence case) and

�

\GLSuserii[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(all caps).

�

\glsuseriii[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

This command always uses the value of the user3 key as the link text.

The case-changing variants are:

�

\Glsuseriii[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(sentence case) and

�

\GLSuseriii[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(all caps).

179

5. Referencing Entries in the Document

�

\glsuseriv[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

This command always uses the value of the user4 key as the link text.

The case-changing variants are:

�

\Glsuseriv[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(sentence case) and

�

\GLSuseriv[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(all caps).

�

\glsuserv[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

This command always uses the value of the user5 key as the link text.

The case-changing variants are:

�

\Glsuserv[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(sentence case) and

�

\GLSuserv[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(all caps).

�

\glsuservi[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

This command always uses the value of the user6 key as the link text.

The case-changing variants are:

�

\Glsuservi[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(sentence case) and

�

\GLSuservi[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(all caps).

180

5. Referencing Entries in the Document

5.1.4. Changing the Format of the \gls-like Link Text

glossaries-extra

The glossaries-extra package provides ways of altering the display style according to the
category. See the glossaries-extra manual for further details.

The default entry format (display style) of the link text for the \gls-like commands is gov-
erned by:

�

\glsentryfmt

The glossaries package defines this to simply use \glsgenentryfmt. The glossaries

-extra package redefines \glsentryfmt to allow it to integrated with the abbreviation

styles.

�

The entry format is only applicable to the \gls-like commands, not the \glstext-
like commands. However, both sets of commands use \glstextformat for the

font.

You can redefine \glsentryfmt (but beware of breaking abbreviations with glossaries

-extra), but if you only want the change the display style for a given glossary, use:

�

\defglsentryfmt[〈glossary-type〉]{〈definition〉}

instead of redefining \glsentryfmt. The optional first argument 〈glossary-type〉 is the
glossary type. This defaults to \glsdefaulttype if omitted. The second argument is the

entry format definition, which needs to use the placeholder commands described in this section.

In the remainder of this section, 〈definition〉 refers to the argument of \defglsentry-
fmt or to the definition of \glsentryfmt.

�

Note that \glsentryfmt is the default display style for glossary entries. Once the

display style has been changed for an individual glossary using \defglsentryfmt,
redefining \glsentryfmt won’t have an effect on that glossary, you must instead use

\defglsentryfmt again. Note that glossaries that have been identified as lists of

acronyms (via the package option acronymlists or the command \Declare-
AcronymList, see §2.7) use \defglsentryfmt to set their display style. (The

glossaries-extra package provides abbreviation support within its redefinition of \gls-
entryfmt.)

Within 〈definition〉 you may use the following commands:

181

5. Referencing Entries in the Document

�

\glslabel

This expands to the label of the entry being referenced.

You can also access the entry’s glossary type using:

�

\glstype

This is defined using \protected@edef so the replacement text is the actual glossary type

rather than \glsentrytype{\glslabel}.

�

\glsinsert

Expands to the final 〈insert〉 optional argument to \gls, \glspl and their case-changing

variants (or empty if 〈insert〉 was omitted).
�

\glsifplural{〈true〉}{〈false〉}

If the plural commands \glspl, \Glspl or \GLSpl was used, this command expands to

〈true〉 otherwise it expands to 〈false〉.
�

\glscapscase{〈no change〉}{〈sentence〉}{〈all caps〉}

If\gls,\glspl or\glsdispwere used, this expands to 〈no change〉. If the sentence case
commands \Gls or \Glspl were used, this expands to 〈sentence〉. If the all caps commands
\GLS or \GLSpl were used, this expands to 〈all caps〉.

�

\glscustomtext

Expands to the custom text supplied in \glsdisp. It’s always empty for \gls, \glspl
and their case-changing variants. (You can use etoolbox’s \ifdefempty to determine if

\glscustomtext is empty.)

�

If \Glsdisp is used, \glscustomtext will include the sentence case com-

mand (\glssentencecase), but \glscapscase will expand to 〈no change〉
(since \Glsdisp simply uses \glsdisp without modifying the placeholder com-

mands). However, the generic \glsgenentryfmt doesn’t use \glscapscase
(or \glsifplural) if \glscustomtext isn’t empty.

182

5. Referencing Entries in the Document

�

\glsifhyperon{〈true〉}{〈false〉}

This will do 〈true〉 if the hyperlinks are on for the current reference, otherwise it will do 〈false〉.
The hyperlink may be off even if it wasn’t explicitly switched off with hyper=false key or

the use of a starred (*) command. It may be off because the hyperref package hasn’t been loaded

or because \glsdisablehyper has been used or because the entry is in a glossary type

that’s had the hyperlinks switched off (using nohypertypes) or because it’s the first use and
the hyperlinks have been suppressed on first use.

If you want to know if the calling command used to reference the entry was used with the star

(*) or plus (+) variant, you can use:

�

\glslinkvar{〈unmodified〉}{〈star case〉}{〈plus case〉}

This will do 〈unmodified〉 if the unmodified version was used, or will do 〈star case〉 if the starred
version was used, or will do 〈plus case〉 if the plus version was used. The custom modifier

provided by glossaries-extra’s\GlsXtrSetAltModifierwill make\glslinkvar
expand to 〈unmodified〉.
Note that this doesn’t take into account if the hyper key was used to override the default

setting, so this command shouldn’t be used to guess whether or not the hyperlink is on for this

reference. This command is therefore of limited use. If you want to make the star or plus

behave differently, you can try \GlsXtrSetStarModifier or \GlsXtrSetPlus-
Modifier instead, if you are using glossaries-extra.
Note that you can also use commands such as \ifglsused within 〈definition〉 (see §7),

but don’t use \ifglsused in the post-link hook.

glossaries-extra

The glossaries-extra package has additional commands that may be used within 〈defini-
tion〉 to obtain information about the calling command.

The commands\glslabel,\glstype,\glsifplural,\glscapscase,\gls-
insert and \glscustomtext are typically updated at the start of the \gls-like and
\glstext-like commands so they can usually be accessed in the hook user commands, such
as \glspostlinkhook and \glslinkpostsetkeys.

�

This means that using commands like \gls within the fields that are accessed using

the \gls-like or \glstext-like commands (such as the first, text, long or

short keys) will cause a problem. The definitions of the placeholder commands can’t

be scoped otherwise they won’t be available for the post-link hook, and grouping can also

cause unwanted spacing issues in math mode.

183

5. Referencing Entries in the Document

If you only want to make minor modifications to \glsentryfmt, you can use the generic
entry formatting command:

�

\glsgenentryfmt

This uses the above commands to display just the first, text, plural or first-
plural keys (or the custom text) with the insert text appended. For example, to make the

symbol appear in parentheses for the symbols glossary:

�

\defglsentryfmt[symbols]{\glsgenentryfmt (\glsentry-
symbol{\glslabel})}

The acronym styles use a similar method to adjust the formatting. For example, the long-short
style implements:

�

\defglsentryfmt[〈type〉]{\ifglshaslong{\glslabel}{\gls-
genacfmt}{\glsgenentryfmt}}

For each glossary that has been identified as a list of acronyms. This uses the generic entry

format command \glsgenentryfmt for general entries (that don’t have the long key

set), otherwise it uses the generic acronym format:

�

\glsgenacfmt

This uses the values from the long, short, longplural and shortplural keys,

rather than using the text, plural, first and firstplural keys. The first use

singular text is obtained via:

�

\genacrfullformat{〈label〉}{〈insert〉}

instead of from the first key, and the first use plural text is obtained via:

�

\genplacrfullformat{〈label〉}{〈insert〉}

instead of from the firstplural key. In both cases, 〈label〉 is the entry’s label and 〈insert〉
is the insert text provided in the final optional argument of commands like \gls. The default
behaviour is to do the long form (or plural long form) followed by 〈insert〉 and a space and the
short form (or plural short form) in parentheses, where the short form is in the argument of

\firstacronymfont. There are also sentence case versions:

184

5. Referencing Entries in the Document

�

\Genacrfullformat{〈label〉}{〈insert〉}

and

�

\Genplacrfullformat{〈label〉}{〈insert〉}

See §6 for details on changing the style of acronyms.

�

Note that \glsentryfmt (or the formatting given by \defglsentryfmt) is
not used by the \glstext-like commands.

Example 18: Custom Entry Display in Text

Suppose you want a glossary of measurements and units, you can use the symbol key to

store the unit:

�

\newglossaryentry{distance}{name={distance},
description={The length between two points},
symbol={km}}

and now suppose you want \gls{distance} to produce “distance (km)” on first use, then

you can redefine \glsentryfmt as follows:

�

\renewcommand*{\glsentryfmt}%
\glsgenentryfmt
\ifglsused{\glslabel}{}{\space (\glsentrysymbol

{\glslabel})}%

(Note that I’ve used \glsentrysymbol rather than \glssymbol to avoid nested

hyperlinks.)

All of the link text will be formatted according to \glstextformat (described earlier).

So if you do, say:

�

\renewcommand{\glstextformat}[1]{\textbf{#1}}
\renewcommand*{\glsentryfmt}{%
\glsgenentryfmt
\ifglsused{\glslabel}{}{\space(\glsentrysymbol

185

5. Referencing Entries in the Document

{\glslabel})}%
}

then \gls{distance} will produce “distance (km)”. This is different from using the

post-link hook which is outside of \glstextformat.
For a complete document, see the sample file sample-entryfmt.tex.

Example 19: Custom Format for Particular Glossary

Suppose you have created a new glossary called notation and you want to change the way

the entry is displayed on first use so that it includes the symbol, you can do:

�

\defglsentryfmt[notation]{\glsgenentryfmt
\ifglsused{\glslabel}{}{\space
(denoted \glsentrysymbol{\glslabel})}}

Now suppose you have defined an entry as follows:

�

\newglossaryentry{set}{type={notation},
name={set},
description={A collection of objects},
symbol={\ensuremathS}

}

The first time you reference this entry it will be displayed as: “set (denoted S)” (assuming \gls
was used).

Remember that if you use the symbol key, you need to use a glossary style that displays the

symbol, as many of the styles ignore it.

5.1.5. Hooks

Both the \gls-like and \glstext-like commands use:

�

\glslinkpostsetkeys

after the 〈options〉 are set. Thismacro does nothing by default but can be redefined. (For example,
to switch off the hyperlink under certain conditions.) The glossaries-extra package additionally
provides \glslinkpresetkeys.

186

5. Referencing Entries in the Document

There is also a hook (the post-link hook) that’s implemented at the end:

�

\glspostlinkhook

This is done after the link text has been displayed and also after the first use flag has been unset

(see example 31). This means that it’s too late to use\ifglsused in the definition of\gls-
postlinkhook. The glossaries-extra package provides \glsxtrifwasfirstuse
for use in the post-link hook.

glossaries-extra

The glossaries-extra package redefines\glspostlinkhook to allow for additional

hooks that can vary according to the entry’s category. If you migrate over from only

using the base glossaries package to glossaries-extra and you have redefined \gls-
postlinkhook, consider moving your modifications to the category post-link hook

to avoid breaking the extended post-link hook features. See the glossaries-extra manual
for further details.

5.1.6. Enabling and Disabling Hyperlinks to Glossary Entries

If you load hyperref prior to loading the glossaries package, the \gls-like and \glstext-
like commandswill automatically have hyperlinks to the relevant glossary entry, unless thehyper
option has been switched off (either explicitly or through implicit means, such as via the no-
hypertypes package option).

You can disable or enable hyperlinks using \glsdisablehyper and \glsenable-
hyper respectively. The effect can be localised by placing the commands within a group.

Note that you should only use \glsenablehyper if the commands \hyperlink and

\hypertarget have been defined, otherwise you will get undefined control sequence er-

rors. If the hyperref package is loaded before glossaries, \glsenablehyper will be use

automatically.

You can disable just the first use links using the package option hyperfirst=false.
Note that this option only affects the \gls-like commands that recognise the first use flag.

Example 20: First Use With Hyperlinked Footnote Description

Suppose I want the first use to have a hyperlink to the description in a footnote instead of

hyperlinking to the relevant place in the glossary. First I need to disable the hyperlinks on first

use via the package option hyperfirst=false:

�

\usepackage[hyperfirst=false]{glossaries}

Now I need to redefine \glsentryfmt (see §5.1.4):

187

5. Referencing Entries in the Document

�

\renewcommand*{\glsentryfmt}{%
\glsgenentryfmt
\ifglsused{\glslabel}{}{\footnote{\glsentrydesc

{\glslabel}}}%
}

Now the first use won’t have hyperlinked text, but will be followed by a footnote. See the

sample file sample-FnDesc.tex for a complete document.

Note that the hyperfirst option applies to all defined glossaries. It may be that you

only want to disable the hyperlinks on first use for glossaries that have a different form on first

use (such as list of acronyms). This can be achieved by noting that since the entries that require

hyperlinking for all instances have identical first and subsequent text, they can be unset via\gls-
unsetall (see §7) so that the hyperfirst option doesn’t get applied.

Example 21: Suppressing Hyperlinks on First Use Just For Acronyms

Suppose I want to suppress the hyperlink on first use for acronyms but not for entries in the

main glossary. I can load the glossaries package using:

�

\usepackage[hyperfirst=false,acronym]{glossaries}

Once all glossary entries have been defined I then do:

�

\glsunsetall[main]

(Alternatively use the nohyperfirst category attribute with glossaries-extra.)

For more complex requirements, youmight find it easier to switch off all hyperlinks via\gls-
disablehyper and put the hyperlinks (where required) within the definition of \gls-
entryfmt (see §5.1.4) via \glshyperlink (see §5.2).

Example 22: Only Hyperlink in Text Mode Not Math Mode

This is a bit of a contrived example, but suppose, for some reason, I only want the \gls-like
commands to have hyperlinks when used in text mode, but not in math mode. I can do this by

adding the glossary to the list of nohypertypes and redefining \glsentryfmt:

188

5. Referencing Entries in the Document

�

\GlsDeclareNoHyperList{main}

\renewcommand*{\glsentryfmt}{%
\ifmmode
\glsgenentryfmt

\else
\glsifhyperon
{\glsgenentryfmt}% hyperlink already on
{\glshyperlink[\glsgenentryfmt]{\glslabel}}%

\fi
}

Note that this doesn’t affect the \glstext-like commands, which will have the hyperlinks off
unless they’re forced on using the plus variant or with an explicit use of hypertrue.
See the sample file sample-nomathhyper.tex for a complete document.

Example 23: One Hyper Link Per Entry Per Chapter

Here’s a more complicated example that will only have the hyperlink on the first time an entry

is used per chapter. This doesn’t involve resetting the first use flag. Instead it adds a new key

using \glsaddstoragekey (see §4.3.2) that keeps track of the chapter number that the

entry was last used in:

�

\glsaddstoragekey{chapter}{0}{\glschapnum}

This creates a new user command called \glschapnum that’s analogous to \glsentry-
text. The default value for this key is 0. I then define my glossary entries as usual.
Next I redefine the hook \glslinkpostsetkeys (see §5.1.4) so that it determines

the current chapter number (which is stored in \currentchap using \edef). This value
is then compared with the value of the entry’s chapter key that I defined earlier. If they’re

the same, this entry has already been used in this chapter so the hyperlink is switched off using

xkeyval’s \setkeys command. If the chapter number isn’t the same, then this entry hasn’t

been used in the current chapter. The chapter field is updated using \glsfieldxdef
(§15.6) provided the user hasn’t switched off the hyperlink. (This test is performed using \gls-
ifhyperon.)

�

\renewcommand*{\glslinkpostsetkeys}{%
\edef\currentchap{\arabic{chapter}}%

189

5. Referencing Entries in the Document

\ifnum\currentchap=\glschapnum{\glslabel}\relax
\setkeys{glslink}{hyper=false}%

\else
\glsifhyperon{\glsfieldxdef{\glslabel}{chapter}

{\currentchap}}%
\fi
}

Note that this will be confused if you use \gls etc when the chapter counter is 0. (That is,

before the first \chapter.)
See the sample file sample-chap-hyperfirst.tex for a complete document.

5.2. Using Glossary Terms Without Indexing

The commands described in this section display entry details without adding any information to

the glossary. They don’t use \glstextformat or the entry format, they don’t have any

optional arguments, they don’t affect the first use flag and, apart from \glshyperlink and

the number list commands, they don’t produce hyperlinks.

�

If you want to use the sentence case commands in PDF bookmarks, such as \Gls-
entrytext, ensure you have at least version 2.08 of mfirstuc. Inside PDF bookmarks,

those commands will expand with the sentence case applied using the expandable\MFU-
sentencecase. Outside of PDF bookmarks those commands will expand to an inter-
nal robust command that applies the sentence case with\glssentencecase (which

defaults to \makefirstuc).

If you want to title case a field, you can use:

�

\glsentrytitlecase{〈entry-label〉}{〈field〉}

where 〈entry-label〉 is the label identifying the glossary entry, 〈field〉 is the internal field label (see
Table 4.1 on page 156). This internally uses \glscapitalisewords. Within PDF book-

marks, this command will expand to sentence case using the expandable \MFUsentence-
case. (The title case command \capitalisewords isn’t expandable.)

�

If your field contains formatting commands, you will need to redefine \gls-
capitalisewords to use \capitalisefmtwords instead of

\capitalisewords. See the mfirstuc manual for further details.

190

5. Referencing Entries in the Document

For example, to convert the description to title case for the entry identified by the label “sam-

ple”:

�

\glsentrytitlecase{sample}{desc}

(If you want title-casing in your glossary style, you might want to investigate the glossaries-extra
package.) This command will trigger an error if the entry is undefined.

If you want a hyperlink to an entry’s line in the glossary but don’t want the indexing or for-

matting associated with the \gls-like and \glstext-like commands, you can use:

�

\glshyperlink[〈text〉]{〈entry-label〉}

This command provides a hyperlink but does not add any information to the glossary file.

The hyperlink text is given by the optional argument, which defaults to \glsentrytext
{〈label〉}. Note that the hyperlink will be suppressed if you have used \glsdisable-
hyper or if you haven’t loaded the hyperref package.

�

If you use\glshyperlink, you need to ensure that the relevant entry has been added
to the glossary using any of the commands described in §5.1 or §10 otherwise you will

end up with an undefined hyperlink target.

The following commands in form form \glsentry〈field〉 expand to the associated field

value for the entry identified by 〈entry-label〉 for the non-case-changing versions. Those com-
mands don’t check if the entry has been defined. The sentence case versions \Glsentry-
〈field〉 only expand in PDF bookmarks. In both cases, any fragile commands within the field

values will need to be protected or made robust if the field values are required in a moving argu-

ment.

There are also commands in the form\glossentry〈field〉 for thename,description
and symbol that are used by the glossary styles. Those commands will issue a warning if the

entry hasn’t been defined. See §13 for further information.

�

\glsentryname{〈entry-label〉}

Expands to the value of the name field. Note that within glossary styles, the name is displayed

using \glossentryname. The corresponding sentence case command is:

�

\Glsentryname{〈entry-label〉}

191

5. Referencing Entries in the Document

�

In general it’s best to avoid\Glsentrynamewith acronyms or abbreviations. Instead,

consider using \Glsentrylong, \Glsentryshort or \Glsentryfull.

�

\glsentrytext{〈entry-label〉}

Expands to the value of the text field. The corresponding sentence case command is:

�

\Glsentrytext{〈entry-label〉}

�

\glsentryplural{〈entry-label〉}

Expands to the value of the plural field. The corresponding sentence case command is:

�

\Glsentryplural{〈entry-label〉}

�

\glsentryfirst{〈entry-label〉}

Expands to the value of the first field. The corresponding sentence case command is:

�

\Glsentryfirst{〈entry-label〉}

�

\glsentryfirstplural{〈entry-label〉}

Expands to the value of the firstplural field. The corresponding sentence case command

is:

�

\Glsentryfirstplural{〈entry-label〉}

�

\glsentrydesc{〈entry-label〉}

192

5. Referencing Entries in the Document

Expands to the value of thedescription field. Note that within glossary styles, the descrip-

tion is displayed using \glossentrydesc. The corresponding sentence case command is:

�

\Glsentrydesc{〈entry-label〉}

�

\glsentrydescplural{〈entry-label〉}

Expands to the value of the descriptionplural field. The corresponding sentence case

command is:

�

\Glsentrydescplural{〈entry-label〉}

�

\glsentrysymbol{〈entry-label〉}

Expands to the value of the symbol field. Note that within glossary styles, the description is

displayed using \glossentrysymbol. The corresponding sentence case command is:

�

\Glsentrysymbol{〈entry-label〉}

�

\glsentrysymbolplural{〈entry-label〉}

Expands to the value of the symbolplural field. The corresponding sentence case com-

mand is:

�

\Glsentrysymbolplural{〈entry-label〉}

�

\glsentryuseri{〈entry-label〉}

Expands to the value of the user1 field. The corresponding sentence case command is:

�

\Glsentryuseri{〈entry-label〉}

193

5. Referencing Entries in the Document

�

\glsentryuserii{〈entry-label〉}

Expands to the value of the user2 field. The corresponding sentence case command is:

�

\Glsentryuserii{〈entry-label〉}

�

\glsentryuseriii{〈entry-label〉}

Expands to the value of the user3 field. The corresponding sentence case command is:

�

\Glsentryuseriii{〈entry-label〉}

�

\glsentryuseriv{〈entry-label〉}

Expands to the value of the user4 field. The corresponding sentence case command is:

�

\Glsentryuseriv{〈entry-label〉}

�

\glsentryuserv{〈entry-label〉}

Expands to the value of the user5 field. The corresponding sentence case command is:

�

\Glsentryuserv{〈entry-label〉}

�

\glsentryuservi{〈entry-label〉}

Expands to the value of the user6 field. The corresponding sentence case command is:

�

\Glsentryuservi{〈entry-label〉}

194

5. Referencing Entries in the Document

The next two commands, \glsentrynumberlist and \glsdisplaynumber-
list, display the entry’s number list. This information is readily available with Options 1 and
4 (where the number list is stored in the loclist or location internal fields) but not for

Options 2 and 3 (where the number list is simply part of the code to typeset the glossary written

in the glossary file).

If you need to parse the number list, split it into groups based on the location counter, or

extract a primary location then Option 4 (bib2gls) is your best option.

�

\glsentrynumberlist{〈entry-label〉}

Displays the number list for the given entry in the same format as it’s shown by default in the

glossary. The locations will have hyperlinks if supported.

This command is at its simplest withOption 4, where it just displays the value of thelocation
internal field that’s set by bib2gls in the glstex file. This will use the delimiters supplied

by bib2gls (\bibglsdelimN and \bibglslastDelimN) for individual locations
as well as \delimR for ranges, as used in the glossary.

With Option 1, \glsentrynumberlist passes the value of the entry’s loclist
internal field (that’s created when the aux file is input) to \glsnoidxloclist (which is

also used by \printnoidxglossary). This will result in a simple list with each location
separated with \delimN, as used in the glossary. Note that this doesn’t allow for ranges (as

with \printnoidxglossary).
With Options 2 and 3, you will need the savenumberlist package option, which will

attempt to gather the number list information when the glossary file is input by \print-
glossary. Since glossaries often occur at the end of the document, this means that the

information has to be saved in the aux file for the next LATEX run. Therefore an extra LATEX call

is required if \glsentrynumberlist is needed with makeindex or xindy. This
will use the same \delimN and \delimR as used in the glossary.

�

\glsdisplaynumberlist{〈entry-label〉}

This attempts to display the number list with the separators:

�

\glsnumlistsep initial: ,␣

between each location except for the last pair and

�

\glsnumlistlastsep initial: ␣\&␣

between the last pair.

As with\glsentrynumberlist, this is again at its simplest with Option 4. This works
by locally setting\bibglsdelimN to\glsnumlistsep and\bibglslastDelimN

195

5. Referencing Entries in the Document

to \glsnumlistlastsep and then displaying the value of the location field. You

can instead simply redefine \bibglsdelimN and \bibglslastDelimN as desired

and use \glsentrynumberlist.
With Option 1, the number list information is stored in the loclist internal field, which is

in the format of an etoolbox internal list. So with Option 1, \glsdisplaynumberlist
uses etoolbox’s \forlistloop to iterate over the field value using the handler macro:

�

\glsnoidxdisplayloclisthandler{〈location〉}

Note that this doesn’t allow for ranges.

If hyperref has been loaded, \glsdisplaynumberlist doesn’t work with Options 2

and 3. In which case, a warning will be triggered and \glsentrynumberlist will be

used instead. Without hyperref, the savenumberlist package option is still required, and

an attempt will be made to parse the formatted number list created by makeindex/xindy
in order to obtain the desired result.

�

\glsdisplaynumberlist is fairly experimental. It works best with Option 4,

works with limited results with Option 1, but for Options 2 or 3 it only works when the

default location format is used (that is, with the default formatglsnumberformat). This
command will only work with hyperref if you choose Options 1 or 4.

196

6. Acronyms and Other Abbreviations

�

The term “acronyms” is used here to describe the base glossary package’s mechanism

for dealing with acronyms, initialisms, contractions and anything else that may have a

shortened form for brevity. The term “abbreviations” is used to describe the enhanced

mechanism provided by the glossaries-extra package, which is incompatible with the

base acronym mechanism.

Acronyms internally use \newglossaryentry, so you can reference them with \gls
and \glspl as with other entries. Whilst it is possible to simply use \newglossary-
entry explicitly with the first and text keys set to provide a full form on first use and

a shortened form on subsequent use, using \newacronym establishes a consistent format. It

also makes it possible to shift the 〈insert〉 optional argument of the \gls-like commands inside
the full form, so that it is placed before the parentheses.

The way the acronym is displayed on first use is governed by the acronym style that’s identified

with \setacronymstyle. This should be set before you define your acronyms. Exam-

ple 24 demonstrates the use of \newacronym:
�24

�

\documentclass{article}
\usepackage{glossaries}
\setacronymstyle{long-short}
\newacronym{html}{HTML}{hypertext markup language}
\newacronym{xml}{XML}{extensible markup language}
\begin{document}
First use: \gls{html} and \gls{xml}.

Next use: \gls{html} and \gls{xml}.
\end{document}

�

Example 24: Simple document with acronyms �� ��

First use: hypertext markup language (HTML) and extensible markup
language (XML).

Next use: HTML and XML.

197

% This file is embedded in glossaries-user.pdf
% Example 24 Simple document with acronyms
% Label: "ex:simpleacronyms"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{glossaries}
\setacronymstyle{long-short}
\newacronym{html}{HTML}{hypertext markup language}
\newacronym{xml}{XML}{extensible markup language}
\begin{document}
First use: \gls{html} and \gls{xml}.

Next use: \gls{html} and \gls{xml}.
\end{document}

Nicola Talbot
Simple document with acronyms (source code)
Example document that defines some acronym entries and references them in the text. (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example024.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example024.pdf

6. Acronyms and Other Abbreviations

Acronyms are defined using:

�

\newacronym[〈key=value list〉]{〈entry-label〉}{〈short〉}{〈long〉}

This creates a glossary entry with the given label. This automatically setstype={\acronym-
type} but if the acronym should go in another glossary you can set thetype in the optional ar-

gument 〈key=value list〉, which is added to the end of the 〈key=value list〉 in\newglossary-
entry.
The\newacronym command also uses thelong,longplural,short andshort-

plural keys in\newglossaryentry to store the long and short forms and their plurals.

glossaries-extra

If you use \newacronym with glossaries-extra, you need to first set the abbreviation
style for the acronym category with:

\setabbreviationstyle[acronym]{〈style-name〉}

Note that the same restrictions on 〈entry-label〉 in \newglossaryentry also apply to

\newacronym (see §4). Since\newacronym is defining the entry with\newglossary-
entry, you can use \glsreset to reset the first use flag.

�

Remember to declare the specified glossary type as a list of acronyms (via the package

option acronymlists or the command \DeclareAcronymList) if you have
multiple lists of acronyms. See §2.7. Alternatively, use glossaries-extra to have better

support for a mixed glossaries.

The optional argument 〈key=value list〉 allows you to specify additional information. Any key
that can be used in the second argument of \newglossaryentry can also be used here in

〈key=value list〉, but be careful about overriding any keys that are set by the acronym style, such

as name, short and long.
For example, you may need to supply description (when used with one of the styles

that require a description, described in §6.2) or you can override plural forms of 〈short〉 or 〈long〉
using the shortplural or longplural keys. For example:

�

\newacronym[longplural={diagonal matrices}]
{dm}{DM}{diagonal matrix}

If the first use uses the plural form, \glspl{dm} will display: diagonal matrices (DMs).

Aswithplural, iflongplural is missing, it’s obtained by appending\glsplural-
suffix to the singular form. The short plural shortplural is obtained (if not explicitly

198

6. Acronyms and Other Abbreviations

set in 〈key=value list〉) by appending:
�

\glsacrpluralsuffix initial: \glspluralsuffix

to the short form. These commands may be changed by the associated language files, but they

can’t be added to the usual caption hooks as there’s no guarantee when they’ll be expanded (as

discussed earlier in §1.5.2).

glossaries-extra

A different approach is used by glossaries-extra, which has category attributes to de-

termine whether or not to append a suffix when forming the default value of short-
plural.

�

Since \newacronym implicitly sets type={\acronymtype}, if you want to

load a file containing acronym definitions using \loadglsentries, the optional

argument that specifies the glossary will not have an effect unless you explicitly set type
={\glsdefaulttype} in the optional argument to \newacronym. See §4.6.

Example 25 on the following page defines the acronym IDN and then uses it in the document
�25

text. It then resets the first use flag and uses it again.

�

\setacronymstyle{long-short}
\newacronym{idn}{IDN}{identification number}
\begin{document}
First use: \gls{idn}. Next use: \gls{idn}.

\glsreset{idn}% reset first use
The \gls{idn}['s] prefix is a capital letter.
Next use:
the \gls{idn}['s] prefix is a capital letter.
\end{document}

The reset (\glsreset) makes the next instance of \gls behave as first use. Note also the

way the final 〈insert〉 optional argument is treated.

199

6. Acronyms and Other Abbreviations

�

Example 25: Defining and Using an Acronym �� ��

First use: identification number (IDN). Next use: IDN.
The identification number’s (IDN) prefix is a capital letter. Next use: the

IDN’s prefix is a capital letter.

If the acronym had simply been defined with:

�

\newglossaryentry{idn}{
nameIDN,
firstidentification number (IDN),
descriptionidentification number

}

then the first use of\gls{idn}['s]would have placed in the 〈insert〉 after the parentheses:

�

The identification number (IDN)’s prefix is a capital letter.

If you want to use one of the small caps acronym styles, described in §6.2, you need to use

lowercase characters for the shortened form:

�

\setacronymstyle{long-sc-short}
\newacronym{idn}{idn}{identification number}

�

Avoid nested definitions.

Recall from the warning in §4 that you should avoid using the \gls-like and \glstext-
like commands within the value of keys like text and first due to complications arising

from nested links. The same applies to acronyms defined using \newacronym.
For example, suppose you have defined:

�

\newacronym{ssi}{SSI}{server side includes}
\newacronym{html}{HTML}{hypertext markup language}

you may be tempted to do:

200

% This file is embedded in glossaries-user.pdf
% Example 25 Defining and Using an Acronym
% Label: "ex:newacronym"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{glossaries}
\setacronymstyle{long-short}
\newacronym{idn}{IDN}{identification number}
\begin{document}
First use: \gls{idn}. Next use: \gls{idn}.

\glsreset{idn}% reset first use
 The \gls{idn}['s] prefix is a capital letter.
Next use: the \gls{idn}['s] prefix is a capital letter.
\end{document}

Nicola Talbot
Defining and Using an Acronym (source code)
Example document that defines an acronym and references it in the text. (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example025.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example025.pdf

6. Acronyms and Other Abbreviations

�

\newacronym{shtml}{S\gls{html}}{\gls{ssi}
enabled \gls{html}}

Don’t! This will break the case-changing commands, such as\Gls, it will cause inconsistencies
on first use, and, if hyperlinks are enabled, will cause nested hyperlinks, and it will index the

nested entries every time the dependent entry is indexed, which creates unnecessary locations. It

will also confuse the commands used by the entry formatting (such as \glslabel).
Instead, consider doing:

�

\newacronym
[description={\gls{ssi} enabled \gls{html}}]
{shtml}{SHTML}{SSI enabled HTML}

or if the font needs to match the style:

�

\newacronym
[description={\gls{ssi} enabled \gls{html}}]
{shtml}{SHTML}{\acronymfont{SSI} enabled \acronym-
font{HTML}}

Alternatively:

�

\newacronym
[description={\gls{ssi} enabled \gls{html}}]
{shtml}{SHTML}

{server side includes enabled hypertext markup language}

Similarly for the \glstext-like commands.

glossaries-extra

Other approaches are available with glossaries-extra. See the sections “Nested Links”

and “Multi (or Compound) Entries” in the glossaries-extra user manual.

201

6. Acronyms and Other Abbreviations

6.1. Displaying the Long, Short and Full Forms

(Independent of First Use)

It may be that you want the long, short or full form regardless of whether or not the acronym has

already been used in the document. You can do so with the commands described in this section.

The \acr… commands described below are part of the set of \glstext-like commands.
That is, they index and can form hyperlinks, and they don’t modify or test the first use flag.

However, unlike the other \glstext-like commands, their display is governed by \def-
glsentryfmt with \glscustomtext set to the appropriate link text. So, for example,

\acrshort{〈label〉}[〈insert〉]

is similar to:

\glsdisp{%
\acronymfont{\glsentryshort{〈label〉}}〈insert〉}

except that the first use flag isn’t unset.

All caveats that apply to the \glstext-like commands also apply to the following com-

mands. (Including the above warning about nested links.)

glossaries-extra

If you are using glossaries-extra, don’t use the commands described in this section. The
glossaries-extra package provides analogous \glsxtr… or \glsfmt… commands.

For example, \glsxtrshort instead of \acrshort or, if needed in a heading,

\glsfmtshort. (Similarly for the case-changing variants.)

The optional arguments are the same as those for the \glstext-like commands, and there
are similar star (*) and plus (+) variants that switch off or on the hyperlinks. As with the

\glstext-like commands, the link text is placed in the argument of \glstextformat.

�

\acrshort[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

This sets the link text to the short form (within the argument of \acronymfont) for the
acronym given by 〈entry-label〉. The short form is as supplied by the short key, which \new-
acronym implicitly sets.

There are also analogous case-changing variants:

�

\Acrshort[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(sentence case) and

202

6. Acronyms and Other Abbreviations

�

\ACRshort[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(all caps).

There are also plural versions:

�

\acrshortpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

As \acrshort but uses the shortplural value.

�

\Acrshortpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(sentence case) and

�

\ACRshortpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(all caps).

�

\acrlong[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

This sets the link text to the long form for the acronym given by 〈entry-label〉. The long form is

as supplied by the long key, which \newacronym implicitly sets.

There are also analogous case-changing variants:

�

\Acrlong[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(sentence case) and

�

\ACRlong[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(all caps).

Again there are also plural versions:

�

\acrlongpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

As \acrlong but uses the longplural value.

�

\Acrlongpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(sentence case) and

203

6. Acronyms and Other Abbreviations

�

\ACRlongpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(all caps).

�

\acrfull[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

This sets the link text to show the full form according to the format governed by the acronym

style. This may not necessarily be the same format as that produced on the first use of \gls.
For example, the footnote style has the long form in a footnote on the first use of \gls but

\acrfull has the long form in parentheses instead.

There are also analogous case-changing variants:

�

\Acrfull[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(sentence case) and

�

\ACRfull[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(all caps).

The plural version is:

�

\acrfullpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

with case-changing variants:

�

\Acrfullpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(sentence case) and

�

\ACRfullpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(all caps).

If you find the above commands too cumbersome to write, you can use the shortcuts
package option to activate the shorter command names listed in Table 6.1 on the next page.

It is also possible to access the long and short forms without indexing using commands anal-

ogous to \glsentrytext (described in §5.2). These don’t include the acronym font com-

mands, such as \acronymfont.

�

\glsentrylong{〈entry-label〉}

204

6. Acronyms and Other Abbreviations

Table 6.1.: Synonyms provided by the shortcuts package option

Shortcut Command Equivalent Command

\acs \acrshort
\Acs \Acrshort
\acsp \acrshortpl
\Acsp \Acrshortpl
\acl \acrlong
\Acl \Acrlong
\aclp \acrlongpl
\Aclp \Acrlongpl
\acf \acrfull
\Acf \Acrfull
\acfp \acrfullpl
\Acfp \Acrfullpl
\ac \gls
\Ac \Gls
\acp \glspl
\Acp \Glspl

Expands to the long form (that is, the value of the long key, which is internally set by \new-
acronym). The corresponding sentence case command is:

�

\Glsentrylong{〈entry-label〉}

�

\glsentrylongpl{〈entry-label〉}

Expands to the long plural form (that is, the value of the longplural). The corresponding
sentence case command is:

�

\Glsentrylongpl{〈entry-label〉}

�

\glsentryshort{〈entry-label〉}

Expands to the short form (that is, the value of theshort key, which is internally set by\new-
acronym). The corresponding sentence case command is:

205

6. Acronyms and Other Abbreviations

�

\Glsentryshort{〈entry-label〉}

An similar command is available for the full form:

�

\glsentryfull{〈entry-label〉}

This command is redefined by the acronym style. Unlike \glsentrylong and \gls-
entryshort, this does include \acronymfont, so if you need to use it in a section

heading, you may need to disable it in PDF bookmarks:

�

\pdfstringdefDisableCommands{% provided by hyperref
\let\acronymfont\@firstofone
\let\firstacronymfont\@firstofone
}

�

\Glsentryfull{〈entry-label〉}

This is like \glsentryfull but applies sentence case.

The analogous plural commands are:

�

\glsentryfullpl{〈entry-label〉}

(no case change) and

�

\Glsentryfullpl{〈entry-label〉}

(sentence case).

6.2. Changing the Acronym Style

glossaries-extra

If you are using glossaries-extra, don’t use the commands described in this section. Use
\setabbreviationstyle to set the abbreviation style. This uses a different (but

more consistent) naming scheme. For example, long-noshort instead of dua. See the

“Abbreviations” chapter in the glossaries-extra manual for further details.

The acronym style is set using:

206

6. Acronyms and Other Abbreviations

�

\setacronymstyle{〈style-name〉}

where 〈style name〉 is the name of the required style. The style must be set before the acronyms
are defined otherwise you will end up with inconsistencies.

For example:

�

\usepackage[acronym]{glossaries}

\makeglossaries

\setacronymstyle{long-sc-short}

\newacronym{html}{html}{hypertext markup language}
\newacronym{xml}{xml}{extensible markup language}

Unpredictable results will occur if you try to use multiple styles since each acronym style

redefines commands like \glsentryfull and \genacrfullformat that govern the

way the full form is displayed. The closest you can get to different styles if you only want to use

the base glossaries package is to adjust the entry format (see §5.1.4) or to provide a custom

acronym style such as in Example 14 on page 149.

�

If you need multiple styles, then use the glossaries-extra package, which has better

abbreviation management. See, for example, Gallery: Mixing Styles.a

adickimaw-books.com/gallery/index.php?label=sample-name-font

The \setacronymstyle command will redefine \newacronym to use the newer

acronym mechanism introduced in version 4.02 (2013-12-05). The older mechanism was avail-

able, but deprecated, for backward-compatibility until version 4.50 when it was removed. If

the pre-4.02 acronym styles are required, you will need to use rollback. As from v4.50, if you

don’t use \setacronymstyle, the first instance of \newacronym will automatically

implement:

�

\setacronymstyle{long-short}

which is the closest match to the old default. Example 26 on the next page is a modification of
�26

the earlier Example 25 on page 200 so that it uses rollback in order to demonstrate the difference:

207

https://www.dickimaw-books.com/gallery/index.php?label=sample-name-font
https://www.dickimaw-books.com/gallery/index.php?label=sample-name-font

6. Acronyms and Other Abbreviations

�

\usepackage{glossaries}[=v4.46]% rollback to v4.46
% no \setacronymstyle so old style used
\newacronym{idn}{IDN}{identification number}
\begin{document}
First use: \gls{idn}. Next use: \gls{idn}.

\glsreset{idn}% reset first use
The \gls{idn}['s] prefix is a capital letter.
Next use:
the \gls{idn}['s] prefix is a capital letter.
\end{document}

This produces:

�

Example 26: Defining and Using an Acronym (Rollback) �� ��

First use: identification number (IDN). Next use: IDN.
The identification number (IDN)’s prefix is a capital letter. Next use: the

IDN’s prefix is a capital letter.

The most noticeable difference is the way the 〈insert〉 optional argument is treated with\gls on

first use (\gls{idn}['s]). With the oldway,\newacronym simply setfirstidentification
number (IDN) when it internally used \newglossaryentry to define the acronym. The

default entry format simply appends the 〈insert〉 after the value of the first key.

Unlike the original pre-4.02 behaviour of\newacronym, the styles set via\setacronym-
style don’t use thefirst key, but instead they use\defglsentryfmt to set a custom

display style that uses the long and short keys (or their plural equivalents). This means that

these styles cope better with plurals that aren’t formed by simply appending the singular form

with the letter “s”. In fact, most of the predefined styles use \glsgenacfmt and modify

the definitions of commands like \genacrfullformat. If the original behaviour is still
required for some reason, use rollback.

In both the old and new implementation, the text key is set to the short form. Since the

first isn’t set with the new form, it will default to the value of the text key. This means

that with the new implementation, \glsfirst will produce the same result as \glstext.
This is why you need to use \acrlong or \acrfull instead. Alternatively, reset the first

use flag and use \gls.
When you use \setacronymstyle the name key is set to:

�

\acronymentry{〈entry-label〉}

and the sort key is set to

208

% This file is embedded in glossaries-user.pdf
% Example 26 Defining and Using an Acronym (Rollback)
% Label: "ex:newacronymrollback"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{glossaries}[=v4.46]% rollback to v4.46
 % no \setacronymstyle so old style used
 \newacronym{idn}{IDN}{identification number}
\begin{document}
First use: \gls{idn}. Next use: \gls{idn}.

\glsreset{idn}% reset first use
 The \gls{idn}['s] prefix is a capital letter.
Next use: the \gls{idn}['s] prefix is a capital letter.
\end{document}

Nicola Talbot
Defining and Using an Acronym (Rollback) (source code)
Example document that defines an acronym and references it in the text using deprecated style with rollback. (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example026.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example026.pdf

6. Acronyms and Other Abbreviations

�

\acronymsort{〈short〉}{〈long〉}

These commands are redefined by the acronym styles. However, you can redefine them again

after the style has been set but before you use \newacronym. Protected expansion is per-

formed on \acronymsort when the acronym is defined.

6.2.1. Predefined Acronym Styles

The glossaries package provides a number of predefined acronym styles. These styles apply:

�

\firstacronymfont{〈text〉}

to the short form on first use and

�

\acronymfont{〈text〉}

on subsequent use. The styles modify the definition of \acronymfont and \first-
acronymfont as required. Usually,\firstacronymfont{〈text〉} simply does\acronym-
font{〈text〉}. If you want the short form displayed differently on first use, you can redefine

\firstacronymfont after the acronym style is set.

The predefined small caps styles that contain “sc” in their name (for example long-sc-short)
redefine \acronymfont to use \textsc, which means that the short form needs to be

specified in lowercase if it should be rendered in small caps. This is because small caps has small

capital glyphs for lowercase letters but normal sized capital glyphs for uppercase letters, which

means there’s no visual difference between a normal upright font and a small caps font if the text

is in all caps. This is demonstrated in Example 27:
�27

��

\setacronymstyle{long-sc
-short}
\newacronym{mathml}
{MathML}
{mathematical markup language}

\begin{document}
\acrshort{mathml}
\end{document}

Example 27: Small-Caps Acronym

�� ��

MathML

209

% This file is embedded in glossaries-user.pdf
% Example 27 Small-Caps Acronym
% Label: "ex:longscshort"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{glossaries}
\setacronymstyle{long-sc-short}
\newacronym{mathml}{MathML}{mathematical markup language}
\begin{document}
\acrshort{mathml}
\end{document}

Nicola Talbot
Small-Caps Acronym (source code)
Example document that uses the long-sc-short acronym style, which renders the short form in a small-capital font. (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example027.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example027.pdf

6. Acronyms and Other Abbreviations

�

Some fonts don’t support bold small caps, so youmay need to redefine\glsnamefont
(see §8) to switch to medium weight if you are using a glossary style that displays entry

names in bold and you have chosen an acronym style that uses\textsc. (Alternatively,
switch to a font that does support bold small caps.)

The predefined glossary styles that contain “sm” in their name (for example long-sm-short)
redefine \acronymfont to use \textsmaller.

�

Note that the glossaries package doesn’t define or load any package that defines \text-
smaller. If you use one of the acronym styles that set \acronymfont to

\textsmaller you must explicitly load the relsize package or otherwise define

\textsmaller.

The remaining predefined styles redefine \acronymfont to simply do its argument with-

out any font change.

�

The predefined styles adjust \acrfull and \glsentryfull (and their plural and

case-changing variants) to reflect the style.

When acronyms are defined,\newacronymwill set thesort key to\acronymsort.
The acronym styles redefine this to suit the style. This command must fully expand in order for

the indexing application to pick up the correct sort value. If the sort key is set in the optional

argument of \newacronym, it will override this.
The name key is set to \acronymentry. Again, the acronym styles redefine this to suit

the style. If the name key is set in the optional argument of \newacronym, it will override
this.

The type key is set to \acronymtype. If the type key is set in the optional argument

of \newacronym, it will override this.
The shortplural is set to the short form appended by:

�

\acrpluralsuffix initial: \glsacrpluralsuffix

This is redefined by the acronym styles to the appropriate suffix. In most cases, it will simply be

defined to \glspluralsuffix, but the small caps styles define it to:

�

\glsupacrpluralsuffix

This uses:

210

6. Acronyms and Other Abbreviations

�

\glstextup{〈text〉}

to cancel the effect of the small caps font command \textsc.
If the shortplural key is set in the optional argument of \newacronym, it will

override this default.

The longplural is set to the long form appended by \glspluralsuffix. If the
longplural key is set in the optional argument of \newacronym, it will override this
default.

Some styles set the description key to the long form, but others don’t. If you use a

style that doesn’t set it, you will have to supply the description in the optional argument

of \newacronym.

6.2.1.1. Long (Short)

With the “long (short)” styles, acronyms are displayed in the form:

〈long〉 (\firstacronymfont{〈short〉})

on first use and

\acronymfont{〈short〉}

on subsequent use.

They also set \acronymsort so that it just expands to its first argument 〈short〉. This

means that the acronyms are sorted according to their short form. In addition, \acronym-
entry{label} is set to just the short form (enclosed in\acronymfont) and thedescription
key is set to the long form.

�

long-short

This is the default style that will be implemented if\setacronymstyle isn’t used (as from

v4.50, which has removed the default deprecated style). This shows the long form followed by the

short form in parentheses on first use and also with \acrfull. This redefines \acronym-
font to simply do its argument.

�

long-sc-short

This is like long-short but uses small caps for the short form, so it redefines \acronymfont
to use \textsc and \acrpluralsuffix to \glsacrpluralsuffix.

211

6. Acronyms and Other Abbreviations

�

long-sm-short

This is like long-short but uses\textsmaller for the short form, so it redefines\acronym-
font to use \textsmaller. This style will require relsize to be loaded.

�

long-sp-short

This is like long-short but instead of simply using a space between the long and short form, it
uses:

�

\glsacspace{〈label〉}

This measures the short form for the given entry and, if the width is smaller than 3em, it will use

non-breaking space (~). Otherwise it will use \space.

glossaries-extra

Although the glossaries-extra package doesn’t support the base acronym styles, it does

redefine \glsacspace to use \glsacspacemax instead of the hard-coded 3em,

as \glsacspace may also be useful in abbreviation styles.

Example 28: Adapting a Predefined Acronym Style

Suppose I want to use the footnote-sc-desc style, but I want the name key set to the short

form followed by the long form in parentheses and the sort key set to the short form. Then I

need to specify the footnote-sc-desc style:

�

\setacronymstyle{footnote-sc-desc}

and then redefine \acronymsort and \acronymentry:

�

\renewcommand*{\acronymsort}[2]{#1}
% sort by short form
\renewcommand*{\acronymentry}[1]{% short (long) name
\acronymfont{\glsentryshort{#1}}\space (\glsentry-

long{#1})}%

(I’ve used \space for extra clarity, but you can just use an actual space instead.)

Note that the default Computer Modern fonts don’t support bold small caps, so another font

is required. For example:

212

6. Acronyms and Other Abbreviations

�

\usepackage[T1]{fontenc}

The alternative is to redefine \acronymfont so that it always switches to medium weight to

ensure the small caps setting is used. For example:

�

\renewcommand*{\acronymfont}[1]{\textmd{\scshape #1}
}

The sample file sampleFnAcrDesc.tex illustrates this example.

6.2.1.2. Short (Long)

With the “short (long)” styles, acronyms are displayed in the form:

\firstacronymfont{〈short〉} (〈long〉)

on first use and

\acronymfont{〈short〉}

on subsequent use.

They also set \acronymsort{short}{long} to just 〈short〉. This means that the acronyms
are sorted according to their short form. In addition, \acronymentry{label} is set to just
the short form (enclosed in \acronymfont) and the description key is set to the long

form.

�

short-long

This shows the short form followed by the long form in parentheses on first use and also with

\acrfull. This redefines \acronymfont to simply do its argument.

�

sc-short-long

This is like short-long but uses small caps for the short form, so it redefines \acronymfont
to use \textsc and \acrpluralsuffix to \glsacrpluralsuffix.

�

sm-short-long

This is like short-long but uses\textsmaller for the short form, so it redefines\acronym-
font to use \textsmaller. This style will require relsize to be loaded.

213

6. Acronyms and Other Abbreviations

6.2.1.3. Long (Short) User Supplied Description

�

long-short-desc

This is like long-short but the description key must be provided in the optional argument

of \newacronym. The sort value command \acronymsort is redefined to expand to its

second argument (〈long〉), and\acronymentry is redefined to show the long form followed

by the short form in parentheses.

�

long-sc-short-desc

This is like long-short-desc except that it uses small caps, as long-sc-short.

�

long-sm-short-desc

This is like long-short-desc except that it uses \textsmaller, as long-sm-short.

�

long-sp-short-desc

This is like long-short-desc except that it uses \glsacspace, as long-sp-short.

6.2.1.4. Short (Long) User Supplied Description

�

short-long-desc

This is like short-long but the description key must be provided in the optional argument

of \newacronym. The sort value command \acronymsort is redefined to expand to its

second argument (〈long〉), and\acronymentry is redefined to show the long form followed

by the short form in parentheses.

�

sc-short-long-desc

This is like short-long-desc except that it uses small caps, as long-sc-short.

�

sm-short-long-desc

This is like short-long-desc except that it uses \textsmaller, as long-sm-short.

6.2.1.5. Do Not Use Acronym (DUA)

With these styles, the \gls-like commands always display the long form regardless of whether

the entry has been first useused or not. However, \acrfull and \glsentryfull will

214

6. Acronyms and Other Abbreviations

display the long form followed by the short form, as per the long-short style.

�

dua

The sort value command \acronymsort expands to just its second argument (the long

form), and \acronymentry shows just the long form.

�

dua-desc

The sort value command \acronymsort expands to just its second argument (the long

form), and \acronymentry shows just the long form.

6.2.1.6. Footnote

With these styles, the \gls-like commands show the short form followed by the long form in

a footnote on first use. The footnote is simply added with \footnote. The \acrfull
set of commands show the short form followed by the long form in parentheses (as per styles

like short-long). The definitions of \acronymsort and \acronymentry are as for

the “short (long)” styles described in §6.2.1.2.

�

The footnote styles automatically set hyperfirst=false to prevent nested

hyperlinks.

�

footnote

This defines \acronymentry, \acronymsort and \acronymfont in the same

way as the short-long style

�

footnote-sc

This defines\acronymentry,\acronymsort,\acronymfont and\acrplural-
suffix in the same way as the sc-short-long style

�

footnote-sm

This defines \acronymentry, \acronymsort and \acronymfont in the same

way as the sm-short-long style

�

footnote-desc

This defines \acronymentry, \acronymsort and \acronymfont in the same

way as the short-long-desc style

215

6. Acronyms and Other Abbreviations

�

footnote-sc-desc

This defines \acronymentry, \acronymsort and \acronymfont in the same

way as the sc-short-long-desc style

�

footnote-sm-desc

This defines \acronymentry, \acronymsort and \acronymfont in the same

way as the sm-short-long-desc style

6.2.2. Defining A Custom Acronym Style

You may find that the predefined acronym styles that come with the glossaries package don’t suit

your requirements. In this case you can define your own style using:

�

\newacronymstyle{〈name〉}{〈format def〉}{〈style defs〉}

where 〈style name〉 is the name of the new style (avoid active characters). The second argument,

〈format def〉, is equivalent to the 〈definition〉 argument of \defglsentryfmt. You can

simply use \glsgenacfmt or you can customize the display using commands like \if-
glsused, \glsifplural and \glscapscase. (See §5.1.4 for further details.)
If the style is likely to be used with a mixed glossary (that is, entries in that glossary are defined

both with\newacronym and\newglossaryentry) then you can test if the entry is an
acronym and use \glsgenacfmt if it is or \glsgenentryfmt if it isn’t. For example,

the long-short style sets 〈format def〉 as

\ifglshaslong{\glslabel}{\glsgenacfmt}{\glsgenentry-
fmt}

(You can use \ifglshasshort instead of \ifglshaslong to test if the entry is an

acronym if you prefer.)

The third argument, 〈style defs〉, can be used to redefine the commands that affect the display
style, such as \acronymfont and \genacrfullformat.

�

Bear inmind that you will need to use## rather than to reference parameters in command

definitions within 〈style defs〉.

Note that \setacronymstyle redefines \glsentryfull and \acrfullfmt
to use \genacrfullformat (and similarly for the plural and case-changing variants).

If this isn’t appropriate for the style (as in the case of styles like footnote and dua) \new-
acronymstyle should redefine these commands within 〈style defs〉.

216

6. Acronyms and Other Abbreviations

Within \newacronymstyle’s 〈style defs〉 argument you can also redefine:
�

\GenericAcronymFields

This should expand to the list of additional fields to be set in \newglossaryentry, when
it’s internally called by \newacronym. You can use the following token registers to access
information passed to the arguments of \newacronym.

�

\glskeylisttok

Contains the 〈key=value list〉 options.
�

\glslabeltok

Contains the 〈entry-label〉.
�

\glsshorttok

Contains the 〈short〉 form argument.

�

\glslongtok

Contains the 〈long〉 form argument.

As with all token registers, you can obtain the value of the register with \the〈register〉. For
example, the long-short style does:

\renewcommand*{\GenericAcronymFields}{%
description={\the\glslongtok}}

which sets the description field to the long form of the acronym whereas the long-short
-desc style does:

\renewcommand*{\GenericAcronymFields}{}

since the description needs to be specified by the user.

It may be that you want to define a new acronym style that’s based on an existing style. Within

〈format def〉 of the new style, you can use

�

\GlsUseAcrEntryDispStyle{〈style-name〉}

217

6. Acronyms and Other Abbreviations

to use the 〈format def〉 definition from the style given by 〈style name〉.
Within 〈display defs〉 of the new style, you can use

�

\GlsUseAcrStyleDefs{〈style-name〉}

to use the 〈display defs〉 from the style given by 〈style name〉.
For example, the long-sc-short acronym style is based on the long-short style with minor

modifications:

\newacronymstyle{long-sc-short}%
{% use the same display as long-short
\GlsUseAcrEntryDispStyle{long-short}%

}%
{% use the same definitions as long-short
\GlsUseAcrStyleDefs{long-short}%
% Minor modifications:
\renewcommand{\acronymfont}[1]{\textsc{##1}}%
\renewcommand*{\acrpluralsuffix}{\glstextup{\gls-

pluralsuffix}}%
}

Example 29: Defining a Custom Acronym Style

Suppose I want my acronym on first use to have the short form in the text and the long form

with the description in a footnote. Suppose also that I want the short form to be put in small caps

in the main body of the document, but I want it in normal capitals in the list of acronyms. In my

list of acronyms, I want the long form as the name with the short form in brackets followed by

the description. That is, in the text I want \gls on first use to display:

\textsc{〈short〉}\footnote{〈long〉: 〈description〉}

on subsequent use:

\textsc{〈short〉}

and in the list of acronyms, each entry will be displayed in the form:

〈long〉 (〈short〉) 〈description〉

Let’s suppose it’s possible that I may have a mixed glossary. I can check this in the second

argument (〈format def〉) of \newacronymstyle using:

218

6. Acronyms and Other Abbreviations

�

\ifglshaslong{\glslabel}{\glsgenacfmt}{\glsgenentry-
fmt}

This will use \glsgenentryfmt if the entry isn’t an acronym, otherwise it will use \gls-
genacfmt. The third argument (〈display defs〉) of \newacronymstyle needs to rede-

fine \genacrfullformat etc so that the first use displays the short form in the text with

the long form in a footnote followed by the description. This is done as follows:

�

% No case change, singular first use:
\renewcommand*{\genacrfullformat}[2]{%
\firstacronymfont{\glsentryshort{##1}}##2%
\footnote{\glsentrylong{##1}: \glsentrydesc{##1}}%
}%
% Sentence case, singular first use:
\renewcommand*{\Genacrfullformat}[2]{%
\firstacronymfont{\Glsentryshort{##1}}##2%
\footnote{\glsentrylong{##1}: \glsentrydesc{##1}}%
}%
% No case change, plural first use:
\renewcommand*{\genplacrfullformat}[2]{%
\firstacronymfont{\glsentryshortpl{##1}}##2%
\footnote{\glsentrylongpl{##1}: \glsentrydesc{##1}}
%
}%
% Sentence case, plural first use:
\renewcommand*{\Genplacrfullformat}[2]{%
\firstacronymfont{\Glsentryshortpl{##1}}##2%
\footnote{\glsentrylongpl{##1}: \glsentrydesc{##1}}
%
}

If you think it inappropriate for the short form to be capitalised at the start of a sentence you can

change the above to:

�

% No case change, singular first use:
\renewcommand*{\genacrfullformat}[2]{%
\firstacronymfont{\glsentryshort{##1}}##2%
\footnote{\glsentrylong{##1}: \glsentrydesc{##1}}%
}%
% No case change, plural first use:

219

6. Acronyms and Other Abbreviations

\renewcommand*{\genplacrfullformat}[2]{%
\firstacronymfont{\glsentryshortpl{##1}}##2%
\footnote{\glsentrylongpl{##1}: \glsentrydesc{##1}}
%
}%
\let\Genacrfullformat\genacrfullformat
\let\Genplacrfullformat\genplacrfullformat

Another variation is to use \Glsentrylong and \Glsentrylongpl in the footnote

instead of \glsentrylong and \glsentrylongpl.
Now let’s suppose that commands such as \glsentryfull and \acrfull shouldn’t

use a footnote, but instead use the format: 〈long〉 (〈short〉). This means that the style needs to
redefine \glsentryfull, \acrfullfmt and their plural and case-changing variants.

First, the non-linking commands:

�

\renewcommand*{\glsentryfull}[1]{%
\glsentrylong{##1}\space
(\acronymfont{\glsentryshort{##1}})%

}%
\renewcommand*{\Glsentryfull}[1]{%
\Glsentrylong{##1}\space
(\acronymfont{\glsentryshort{##1}})%

}%
\renewcommand*{\glsentryfullpl}[1]{%
\glsentrylongpl{##1}\space
(\acronymfont{\glsentryshortpl{##1}})%

}%
\renewcommand*{\Glsentryfullpl}[1]{%
\Glsentrylongpl{##1}\space
(\acronymfont{\glsentryshortpl{##1}})%

}

Now for the linking commands:

�

\renewcommand*{\acrfullfmt}[3]{%
\glslink[##1]{##2}%
\glsentrylong{##2}##3\space
(\acronymfont{\glsentryshort{##2}})%

%
}%

220

6. Acronyms and Other Abbreviations

\renewcommand*{\Acrfullfmt}[3]{%
\glslink[##1]{##2}%
\Glsentrylong{##2}##3\space
(\acronymfont{\glsentryshort{##2}})%

%
}%
\renewcommand*{\ACRfullfmt}[3]{%
\glslink[##1]{##2}%
\glsuppercase{%
\glsentrylong{##2}##3\space

(\acronymfont{\glsentryshort{##2}})%
}%
%

}%
\renewcommand*{\acrfullplfmt}[3]{%
\glslink[##1]{##2}%
\glsentrylongpl{##2}##3\space
(\acronymfont{\glsentryshortpl{##2}})%

%
}%
\renewcommand*{\Acrfullplfmt}[3]{%
\glslink[##1]{##2}%
\Glsentrylongpl{##2}##3\space
(\acronymfont{\glsentryshortpl{##2}})%

%
}%
\renewcommand*{\ACRfullplfmt}[3]{%
\glslink[##1]##2%
\glsuppercase{%
\glsentrylongpl{##2}##3

(\acronymfont{\glsentryshortpl{##2}})%
}%
%

}

(This may cause problems with long hyperlinks, in which case adjust the definitions so that, for

example, only the short form is inside the argument of \glslink.)
The style also needs to redefine \acronymsort so that the acronyms are sorted according

to the long form:

�

\renewcommand*{\acronymsort}[2]{##2}

221

6. Acronyms and Other Abbreviations

If you prefer them to be sorted according to the short form you can change the above to:

�

\renewcommand*{\acronymsort}[2]{##1}

The acronym font needs to be set to \textsc and the plural suffix adjusted so that the “s”

suffix in the plural short form doesn’t get converted to small caps:

�

\renewcommand*{\acronymfont}[1]{\textsc{##1}}%
\renewcommand*{\acrpluralsuffix}{\glsupacrplural-
suffix}%

There are a number of ways of dealing with the format in the list of acronyms. The simplest way

is to redefine \acronymentry to the long form followed by the upper case short form in

parentheses:

�

\renewcommand*{\acronymentry}[1]{%
\Glsentrylong{##1}\space
(\glsuppercase\glsentryshort{##1})}

(I’ve used \Glsentrylong instead of \glsentrylong to capitalise the name in the

glossary.)

An alternative approach is to set \acronymentry to just the long form and redefine

\GenericAcronymFields to set the symbol key to the short form and use a glossary

style that displays the symbol in parentheses after the name (such as the tree style) like this:

�

\renewcommand*{\acronymentry}[1]{\Glsentrylong{##1}}
%
\renewcommand*{\GenericAcronymFields}{%

symbol={\protect\glsuppercase{\the\glsshorttok}}}
%

I’m going to use the first approach and set \GenericAcronymFields to do nothing:

�

\renewcommand*{\GenericAcronymFields}{}%

Finally, this style needs to switch off hyperlinks on first use to avoid nested links:

222

6. Acronyms and Other Abbreviations

�

\glshyperfirstfalse

Putting this all together:

�

\newacronymstyle{custom-fn}% new style name
{% entry format
\ifglshaslong{\glslabel}{\glsgenacfmt}{\glsgen-
entryfmt}%
}%
{%
\renewcommand*{\GenericAcronymFields}{}%
\glshyperfirstfalse
% No case change, singular first use:
\renewcommand*{\genacrfullformat}[2]{%
\firstacronymfont{\glsentryshort{##1}}##2%
\footnote{\glsentrylong{##1}: \glsentrydesc{##1}}

%
}%
% Sentence case, singular first use:
\renewcommand*{\Genacrfullformat}[2]{%
\firstacronymfont{\Glsentryshort{##1}}##2%
\footnote{\glsentrylong{##1}: \glsentrydesc{##1}}

%
}%
% No case change, plural first use:
\renewcommand*{\genplacrfullformat}[2]{%
\firstacronymfont{\glsentryshortpl{##1}}##2%
\footnote{\glsentrylongpl{##1}: \glsentrydesc{##1}

}%
}%
% Sentence case, plural first use:
\renewcommand*{\Genplacrfullformat}[2]{%
\firstacronymfont{\Glsentryshortpl{##1}}##2%
\footnote{\glsentrylongpl{##1}: \glsentrydesc{##1}

}%
}%
% non-linking commands
\renewcommand*{\glsentryfull}[1]{%
\glsentrylong{##1}\space
(\acronymfont{\glsentryshort{##1}})%

223

6. Acronyms and Other Abbreviations

}%
\renewcommand*{\Glsentryfull}[1]{%
\Glsentrylong{##1}\space
(\acronymfont{\glsentryshort{##1}})%

}%
\renewcommand*{\glsentryfullpl}[1]{%
\glsentrylongpl{##1}\space
(\acronymfont{\glsentryshortpl{##1}})%

}%
\renewcommand*{\Glsentryfullpl}[1]{%
\Glsentrylongpl{##1}\space
(\acronymfont{\glsentryshortpl{##1}})%

}%
% linking commands
\renewcommand*{\acrfullfmt}[3]{%
\glslink[##1]{##2}%
\glsentrylong{##2}##3\space
(\acronymfont{\glsentryshort{##2}})%

%
}%
\renewcommand*{\Acrfullfmt}[3]{%
\glslink[##1]{##2}%
\Glsentrylong{##2}##3\space
(\acronymfont{\glsentryshort{##2}})%

%
}%
\renewcommand*{\ACRfullfmt}[3]{%
\glslink[##1]{##2}%
\glsuppercase{%

\glsentrylong{##2}##3\space
(\acronymfont{\glsentryshort{##2}})%

}%
%

}%
\renewcommand*{\acrfullplfmt}[3]{%
\glslink[##1]{##2}%
\glsentrylongpl{##2}##3\space

(\acronymfont{\glsentryshortpl{##2}})%
%

}%
\renewcommand*{\Acrfullplfmt}[3]{%
\glslink[##1]{##2}%

224

6. Acronyms and Other Abbreviations

\Glsentrylongpl{##2}##3\space
(\acronymfont{\glsentryshortpl{##2}})%

%
}%
\renewcommand*{\ACRfullplfmt}[3]{%
\glslink[##1]##2%
\glsuppercase{%

\glsentrylongpl{##2}##3
(\acronymfont{\glsentryshortpl{##2}})%

}%
%

}%
% font
\renewcommand*{\acronymfont}[1]{\textsc{##1}}%
\renewcommand*{\acrpluralsuffix}{\glsupacrplural-
suffix}%
% sort
\renewcommand*{\acronymsort}[2]{##2}%
% name
\renewcommand*{\acronymentry}[1]{%
\Glsentrylong{##1}\space
(\glsuppercase\glsentryshort{##1})}%

}

Now I need to specify that I want to use this new style:

�

\setacronymstyle{custom-fn}

I also need to use a glossary style that suits this acronym style, for example altlist:

�

\setglossarystyle{altlist}

Once the acronym style has been set, I can define my acronyms:

�

\newacronym[description={set of tags for use in
developing hypertext documents}]{html}{html}{Hyper
Text Markup Language}

\newacronym[description=

225

6. Acronyms and Other Abbreviations

{language used to describe the
layout of a document written in a markup language}]
{css}
{css}{Cascading Style Sheet}

The sample file sample-custom-acronym.tex illustrates this example.

Example 30: Italic and Upright Abbreviations

Suppose I want to have some acronyms in italic and some that just use the surrounding font.

Hard-coding this into the 〈short〉 argument of \newacronym can cause complications.

This example uses \glsaddstoragekey to add an extra field that can be used to store

the formatting declaration (such as \em).

�

\glsaddstoragekey{font}{}{\entryfont}

This defines a new field/key called font, which defaults to nothing if it’s not explicitly set.

This also defines a command called \entryfont that’s analogous to \glsentrytext.
A new style is then created to format acronyms that access this field.

There are two ways to do this. The first is to create a style that doesn’t use \glsgenacfmt
but instead provides a modified version that doesn’t use \acronymfont but instead uses

{\entryfont{\glslabel}〈short〉}.

The full format given by commands such as \genacrfullformat need to be similarly

adjusted. For example:

�

\renewcommand*{\genacrfullformat}[2]{%
\glsentrylong{##1}##2\space
({\entryfont{##1}\glsentryshort{##1}})%
}%

This will deal with commands like \gls but not commands like \acrshort which still

use \acronymfont. Another approach is to redefine \acronymfont to look up the

required font declaration. Since \acronymfont doesn’t take the entry label as an argument,

the followingwill only work if\acronymfont is used in a context where the label is provided

by \glslabel. This is true in \gls, \acrshort and \acrfull. The redefinition is
now:

226

6. Acronyms and Other Abbreviations

�

\renewcommand*{\acronymfont}[1]{{\entryfont{\gls-
label}##1}}%

So the new style can be defined as:

�

\newacronymstyle{long-font-short}
{%
\GlsUseAcrEntryDispStyle{long-short}%
}%
{%
\GlsUseAcrStyleDefs{long-short}%
\renewcommand*{\genacrfullformat}[2]{%
\glsentrylong{##1}##2\space
({\entryfont{##1}\glsentryshort{##1}})%

}%
\renewcommand*{\Genacrfullformat}[2]{%
\Glsentrylong{##1}##2\space
({\entryfont{##1}\glsentryshort{##1}})%

}%
\renewcommand*{\genplacrfullformat}[2]{%
\glsentrylongpl{##1}##2\space
({\entryfont{##1}\glsentryshort{##1}})%

}%
\renewcommand*{\Genplacrfullformat}[2]{%
\Glsentrylongpl{##1}##2\space
({\entryfont{##1}\glsentryshort{##1}})%

}%
\renewcommand*{\acronymfont}[1]{{\entryfont{\gls-
label}##1}}%
\renewcommand*{\acronymentry}[1]{{\entryfont{##1}
\glsentryshort{##1}}}%
}

Remember the style needs to be set before defining the entries:

�

\setacronymstyle{long-font-short}

The complete document is contained in the sample file sample-font-abbr.tex.

227

6. Acronyms and Other Abbreviations

Some writers and publishing houses have started to drop full stops (periods) from uppercase

initials but may still retain them for lowercase abbreviations, while others may still use them

for both upper and lowercase. This can cause complications. Chapter 12 of The TEXbook dis-

cusses the spacing between words but, briefly, the default behaviour of TEX is to assume that an

uppercase character followed by a full stop and space is an abbreviation, so the space is the de-

fault inter-word space whereas a lowercase character followed by a full stop and space is a word

occurring at the end of a sentence, which requires an inter-sentence space (which may or may

not be the same as an inter-word space). In the event that this isn’t true, you need to make a man-

ual adjustment using \␣ (backslash space) in place of just a space character for an inter-word

mid-sentence space and use \@ before the full stop to indicate the end of the sentence.

For example:

�

I was awarded a B.Sc. and a Ph.D. (From the same place.)

is typeset as

�

I was awarded a B.Sc. and a Ph.D. (From the same place.)

The spacing is more noticeable with the typewriter font:

�

\ttfamily
I was awarded a B.Sc. and a Ph.D. (From the same place.)

is typeset as

�

I was awarded a B.Sc. and a Ph.D. (From the same
place.)

The lowercase letter at the end of “B.Sc.” is confusing TEX into thinking that the full stop after it

marks the end of the sentence. Whereas the uppercase letter at the end of “Ph.D.” has confused

TEX into thinking that the following full stop is just part of the abbreviation. These can be

corrected:

�

I was awarded a B.Sc.\and a Ph.D\@. (From the same place.)

This situation is a bit problematic for glossaries. The full stops can form part of the 〈short〉
argument of \newacronym and the B.Sc.\␣ part can be dealt with by remembering to

add\␣ (for example, \gls{bsc}\␣ but the end of sentence case is more troublesome as you

need to omit the sentence terminating full stop (to avoid two dots) which can make the source

228

6. Acronyms and Other Abbreviations

code look a little strange but you also need to adjust the space factor, which is usually done by

inserting \@ before the full stop.

The next example shows one way of achieving this.

glossaries-extra

The glossaries-extra package provides a much simpler way of doing this, which you may
prefer to use. See sample-initialisms.shtmlaGallery: Initialisms.

adickimaw-books.com/gallery

Example 31: Abbreviations with Full Stops (Periods)

The post-link hook (\glspostlinkhook) is called at the very end of the \gls-like
and \glstext-like commands. This can be redefined to check if the following character is a
full stop. The amsgen package (which is automatically loaded by glossaries) provides an internal

command called \new@ifnextchar that can be used to determine if the given character

appears next. (For more information see the amsgen documentation. Alternatively, LATEX3 may

provide a better way of doing this.)

It’s possible that I may also want acronyms or contractions (without full stops) in my document,

so I need some way to differentiate between them. Here I’m going to use the same method as in

Example 14 on page 149 where a new field is defined to indicate the type of abbreviation:

�

\glsaddstoragekey{abbrtype}{word}{\abbrtype}

\newcommand*{\newabbr}[1][]{\newacronym
[abbrtype=initials,#1]}

Now I just use \newacronym for the acronyms, for example,

�

\newacronym{laser}{laser}
{light amplification by stimulated
emission of radiation}

and my new command \newabbr for initials, for example,

�

\newabbr{eg}{e.g.}{exempli gratia}
\newabbr{ie}{i.e.}{id est}
\newabbr{bsc}{B.Sc.}{Bachelor of Science}
\newabbr{ba}{B.A.}{Bachelor of Arts}
\newabbr{agm}{A.G.M.}{annual general meeting}

229

https://www.dickimaw-books.com/gallery
https://www.dickimaw-books.com/gallery

6. Acronyms and Other Abbreviations

Within \glspostlinkhook the entry’s label can be accessed using \glslabel and

\ifglsfieldeq can be used to determine if the current entry has the new abbrtype
field set to “initials”. If it doesn’t, then nothing needs to happen, but if it does, a check is per-

formed to see if the next character is a full stop. If it is, this signals the end of a sentence otherwise

it’s mid-sentence.

Remember that internal commands within the document file (rather than in a class or package)

need to be placed between \makeatletter and \makeatother:

�

\makeatletter
\renewcommand{\glspostlinkhook}{%
\ifglsfieldeq{\glslabel}{abbrtype}{initials}%
{\new@ifnextchar.\doendsentence\doendword}
{}%
}
\makeatother

In the event that a full stop is found then \doendsentence is performed, but it will be

followed by the full stop, which needs to be discarded. Otherwise \doendword will be done,

but it won’t be followed by a full stop so there’s nothing to discard. The definitions for these

commands are:

�

\newcommand{\doendsentence}[1]{\spacefactor=10000 }
\newcommand{\doendword}{\spacefactor=1000 }

Now, I can just do \gls{bsc}mid-sentence and \gls{phd}. at the end of the sentence.

The terminating full stop will be discarded in the latter case, but it won’t be discarded in, say,

\gls{laser}. as that doesn’t have the abbrtype field set to “initials”.

This also works on first use when the style is set to one of the 〈long〉 (〈short〉) styles but it
will fail with the 〈short〉 (〈long〉) styles as in this case the terminating full stop shouldn’t be

discarded. Since \glspostlinkhook is used after the first use flag has been unset for the

entry, this can’t be fixed by simply checking with \ifglsused. One possible solution to this
is to redefine \glslinkpostsetkeys to check for the first use flag and define a macro

that can then be used in \glspostlinkhook.
The other thing to consider is what to do with plurals. One possibility is to check for plural

use within \doendsentence (using \glsifplural) and put the full stop back if the
plural has been used.

The complete document is contained in the sample file sample-dot-abbr.tex.

230

6. Acronyms and Other Abbreviations

6.3. Displaying the List of Acronyms

The list of acronyms is just like any other type of glossary and can be displayed on its own using

the appropriate \print〈…〉glossary command, according to the indexing method.

For example, Option 1:

�

\printnoidxglossary[type=\acronymtype]

Options 2 or 3:

�

\printglossary[type=\acronymtype]

Or if you have used the acronym or acronyms package option:

�

\printacronyms

See §2.7.)

Alternatively, the list of acronyms can be displayedwith all the other glossaries using\print-
noidxglossaries (Option 1) or \printglossaries (Options 2 or 3).

The remaining indexing methods require glossaries-extra, which has its own abbreviation

commands that are incompatible with the base acronym commands.

�

Care must be taken to choose a glossary style that’s appropriate to your acronym style.

Alternatively, you can define your own custom style (see §13.2 for further details).

6.4. Upgrading From the glossary Package

�

The old glossary package was made obsolete in 2007, when the first version of glossaries

was released, so this section is largely redundant but is retained in the event that someone

may happen to have an old document that needs to be converted to work with a modern

TEX distribution. See also the accompanying document “Upgrading from the glossary

package to the glossaries package” (glossary2glossaries.pdf).

Users of the obsolete glossary package may recall that the syntax used to define new acronyms

has changed with the replacement glossaries package. In addition, the old glossary package

created the command \〈acr-name〉 when defining the acronym 〈acr-name〉.

231

6. Acronyms and Other Abbreviations

In order to facilitate migrating from the old glossary package to the new one, the glossaries

package provides the command:

�

\oldacronym[〈label〉]{〈short〉}{〈long〉}{〈key=value list〉}

This uses the same syntax as the glossary package’s method of defining acronyms. It is equivalent

to:

\newacronym[〈key=value list〉]{〈label〉}{〈short〉}{〈long〉}

In addition, \oldacronym also defines the commands \〈label〉, which is equivalent to

\gls{〈label〉}, and \〈label〉*, which is equivalent to the sentence case \Gls{〈label〉}. If
〈label〉 is omitted, 〈short〉 is used. Since commands names must consist only of alphabetical

characters, 〈label〉 must also only consist of alphabetical characters. Note that \〈label〉 doesn’t
allow you to use the first optional argument of \gls or \Gls—you will need to explicitly use

\gls or \Gls to change the settings.

�

Recall that, in general, LATEX ignores spaces following command names consisting of al-

phabetical characters. This is also true for\〈label〉 unless you additionally load the xspace
package, but be aware that there are some issues with using xspace. (See David Carlisle’s

explanation in Drawbacks of xspace.)

The glossaries package doesn’t load the xspace package since there are both advantages and

disadvantages to using \xspace in \〈label〉. If you don’t use the xspace package, then you

need to explicitly force a space using\␣ (backslash space). On the other hand, you can follow the

\〈label〉 command with the optional 〈insert〉 text in square brackets (the final optional argument
to \gls). If you use the xspace package you don’t need to escape the spaces but you can’t use
the optional argument to insert text (you will have to explicitly use \gls to achieve that).

To illustrate this, suppose I define the acronym “abc” as follows:

�

\oldacronym{abc}{example acronym}{}

This will create the command \abc and its starred version \abc*. Table 6.2 on the next

page illustrates the effect of \abc (on subsequent use) according to whether or not the xspace

package has been loaded. As can be seen from the final row in the table, the xspace package

prevents the optional argument from being recognised.

232

http://tex.stackexchange.com/questions/86565/drawbacks-of-xspace

6. Acronyms and Other Abbreviations

Table 6.2.: The effect of using xspace with \oldacronym

Code With xspace Without xspace

\abc. abc. abc.

\abc xyz abc xyz abcxyz

\abc\xyz abc xyz abc xyz

\abc* xyz Abc xyz Abc xyz

\abc['s] xyz abc [’s] xyz abc’s xyz

233

7. Unsetting and Resetting Entry Flags

When using the \gls-like commands it is possible that you may want to use the value given

by the first key, even though you have already used the glossary entry. Conversely, you may

want to use the value given by the text key, even though you haven’t used the glossary entry.

The former can be achieved by one of the following commands:

�

\glsreset{〈entry-label〉}

which globally resets the first use flag and

�

\glslocalreset{〈entry-label〉}

which locally resets the first use flag.

The latter can be achieved by one of the following commands:

�

\glsunset{〈entry-label〉}

which globally unsets the first use flag and

�

\glslocalunset{〈entry-label〉}

which locally unsets the first use flag.

The above commands are for the specific entry identified by the argument 〈entry-label〉. You
can also reset or unset all entries for a given glossary or multiple glossaries using:

�

\glsresetall[〈glossary labels list〉]

which globally resets the first use flags and

�

\glslocalresetall[〈glossary labels list〉]

which locally resets the first use flags or

�

\glsunsetall[〈glossary labels list〉]

234

7. Unsetting and Resetting Entry Flags

which globally unsets the first use flags and

�

\glslocalunsetall[〈glossary labels list〉]

which locally unsets the first use flags.

The optional argument 〈glossary labels list〉 should be a comma-separated list of glossary la-
bels. If omitted, the list of all non-ignored glossaries is assumed.

For example, to reset all entries in the main glossary and the acronym list:

�

\glsresetall[main,acronym]

glossaries-extra

The glossaries-extra package additional provides the options preunset and pre-
reset for the \gls-like commands, that will unset or reset the first use flag before

the link text, which will make the \gls-like command behave as though it was the

subsequent use or first use, irrespective of whether or not the entry has actually been used.

You can determinewhether an entry’s first use flag is set with\ifglsused. Withbib2gls,
you may need to use \GlsXtrIfUnusedOrUndefined instead.

�

Be careful when using \gls-like commands within an environment or command argu-
ment that gets processed multiple times as it can cause unwanted side-effects when the

first use displayed text is different from subsequent use.

For example, the frame environment in beamer processes its argument for each overlay. This

means that the first use flag will be unset on the first overlay and subsequent overlays will use the

subsequent use form.

Consider the following example:

�

\documentclass{beamer}

\usepackage{glossaries}

\newacronym{svm}{SVM}{support vector machine}

\begin{document}

\begin{frame}

235

7. Unsetting and Resetting Entry Flags

\frametitle{Frame 1}

\begin{itemize}
\item<+-> \gls{svm}
\item<+-> Stuff.

\end{itemize}
\end{frame}

\end{document}

On the first overlay,\gls{svm} produces “support vectormachine (SVM)” and then unsets

the first use flag. When the second overlay is processed, \gls{svm} now produces “SVM”,

which is unlikely to be the desired effect. I don’t know anyway around this and I can only offer

the following suggestions.

1. Unset all acronyms at the start of the document and explicitly use \acrfull when you

want the full version to be displayed:

�

\documentclass{beamer}

\usepackage{glossaries}

\newacronym{svm}{SVM}{support vector machine}

\glsunsetall

\begin{document}

\begin{frame}
\frametitle{Frame 1}

\begin{itemize}
\item<+-> \acrfull{svm}
\item<+-> Stuff.

\end{itemize}
\end{frame}

\end{document}

2. Explicitly reset each acronym on first use:

236

7. Unsetting and Resetting Entry Flags

�

\begin{frame}
\frametitle{Frame 1}

\begin{itemize}
\item<+-> \glsreset{svm}\gls{svm}
\item<+-> Stuff.

\end{itemize}
\end{frame}

Alternatively, with glossaries-extra:

�

\documentclass{beamer}

\usepackage{glossaries-extra}

\newabbreviation{svm}{SVM}
{support vector machine}

\begin{document}

\begin{frame}
\frametitle{Frame 1}

\begin{itemize}
\item<+-> \gls[prereset]{svm}
\item<+-> Stuff.

\end{itemize}
\end{frame}

\end{document}

3. Use the glossaries-extra package’s unset buffering mechanism:

�

\documentclass{beamer}

\usepackage{glossaries-extra}

\newabbreviation{svm}{SVM}

237

7. Unsetting and Resetting Entry Flags

{support vector machine}

\begin{document}

\GlsXtrStartUnsetBuffering
\GlsXtrUnsetBufferEnableRepeatLocal
\begin{frame}
\GlsXtrResetLocalBuffer
\frametitle{Frame 1}

\begin{itemize}
\item<+-> \gls{svm}
\item<+-> Stuff.

\end{itemize}
\end{frame}
\GlsXtrStopUnsetBuffering

\end{document}

See the glossaries-extra manual for further details.

These are non-optimal, but the beamer class is too complex for me to provide a programmatic

solution. Other potentially problematic environments are some tabular-like environments (but

not tabular itself) that process the contents in order to work out the column widths and then

reprocess the contents to do the actual typesetting.

The amsmath environments, such as align, also process their contents multiple times, but the

glossaries package now checks for this. For tabularx, you need to explicitly patch it by placing

\glspatchtabularx in the preamble (or anywhere before the problematic use of tabu-

larx).

7.1. Counting the Number of Times an Entry has been Used

(First Use Flag Unset)

It’s possible to keep track of how many times an entry is used. That is, how many times the first

use flag is unset. Note that the supplemental glossaries-extra package improves this function

and also provides per-unit counting, which isn’t available with the glossaries package.

�

This function is disabled by default as it adds extra overhead to the document build time

and also switches \newglossaryentry (and therefore \newacronym) into
a preamble-only command.

238

7. Unsetting and Resetting Entry Flags

To enable this function, use:

�

\glsenableentrycount

before defining your entries. This adds two extra (internal) fields to entries: currcount and

prevcount.
The currcount field keeps track of how many times \glsunset is used within the

document. A local unset (using \glslocalunset) performs a local rather than global

increment to currcount. Remember that not all commands use \glsunset. Only the
\gls-like commands do this.
The behaviour of the reset commands depend on the conditional:

�

\ifglsresetcurrcount 〈true〉\else 〈false〉\fi initial: \iffalse

If true, the reset commands \glsreset and \glslocalreset will reset the value of

the currcount field back to 0. This conditional can be set to true with:

�

\glsresetcurrcounttrue

and to false with:

�

\glsresetcurrcountfalse

The default is false, as from version 4.50.

The prevcount field stores the final value of the currcount field from the previous

run. This value is read from the aux file at the beginning of the document environment.

You can access these fields using

�

\glsentrycurrcount{〈entry-label〉}

for the currcount field, and

�

\glsentryprevcount{〈entry-label〉}

for the prevcount field.

�

These commands are only defined if you have used \glsenableentrycount.

For example:

239

7. Unsetting and Resetting Entry Flags

�

\documentclass{article}
\usepackage{glossaries}
\makeglossaries

\glsenableentrycount

\newglossaryentry{apple}{name={apple},description=
{a fruit}}

\begin{document}
Total usage on previous run: \glsentryprevcount
{apple}.

\gls{apple}. \gls{apple}. \glsadd{apple}\glsentry-
text{apple}.
\glslink{apple}{apple}. \glsdisp{apple}{apple}
. \Gls{apple}.

Number of times apple has been used: \glsentrycurr-
count{apple}.
\end{document}

On the first LATEX run, \glsentryprevcount{apple} produces 0. At the end of

the document, \glsentryprevcount{apple} produces 4. This is because the only

commands that have incremented the entry count are those that use \glsunset. That is:

\gls, \glsdisp and \Gls. The other commands used in the above example, \glsadd,
\glsentrytext and \glslink, don’t use \glsunset so they don’t increment the

entry count. On the next LATEX run, \glsentryprevcount{apple} now produces 4

as that was the value of the currcount field for the “apple” entry at the end of the document

on the previous run.

When you enable the entry count using \glsenableentrycount, you also enable the
following commands:

�

\cgls[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(no case-change, singular, analogous to \gls)

�

\cglspl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(no case-change, plural, analogous to \glspl)

240

7. Unsetting and Resetting Entry Flags

�

\cGls[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(first letter uppercase, singular, analogous to \Gls), and

�

\cGlspl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

(first letter uppercase, plural, analogous to \Glspl).

glossaries-extra

All caps versions are only available with glossaries-extra.

If you don’t use \glsenableentrycount, these commands behave like their coun-
terparts \gls, \glspl, \Gls and \Glspl, respectively, but there will be a warning that
you haven’t enabled entry counting.

If you have enabled entry counting with \glsenableentrycount then these com-

mands test if \glsentryprevcount{〈entry-label〉} equals 1. If it doesn’t then the anal-

ogous \gls etc will be used. If it is 1, then the first optional argument will be ignored and

〈cs format〉{〈entry-label〉}{〈insert〉}\glsunset{〈entry-label〉}

will be performed, where 〈cs format〉 is a command that takes two arguments. The command
used depends whether you have used \cgls, \cglspl, \cGls or \cGlspl.
The formatting command 〈cs format〉 will be one of the following:

�

\cglsformat{〈entry-label〉}{〈insert〉}

This command is used by \cgls and defaults to

\glsentrylong{〈entry-label〉}〈insert〉

if the entry given by 〈entry-label〉 has a long form or

\glsentryfirst{〈entry-label〉}〈insert〉

otherwise.

�

\cglsplformat{〈entry-label〉}{〈insert〉}

241

7. Unsetting and Resetting Entry Flags

This command is used by \cglspl and defaults to

\glsentrylongpl{〈entry-label〉}〈insert〉

if the entry given by 〈entry-label〉 has a long form or

\glsentryfirstplural{〈label〉}〈insert〉

otherwise.

�

\cGlsformat{〈entry-label〉}{〈insert〉}

This command is used by \cGls and defaults to

\Glsentrylong{〈entry-label〉}〈insert〉

if the entry given by 〈entry-label〉 has a long form or

\Glsentryfirst{〈entry-label〉}〈insert〉

otherwise.

�

\cGlsplformat{〈entry-label〉}{〈insert〉}

This command is used by \cGlspl and defaults to

\Glsentrylongpl{〈entry-label〉}〈insert〉

if the entry given by 〈entry-label〉 has a long form or

\Glsentryfirstplural{〈entry-label〉}〈insert〉

otherwise.

This means that if the previous count for the given entry was 1, the entry won’t be hyperlinked

with the \cgls-like commands and those commands won’t index (that is, they won’t add a line
to the external glossary file). If you haven’t used any of the other commands that index (such as

\glsadd or the \glstext-like commands) then the entry won’t appear in the glossary.
Remember that since these commands use \glsentryprevcount you need to run

LATEX twice to ensure they work correctly. The document build requires a second LATEX call be-

fore running the indexing application. For example, if the document is in a file calledmyDoc.tex,
then the document build needs to be:

242

7. Unsetting and Resetting Entry Flags

�

pdflatex myDoc
pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc

In Example 32 on the following page, the acronyms that have only been used once (on the
�32

previous run) only have their long form shown with \cgls:

�

\documentclass{article}

\usepackage[colorlinks]{hyperref}
\usepackage[acronym]{glossaries}
\makeglossaries

\glsenableentrycount

\setacronymstyle{long-short}

\newacronym{html}{HTML}{hypertext markup language}
\newacronym{css}{CSS}{cascading style sheets}
\newacronym{xml}{XML}{extensible markup language}
\newacronym{sql}{SQL}{structured query language}
\newacronym{rdbms}{RDBMS}
{relational database management system}
\newacronym{rdsms}{RDSMS}
{relational data stream management system}

\begin{document}
These entries are only used once: \cgls{sql}, \cgls
{rdbms},
\cgls{xml}. These entries are used multiple times:
\cgls{html}, \cgls{html}, \cgls{css}, \cgls{css}
, \cgls{css},
\cgls{rdsms}, \cgls{rdsms}.

\printglossaries
\end{document}

After a complete document build the list of acronyms only includes the entries HTML, CSS and

RDSMS. The entries SQL, RDBMS and XML only have their long forms displayed and don’t

have a hyperlink.

243

7. Unsetting and Resetting Entry Flags

�

Example 32: Don’t index entries that are only used once �� ��

These entries are only used once: structured query language, relational
database management system, extensible markup language. These entries are
used multiple times: hypertext markup language (HTML), HTML, cascading
style sheets (CSS), CSS, CSS, relational data stream management system
(RDSMS), RDSMS.

Acronyms

CSS cascading style sheets. 1

HTML hypertext markup language. 1

RDSMS relational data stream management system. 1

bib2gls

With bib2gls there’s an analogous record counting set of commands. See glossaries

-extra and bib2gls manuals for further details.

244

% This file is embedded in glossaries-user.pdf
% Example 32 Don't index entries that are only used once
% Label: "sec:entrycount"
% arara: pdflatex
% arara: pdflatex
% arara: makeglossaries
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[colorlinks]{hyperref}
\usepackage[acronym]{glossaries}
\makeglossaries

\glsenableentrycount

\setacronymstyle{long-short}

\newacronym{html}{HTML}{hypertext markup language}
\newacronym{css}{CSS}{cascading style sheets}
\newacronym{xml}{XML}{extensible markup language}
\newacronym{sql}{SQL}{structured query language}
\newacronym{rdbms}{RDBMS}{relational database management system}
\newacronym{rdsms}{RDSMS}{relational data stream management system}
\begin{document}
These entries are only used once: \cgls{sql}, \cgls{rdbms},
\cgls{xml}. These entries are used multiple times:
\cgls{html}, \cgls{html}, \cgls{css}, \cgls{css}, \cgls{css},
\cgls{rdsms}, \cgls{rdsms}.

\printglossaries
\end{document}

Nicola Talbot
Don't index entries that are only used once (source code)
Example document that only includes the entries that have been used more than once in the document (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example032.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example032.pdf

8. Displaying a Glossary

All defined glossaries may be displayed using the appropriate command, such as \print-
glossary, that matches the indexing method. These commands are collectively referred to
as the \print〈…〉glossary set of commands.

�

With Options 2, 3 or 4, if the glossary does not appear after you re-LATEX your document,

check themakeindex,xindy orbib2gls log files (glg or the 〈log-ext〉 argument
of \newglossary), as applicable, to see if there is a problem. With Option 1, you

just need two LATEX runs to make the glossaries appear, but you may need further runs to

make the number lists up-to-date. If you have used the automake option, check the

log file for “runsystem” lines (see the information about the automake option in §2.5

for further details).

Option 1 (must be used with \makenoidxglossaries in the document preamble):

�

\printnoidxglossary[〈options〉]

This displays the glossary identified by the type option in 〈options〉 or, if omitted, the glossary
identified by \glsdefaulttype. This command iterates over a list of entry labels, which
it will have to first sort with sort=standard. The list will only include those entries that
have been indexed and the appropriate glossary markup is added within the loop.

�

Ensure you have at least v3.0 of datatool and application localisation support, if available

(for example, datatool-english).

Version 4.57 has change the way \printnoidxglossary to allow it to work with the

tabular-like glossary styles, such as long and super.

The following is an iterative command:

�

\printnoidxglossaries

which internally uses \printnoidxglossary for each non-ignored glossary.

Options 2 and 3 (must be used with \makeglossaries in the document preamble):

245

8. Displaying a Glossary

�

\printglossary[〈options〉]

This displays the glossary identified by the type option in 〈options〉 or, if omitted, the glossary
identified by \glsdefaulttype. This command internally inputs the associated glossary
file (created by the relevant indexing application) if it exists. The glossary file contains themarkup

to typeset the glossary. See §1.6 for information on how to create the glossary file.

The following is an iterative command:

�

\printglossaries

which internally uses \printglossary for each non-ignored glossary.

�

While the external glossary files are missing, \printglossary will just do \null
for each missing glossary to assist dictionary style documents that just use \glsadd-
all without inserting any text. This use of \null ensures that all indexing information

is written before the final page is shipped out. Once the external glossary files are present

\null will no longer be used. This can cause a spurious blank page on the first LATEX

run before the glossary files have been created. Once these files are present, \null
will no longer be used and so shouldn’t cause interference for the final document. With

glossaries-extra, placeholder text is used instead.

Options 4 and 5 (glossaries-extra only):

�

\printunsrtglossary[〈options〉]

This displays the glossary identified by the type option in 〈options〉 or, if omitted, the glossary
identified by\glsdefaulttype. This command is similar to\printnoidxglossary,
in that it iterates over a list of entry labels, but in this case all defined entries within the given

glossary are included and the list is in the order in which they were defined (that is, the order in

which they were added to the glossary’s internal label list).

The reason this command works withbib2gls is becausebib2glswrites the entry defi-

nitions in the glstex file in the order obtained by the sort resource option, and bib2gls
will only include the entries that match the required selection criteria.

With Option 5 (that is, without bib2gls) the result will be in the order the entries were

defined in the tex file. There’s no attempt to gather child entries (see §4.5). This means that

if you don’t define child entries immediately after their parent, you will have a strange result

(depending on the glossary style).

As with \printnoidxglossary, the glossary markup is inserted during the loop. See
the glossaries-extra manual for further details.
The following is an iterative command:

246

8. Displaying a Glossary

�

\printunsrtglossaries

which internally uses \printunsrtglossary for each non-ignored glossary.

The glossaries-extra package also provides

�

\printunsrtinnerglossary[〈options〉]{〈pre-code〉}{〈post-code〉}

which is designed for inner or nested glossaries. It allows many, but not all, of the options

listed below. There’s an example available in the gallery: Inner or Nested Glossaries.1 See the

glossaries-extra package for further details.
All the individual glossary commands \print〈…〉glossary have an optional argument.

Available options are listed in §8.1.

After the options have been set, the following command will be defined:

�

\currentglossary

This expands to the label of the current glossary (identified by the type option). It may be used

within glossary style hooks, if required.

8.1. \print〈…〉glossary Options

These options may be used in the optional argument of the \print〈…〉glossary set of

commands. Some options are available for all those commands, but those that aren’t are noted.

Before the options are set, the following commands are defined to their defaults for the given

glossary. They may then be redefined by applicable options.

�

type=〈glossary-label〉 default: \glsdefaulttype

Identifies the glossary to display. The value should be the glossary label. Note that you can only

display an ignored glossary with \printunsrtglossary or \printunsrtinner-
glossary, otherwise 〈glossary-label〉 should correspond to a glossary that was defined with
\newglossary or \altnewglossary.

�

title=〈text〉

Sets the glossary’s title (\glossarytitle). This option isn’t available with \print-
unsrtinnerglossary.

1dickimaw-books.com/gallery/index.php?label=bib2gls-inner

247

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-inner
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-inner

8. Displaying a Glossary

�

toctitle=〈text〉

Sets the glossary’s table of contents title (\glossarytoctitle). This option isn’t avail-
able with \printunsrtinnerglossary.

�

style=〈style-name〉

The glossary style to use with this glossary (overriding the current style that was either set with

the style package option or with \setglossarystyle). This option isn’t available

with \printunsrtinnerglossary.

�

numberedsection=〈value〉 default: nolabel; initial: false

This may be used to override the numberedsection package option, and has the same

syntax as that option (see §2.2). This option isn’t available with \printunsrtinner-
glossary.

�

nonumberlist=〈boolean〉 default: true; initial: false

This may be used to override the nonumberlist package option. Note that, unlike the

valueless package option, this option is boolean.

�

nogroupskip=〈boolean〉 default: true; initial: false

This may be used to override thenogroupskip package option. Only relevant if the glossary

style uses the conditional \ifglsnogroupskip to test for this option.

�

nopostdot=〈boolean〉 default: true; initial: false

This may be used to override the nopostdot package option. This option is only applicable

if the glossary style uses \glspostdescription.

�

entrycounter=〈boolean〉 default: true; initial: false

This may be used to override the entrycounter package option. Note that one of the

package options entrycounter=true or subentrycounter=truemust be used

tomake\glsrefentrywork correctly. The setting can then be switched offwith this option

for individual glossaries where the setting shouldn’t apply.

248

8. Displaying a Glossary

�

subentrycounter=〈boolean〉 default: true; initial: false

This may be used to override the subentrycounter package option. Note that one of

the package options entrycounter=true or subentrycounter=true must be

used to make \glsrefentry work correctly. The setting can then be switched off with this

option for individual glossaries where the setting shouldn’t apply.

�

If you want to set both the entrycounter and subentrycounter settings,

and you haven’t already enabled them with the entrycounter and subentry-
counter package options, make sure you specify entrycounter first (but bear in

mind \glsrefentry won’t work). In general, it’s best to enable these settings via the

package options and switch them off for the glossaries where they don’t apply.

�

sort=〈method〉

This key is only available with \printnoidxglossary.

�

If you use the sort=use or sort=def values make sure that you select a glossary

style that doesn’t have a visual indicator between groups, as the grouping no longer makes

sense. Consider using the nogroupskip option.

If you don’t get an error with sort=use and sort=def but you do get an error with one

of the other sort options, then you probably need to use thesanitizesort=true package

option or make sure none of the entries have fragile commands in their sort field.

�

sort=use

Order of use. There’s no actual sorting in this case. The order is obtained from the indexing

information in the aux file.

�

sort=def

Order of definition. There’s no actual sorting in this case. The order is obtained from the

glossary’s internal list of labels.

�

The above two settings don’t perform any actual sorting. The following settings work best

with datatool v3.0+ and, if available, the applicable language support, such as datatool

249

8. Displaying a Glossary

-english.
For a locale-sensitive sort, it’s best to use either xindy (Option 3) or bib2gls

(Option 4). (Note that bib2gls provides many other sort options.)

�

sort=nocase

Case-insensitive order.

�

sort=case

Case-sensitive order.

�

sort=word

Word order.

�

sort=letter

Letter order.

�

sort=standard

Word or letter order according to the order package option.

If datatool v3.0+ is detected, these sortmethodswill use\datatool_sortwordseq:NN
function with an appropriate handler. See the datatool documentation for further details. If an

older version of datatool is present, an older, slower method will be used. The letter group in-

formation obtained from the datatool sorting function is saved in the special internal field dtl-
sortgroup.

�

label=〈label〉

This key is only available with glossaries-extra and labels the glossary with \label{〈label〉}
. This is an alternative to the package option numberedsection=autolabel. This
option isn’t available with \printunsrtinnerglossary.

�

target=〈boolean〉 default: true; initial: true

This key is only available with glossaries-extra and can be used to switch off the automatic

hypertarget for each entry. (This refers to the target used by commands like \gls and \gls-
link.)
This option is useful with\printunsrtglossary as it allows the same list (or sub-list)

of entries to be displayed multiple times without causing duplicate hypertarget names.

250

8. Displaying a Glossary

�

prefix=〈prefix〉

This key is only available with glossaries-extra and provides another way of avoiding duplicate
hypertarget names. In this case it uses a different prefix for those names. This locally redefines

\glolinkprefix but note this will also affect the target for any entry referenced within

the glossary with commands like \gls, \glslink or \glshyperlink.

�

targetnameprefix=〈prefix〉

This key is only available with glossaries-extra. This is similar to the prefix option, but it

alters the prefix of the hypertarget anchors without changing \glolinkprefix (so it won’t

change the hyperlinks for any entries referenced in the glossary).

�

groups=〈boolean〉 default: true; initial: true

This key is only available with \printunsrtglossary and \printunsrtinner-
glossary. If true, the “unsrt” function that creates the code for typesetting the glossary will
insert letter group headers whenever a change is detected in the letter group label between entries

of the same hierarchical level. See the glossaries-extra manual for further details.

�

leveloffset=〈offset〉 initial: 0

This key is only available with \printunsrtglossary and \printunsrtinner-
glossary. It can be used to locally adjust the hierarchical level used by the glossary style. See
the glossaries-extra manual for further details and also Gallery: Inner or Nested Glossaries.2

�

flatten=〈boolean〉 default: true; initial: false

This key is only available with \printunsrtglossary and \printunsrtinner-
glossary. It can be used to locally remove the hierarchical level used by the glossary style.
See the glossaries-extra manual for further details.

8.2. Glossary Markup

This section describes the commands that are used to display the glossary. If you want to suppress

the number lists you can use the nonumberlist option. If you want to save the number lists

for some other purpose outside of the glossary, you can use the savenumberlist option.

If you want information about an entry’s parent then you can use \ifglshasparent (to

determine if the entry has a parent) or \glsentryparent (to expand to the parent’s label).

2dickimaw-books.com/gallery/index.php?label=bib2gls-inner

251

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-inner
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-inner

8. Displaying a Glossary

The hierarchical level is provided in \subglossentry (and is 0 with \glossentry)
but it’s also stored in the level internal field.

If you’re trying to work out how to parse the glossary in order to gather indexing information,

consider using bib2gls instead, which stores all the indexing information, such as location

lists and letter group labels, in internal fields. It can also store lists of sibling entries or child

entries. If you really want to input the glossary file in order to gather information obtained

by makeindex or xindy without actually displaying anything (by redefining the markup

commands to not produce any text), use \input rather than \printglossary.
The glossary is always started with:

\glossarysection[\glossarytoctitle]{\glossarytitle}

This creates the heading. This command sets the page header with:

\glsglossarymark{\glossarytoctitle}

If this is unsuitable for your chosen class file or page style package, you will need to redefine

\glsglossarymark. If\phantomsection is defined (hyperref) then\glossary-
section will start with:

\glsclearpage
\phantomsection

�

\glossarysection[〈toc title〉]{〈title〉}

By default, this command uses either \chapter* or \section*, depending on whether
or not \chapter is defined. This can be overridden by the section package option or the

\setglossarysection command. Numbered sectional units can be obtained using the

numberedsection package option. If the default unnumbered section setting is on, then

the 〈toc-title〉will only be added to the table of contents if thetoc option is set. Ifnumbered-
section is on, the addition to the table of contents is left to the sectional command.

�

Further information about these options and commands is given in §2.2.

�

\glsglossarymark〈glossary title〉

This sets the page header, if supported by the current page style. Originally the command

\glossarymark was provided for this purpose, but this command is also provided by other

packages and classes, notably memoir which has a different syntax. Therefore the command

252

8. Displaying a Glossary

\glossarymark will only be defined if it doesn’t already exist. In which case, \gls-
glossarymark will simply use \glossarymark.
If memoir has been loaded, \glsglossarymark will be defined to use \markboth

otherwise, if some other class or package has defined\glossarymark,\glsglossary-
mark will be defined to use \@mkboth (using the same definition as the glossaries package’s

version of \glossarymark).
If ucmark=true, the case change will be applied using \memUChead if memoir has

been loaded, otherwise it will use \glsuppercase.
So if you want to redefine the way the header mark is set for the glossaries, you need to

redefine \glsglossarymark not \glossarymark. For example, to only change the
right header:

�

\renewcommand{\glsglossarymark}[1]{\markright{#1}}

or to prevent it from changing the headers:

�

\renewcommand{\glsglossarymark}[1]{}

If you want \glsglossarymark to use all caps in the header, use the ucmark option

described below.

With hyperref and unnumbered section headings,\phantomsection is need to create an

appropriate anchor (see the hyperrefmanual). This will need the page cleared for\chapter*,
which is done with:

�

\glsclearpage

If the section=chapter setting is on then \glsclearpage will use \clear-
doublepage, if it’s defined and if the \if@openright conditional (provided by classes

with an openright option such as book and report) isn’t defined or is defined and is true,

otherwise \clearpage is used.

Occasionally you may find that another package defines \cleardoublepage when it is

not required. This may cause an unwanted blank page to appear before each glossary If you only

want a single page cleared, you can redefine \glsclearpage. For example:

�

\renewcommand*{\glsclearpage}{\clearpage}

Note that this will no longer take the section package option into account.

�

\glossarytitle

253

8. Displaying a Glossary

This expands to the title that should be used by the glossary section header. It’s initialised to the

title provided in \newglossary when the glossary was defined. The title option will

redefined this command.

�

\glossarytoctitle

This expands to the table of contents title that’s supplied in the optional argument of the glossary

section command. It will only be added to the table of contents is the toc package option is on,

but it may also be used in the page header (depending on the definition of \glsglossary-
mark and the current page style).

The\glossarytoctitle command is initialised to\glossarytitle. Thetoc-
title option will redefine this command. If neither the title nor toctitle are used,

\glossarytoctitle will be defined via:

�

\glssettoctitle{〈glossary-type〉}

By default, this will redefine \glossarytoctitle to the title provided in \newglos-
sary when the glossary was defined.

This means that if neither title nor toctitle are set, the glossary’s associated title will

be used for both. If only title is used, then it will also apply to the table of contents title, and

if only toctitle is used, then \glossarytoctitle will be defined to that value but

\glossarytitle will be the glossary’s associated title.

After the heading, but before the main body of the glossary, is the glossary preamble which is

given by:

�

\glossarypreamble

You can redefine this before the glossary is shown. For example:

�

\renewcommand{\glossarypreamble}{Numbers in italic
indicate primary definitions.}

A glossary may have its own specific preamble. If it has one defined, then the \print-
〈…〉glossary set of commands will locally redefine \glossarypreamble to that

preamble instead. Since this change is scoped, the previous definition will be restored after

the \print〈…〉glossary command.

You can globally assign a preamble to a specific glossary with:

�

\setglossarypreamble[〈type〉]{〈text〉}

If 〈type〉 is omitted, \glsdefaulttype is used. For example:

254

8. Displaying a Glossary

�

\setglossarypreamble{Numbers in italic
indicate primary definitions.}

This will set the given preamble text for just the main glossary, not for any other glossary. The

glossaries-extra package additionally provides:

�

\apptoglossarypreamble[〈type〉]{〈text〉}

which locally appends 〈text〉 to the preamble for the specific glossary and
�

\pretoglossarypreamble[〈type〉]{〈text〉}

which locally prepends 〈text〉 to the preamble for the specific glossary.
There is also a postamble at the end of each glossary which is given by:

�

\glossarypostamble

This is less useful than a preamble and so there’s no analogous command to \setglossary-
preamble.

�

The preamble and postamble occur outside of theglossary and so shouldn’t be influenced

by the glossary style.

Example 33: Switch to Two Column Mode for Glossary

Suppose you are using the superheaderborder style, and you want the glossary to be in two

columns (you can’t use the longheaderborder style for this example as you can’t use the longtable

environment in two column mode), but after the glossary you want to switch back to one column

mode, you could do:

�

\renewcommand*{\glossarysection}[2][]{%
\twocolumn[{\chapter*{#2}}]%
\setlength\glsdescwidth{0.6\linewidth}%
\glsglossarymark{\glossarytoctitle}%

}

\renewcommand*{\glossarypostamble}{\onecolumn}

255

8. Displaying a Glossary

(You may prefer to use the mcolalttree style if you’re not interested in the column headers or

borders.)

The actual glossary content is contained within the theglossary environment, which will typi-

cally be in the form:

\begin{theglossary}\glossaryheader
\glsgroupheading{〈group-label〉}\relax\glsresetentrylist
\glossentry{〈entry-label〉}{〈number-list〉}
\subglossentry{〈level〉}{〈entry-label〉}{〈number-list〉}
% …
\glsgroupskip
\glsgroupheading{〈group-label〉}\relax\glsresetentrylist
\glossentry{〈entry-label〉}{〈number-list〉}
\subglossentry{〈level〉}{〈entry-label〉}{〈number-list〉}
% …
\end{theglossary}

The entire number list for each entry is encapsulated with:

�

\glossaryentrynumbers{〈locations〉}

This command allows \glsnonextpages, \glsnextpages, and the nonumber-
list and savenumberlist options to work. The \glossaryentrynumbers
command is reset by:

�

\glsresetentrylist

With Option 1, this command is preceded by:

�

\glsnoidxprenumberlist{〈entry-label〉}

The default behaviour is to use the value of the prenumberlist internal field. This com-

mand is not used with Options 2 and 3.

If you want to suppress the number list for a particular entry, you can add the following to the

entry’s description:

�

\glsnonextpages

256

8. Displaying a Glossary

Within the glossary, this will redefine \glossaryentrynumbers to ignore its argument

and then reset itself. This means that the next number list will be suppressed. Note that if the

entry doesn’t have a number list (for example, it’s a parent entry that only appears in the glossary

because it has an indexed descendent entry) then the next number list will be for the first child

entry that’s been indexed. This command does nothing outside of the glossary.

Similarly, if you want to override the nonumberlist option to ensure that the next

number list is shown, then use:

�

\glsnextpages

This command does nothing outside of the glossary.

�

The nonumberlist key that may be used when defining an entry, works by automat-

ically adding \glsnonextpages or \glsnextpages to the indexing informa-

tion before \glossentry or \subglossentry with Options 2 and 3. With

Option 1, the relevant command is put in the prenumberlist internal field, but

since\printnoidxglossary only uses\glsnoidxprenumberlist and

\glossaryentrynumbers when the loclist field is set, it won’t affect sub-

entries.

The theglossary environment, and the other commands (\glossaryheader, \gls-
groupskip,\glsgroupheading,\glossentry and\subglossentry) are
all redefined by glossary styles and are described in §13.2.

257

9. Defining New Glossaries

A new glossary can be defined using:

�

\newglossary[〈log-ext〉]{〈glossary-label〉}{〈in-ext〉}{〈out-ext〉}{〈title〉}
[〈counter〉]

where 〈glossary-label〉 is the label to assign to this glossary. This label is used to reference the
glossary in the value of the type key when defining entries or, the similarly named, type
option in the \print〈…〉glossary commands.

�

As with labels in general, 〈glossary-label〉 must not contain any active characters.

The arguments 〈in-ext〉 and 〈out-ext〉 specify the extensions of the input and output (from

TEX’s point of view) files for that glossary, 〈title〉 is the default title for this new glossary, and

the final optional argument 〈counter〉 specifies which location counter to use for the associated
number lists (see also §12). If not specified, the default location counter will be the one identified

in the counter option, if that option is used, otherwise it will be the page counter.

The first optional argument 〈log-ext〉 specifies the extension for the indexing application’s tran-
script file (this information is used by makeglossaries which picks up the information

from the aux file and also by the automake option). If omitted, glg is used.

The file extensions only apply to Options 2 and 3. For the other options, the indexing infor-

mation is written to the aux file for Options 1 and 4. No input file is required for Option 1 and

Option 4 always has the glstex file extension. Since the file extensions are only relevant for

Options 2 and 3, there is a starred version that omits those arguments:

�

\newglossary*{〈glossary-label〉}{〈title〉}[〈counter〉]

This is equivalent to

\newglossary[〈glossary-label〉-glg]{〈glossary-label〉}{〈glossary-label〉-
gls}{〈glossary-label〉-glo}{〈title〉}[〈counter〉]

or you can use:

258

9. Defining New Glossaries

�

\altnewglossary{〈glossary-label〉}{〈tag〉}{〈title〉}[〈counter〉]

which is equivalent to

\newglossary[〈tag〉-glg]{〈glossary-label〉}{〈tag〉-gls}{〈tag〉-glo}
{〈title〉}[〈counter〉]

Note that in both cases distinct file extensions are defined so these commands are still useful

with Options 2 and 3.

It may be that you have some terms that are so common that they don’t need to be listed.

In this case, you can define a special type of glossary that doesn’t create any associated files.

This is referred to as an “ignored glossary” and it’s ignored by commands that iterate over all

the glossaries, such as \printglossaries. To define an ignored glossary, use \new-
ignoredglossary where 〈glossary-label〉 is the glossary label (as above). This glossary
type will automatically be added to the nohypertypes list, since there are no hypertargets

for the entries in an ignored glossary. (The sample file sample-entryfmt.tex defines

an ignored glossary.)

An ignored glossary can’t be displayed with \printnoidxglossary or \print-
glossary but can be displayed with\printunsrtglossary and\printunsrt-
innerglossary.

glossaries-extra

The glossaries-extra package provides a starred version \newignoredglos-
sary* that doesn’t suppress hyperlinks (since ignored glossaries can be useful with

bib2gls). There is also an analogous \provideignoredglossary com-

mand.

You can test if a glossary is an ignored one using:

�

\ifignoredglossary{〈glossary-label〉}{〈true〉}{〈false〉} modifier: *

This does 〈true〉 if 〈glossary-label〉 was defined as an ignored glossary, otherwise it does 〈false〉.
Note that the main (default) glossary is automatically created as:

\newglossary{main}{gls}{glo}{\glossaryname}

so it can be identified by the label main (unless the nomain package option is used). If the

doc package has been loaded (which uses the gls and glo extensions for the change log) then

the main glossary will instead be defined as:

\newglossary[glg2]{main}{gls2}{glo2}{\glossaryname}

259

9. Defining New Glossaries

If you are using a class or package that similarly requires gls and glo as file extensions, you

will need to use the nomain option and define your own custom glossary, but be aware of other

possible conflicts, such as different definitions of commands and environments like \print-
glossary or theglossary.

The acronym (or acronyms) package option is equivalent to:

\newglossary[alg]{acronym}{acr}{acn}{\acronymname}

so it can be identified by the label acronym. If you are not sure whether the acronym
option has been used, you can identify the list of acronyms by the command:

�

\acronymtype initial: \glsdefaulttype

The default definition is simply \glsdefaulttype. The acronym or acronyms op-

tion will redefine \acronymtype to acronym. If you want additional glossaries for use
with acronyms, remember to declare them with acronymlists.
The symbols package option creates a new glossary with the label symbols using:

\newglossary[slg]{symbols}{sls}{slo}{\glssymbols-
groupname}

The numbers package option creates a new glossary with the label numbers using:

\newglossary[nlg]{numbers}{nls}{nlo}{\glsnumbers-
groupname}

The index package option creates a new glossary with the label index using:

\newglossary[ilg]{index}{ind}{idx}{\indexname}

�

With Options 2 and 3 all glossaries must be defined before \makeglossaries to

ensure that the relevant output files are opened.

See §1.5.1 if you want to redefine \glossaryname, especially if you are us-

ing a language package. (Similarly for \glssymbolsgroupname and \gls-
numbersgroupname.) If you want to redefine \indexname, just follow the

advice in How to change LaTeX’s “fixed names”.

260

https://texfaq.org/FAQ-fixnam

10. Adding an Entry to the Glossary

Without Generating Text

It is possible to \indexindexing an entry without

�

\glsadd[〈options〉]{〈entry-label〉}

This is similar to the \glstext-like commands, only it doesn’t produce any text. Therefore,
there is no hyper key available in 〈options〉 but all the other base options that can be used with
the \glstext-like commands can be passed to \glsadd. The glossaries-extra package
provides addition options, such as textformat, that aren’t applicable when there’s no link
text, so they are also not available. This ensures that the given entry is listed in the glossary and

that the current location is included in the entry’s number list.

This command is particularly useful to create an explicit range that covers an entire section or

block of text that might otherwise end up with a long, ragged number list. For example, suppose

I have defined an entry with the label “set”:

�

\newglossaryentry{set}{name={set},
description={a collection}}

Suppose I have a section about sets spanning from page 3 to page 8 with repeated use of \gls
{set} on pages 3, 5, 7 and 8. This will result in the number list “3, 5, 7, 8” which is a bit

untidy. It would look far more compact, and better emphasize that the section of the document

from page 3 to 8 covers sets, if the number list was simply “3–8”.

This can be done with an explicit range:

�

\glsadd[format=(]{set}
Lots of text about sets spanning page 3 to page 8.
\glsadd[format=)]{set}

See §12.1 for more information about the location encap.

261

10. Adding an Entry to the Glossary Without Generating Text

glossaries-extra

Explicit ranges can also be created using \glsstartrange and \glsendrange
with glossaries-extra. You can also add a subset of entries with \glsaddeach.

To add all entries that have been defined, use:

�

\glsaddall[〈options〉]

The optional argument is the same as for \glsadd, except there is also a key types which

can be used to specify which glossaries to use. This should be a comma-separated list. For

example, if you only want to add all the entries belonging to the list of acronyms (specified

by the glossary type \acronymtype) and a list of notation (specified by the glossary type

notation) then you can do:

�

\glsaddall[types={\acronymtype,notation}]

bib2gls

If you are using bib2gls with glossaries-extra, you can’t use \glsaddall. In-
stead use the selection=all resource option to select all entries in the given bib
files. (You can use \glsaddeach with bib2gls.)

�

Note that \glsadd and \glsaddall add the current location to the number list. In

the case of \glsaddall, all entries in the listed glossaries will have the same location
in the number list (the location at the point in the document where \glsaddall was

used, which will be page 1 if it occurs in the preamble). If you want to use \glsadd-
all, it’s best to suppress the number list with the nonumberlist package option.

(See sections 2.3 and 12.)

If you want to ensure that all entry are added to the glossary, but only want the locations of

entries that have actually been used in the document, then you can use:

�

\glsaddallunused[〈glossary types〉]

Note that in this case, the optional argument is simply a list of glossary labels. The options

available to \glsadd and \glsaddall aren’t available here. If the optional argument is

omitted, the list of all non-ignored glossaries is assumed.

This command implements:

262

10. Adding an Entry to the Glossary Without Generating Text

\glsadd[format=glsignore]{〈entry-label〉}

for each entry in each glossary listed in the optional argument if the entry has been marked as

used. Since \glsignore discards its argument, this effectively creates an invisible location.

This is necessary because makeindex and xindy require an associated location for each

line in the indexing file. (They are indexing applications not glossary applications, so they expect

page numbers.)

This means that\glsaddallunused adds\glsignore{〈location〉} to the number

list of all the unused entries. If any of those number lists have other locations (for example, the

first use flags was reset before \glsaddallunused or only the \glstext-like com-
mands were used or if any indexing occurs after \glsaddallunused) then this will cause
spurious commas or en-dashes in the number list that have been placed before or after the invisible

location.

�

If you want to use \glsaddallunused, it’s best to place the command at the end
of the document to ensure that all the commands you intend to use have already been used

and make sure to use the\gls-like commands and don’t issue any resets (\glsreset
etc).

bib2gls

You can’t use \glsaddallunused with bib2gls. However, since bib2gls
was designed specifically for glossaries-extra, it recognises glsignore as a special

format that indicates the location shouldn’t be added to the location list but the entry should

be selected. So you can index an entry with format=glsignore to ensure that the

entry is selected without adding a location to the number list.

Alternatively, the selection=all resource option can be used, which will ensure

all entries are selected but only those indexed with one or more non-ignored locations will

have a location list.

Base glossaries package only:

�

\documentclass{article}
\usepackage{glossaries}
\makeglossaries
\newglossaryentry{cat}{name={cat},description=
{feline}}
\newglossaryentry{dog}{name={dog},description=
{canine}}
\begin{document}
\gls{cat}.

263

10. Adding an Entry to the Glossary Without Generating Text

\printglossaries
\glsaddallunused % <- make sure dog is also listed
\end{document}

Corresponding glossaries-extra and bib2gls document code:

�

\documentclass{article}
\usepackage[record]{glossaries-extra}
\GlsXtrLoadResources[src=entries,selection=all]
\begin{document}
\gls{cat}.
\printunsrtglossaries
\end{document}

With the file entries.bib:

�

@entry{cat,name={cat},description={feline}}
@entry{dog,name={dog},description={canine}}

Example 34: Dual Entries

The example file sample-dual.texmakes use of \glsadd to allow for an entry that

should appear both in the main glossary and in the list of acronyms. This example sets up the

list of acronyms using the acronym package option:

�

\usepackage[acronym]{glossaries}

A new command (\newdualentry) is then defined to make it easier to define dual entries:

�

\newcommand*{\newdualentry}[5][]{%
\newglossaryentry{main-#2}{name={#4},%
text={#3\glsadd{#2}},%
description={#5},%
#1
}%
\newacronym{#2}{#3\glsadd{main-#2}}{#4}%

}

This has the following syntax:

264

10. Adding an Entry to the Glossary Without Generating Text

\newdualentry[〈options〉]{〈label〉}{〈abbrv〉}{〈long〉}{〈description〉}

You can then define a new dual entry:

�

\newdualentry{svm}% label
{SVM}% abbreviation
{support vector machine}% long form
{Statistical pattern recognition technique}

% description

Now you can reference the acronym with \gls{svm} or you can reference the entry in the

main glossary with \gls{main-svm}.
This is just an example. In general, think twice before you add this kind of duplication. If all

information (short, long and description) can be provided in a single list, it’s redundant to provide

a second list unless any of the short forms start with a different letter to the associated long form,

which may make it harder to look up.

bib2gls

Note that with bib2gls, there are special dual entry types that implement this be-

haviour. That is, if an entry is referenced then its corresponding dual entry will automati-

cally be selected as well. So there is less need for\glsaddwithbib2gls. (Although
it can still be useful, for example with Option 6.)

265

11. Cross-Referencing Entries

�

You must use \makeglossaries (Options 2 or 3) or \makenoidx-
glossaries (Option 1) before defining any entries that cross-reference other entries.

If any of the entries that you have cross-referenced don’t appear in the glossary, check that

you have put \makeglossaries/\makenoidxglossaries before all entry

definitions. The glossaries-extra package provides better cross-reference handling.

There are several ways of cross-referencing entry in the glossaries:

1. You can use commands such as \gls in the entries description. For example:

�

\newglossaryentry{apple}{name={apple},
description={firm, round fruit. See also \gls
{pear}}}

Note that with this method, if you don’t use the cross-referenced term in the main part of

the document, you will need two runs of makeglossaries:

�

pdflatex filename
makeglossaries filename
pdflatex filename
makeglossaries filename
pdflatex filename

This is because the \gls in the description won’t be detected until the glossary has been

created (unless the description is used elsewhere in the document with \glsentry-
desc). Take care not to use \glsdesc (or \Glsdesc) in this case as it will cause
a nested link.

2. After you have defined the entry, use

�

\glssee[〈tag〉]{〈entry-label〉}{〈xr-list〉}

266

11. Cross-Referencing Entries

where 〈xr-list〉 is a comma-separated list of entry labels to be cross-referenced, 〈entry-
label〉 is the label of the entry doing the cross-referencing and 〈tag〉 is the “see” tag. (The
default value of 〈tag〉 is \seename.)
This command is essentially performing:

\glsadd[format=〈cross-ref-encap〉]{〈entry-label〉}

where 〈cross-ref-encap〉 is a special form of location encap that includes 〈tag〉 and 〈xr-
list〉. Remember from §10 that makeindex always requires a location. This special

location encap discards the provided location (which \glssee sets to “Z” to push the

cross-reference to the end of the number list) and replaces it with the cross-reference in

the form “see 〈name(s)〉”.
This means that \glssee indexes 〈entry-label〉 so that 〈entry-label〉 appears in the

glossary but it doesn’t index any of the entries listed in 〈xr-list〉.
For example:

�

\glssee[see also]{series}
{FourierSeries,TaylorsTheorem}

This indexes the entry identified by the label “series” and adds a location to the “series”

number list that looks something like:

see also \glsentryname{FourierSeries} \&
\glsentryname{TaylorsTheorem}

(The actual format is performed with \glsseeformat.)

3. As described in §4, you can use the see key when you define the entry. For example:

�

\newglossaryentry{MaclaurinSeries}{name=
{Maclaurin series},
description={Series expansion},
see={TaylorsTheorem}}

This key was provided as a simple shortcut that does:

�

\newglossaryentry{MaclaurinSeries}{name=
{Maclaurin series},

267

11. Cross-Referencing Entries

description={Series expansion}}
\glssee{MaclaurinSeries}{TaylorsTheorem}

This means that “MaclaurinSeries” will automatically be added to the glossary with some-

thing like

\emph{see} \glsentryname{TaylorsTheorem}

in its number list, but “TaylorsTheorem” will need to be indexed elsewhere to ensure that it

also appears in the glossary otherwise, it would end up with the preamble location (page 1)

in its number list, assuming that the entry was defined in the preamble.

You therefore need to ensure that you use the cross-referenced term with the commands

described in §5.1 or §10.

The “see” tag is produce using \seename, but can be overridden in specific instances
using square brackets at the start of the see value. For example:

�

\newglossaryentry{MaclaurinSeries}{name=
{Maclaurin series},
description={Series expansion},
see=[see also]{TaylorsTheorem}}

Take care if youwant to use the optional argument of commands such as\newacronym
or \newterm as the value will need to be grouped. For example:

�

\newterm{seal}
\newterm[see={[see also]seal}]{sea lion}

Similarly if the value contains a list. For example:

�

\glossaryentry{lemon}
{

name={lemon},
description={Yellow citrus fruit}

}
\glossaryentry{lime}
{

name={lime},
description={Green citrus fruit}

268

11. Cross-Referencing Entries

}
\glossaryentry{citrus}
{

name={citrus},
description={Plant in the Rutaceae family},
see={lemon,lime}

}

In both cases 2 and 3 above, the cross-referenced information appears in the number list,

whereas in case 1, the cross-referenced information appears in the description. (See thesample
-crossref.tex example file that comes with this package.) This means that in cases 2

and 3, the cross-referencing information won’t appear if you have suppressed the number list.

In this case, you will need to activate the number list for the given entries using nonumber-
listfalse. Alternatively, if you just use the see key instead of \glssee, you can automat-
ically activate the number list using the seeautonumberlist package option.

bib2gls

bib2gls provides much better support for cross-references, including the ability to

only show the cross-reference in the location list (save-locations={see}) with-
out the actual locations. See, for example, index.php?label=bib2gls-xraGallery: Cross-

References (bib2gls).

adickimaw-books.com/gallery

11.1. Customising Cross-Reference Text

When you use either the see key or the \glssee command, the cross-referencing informa-

tion will be typeset in the glossary (within the number list) according to:

�

\glsseeformat[〈tag〉]{〈xr-list〉}{〈location〉}

The default definition:

\emph{〈tag〉} \glsseelist{〈xr-list〉}

Note that the 〈location〉 argument is always ignored. (makeindexwill always assign a location

number, even if it’s not needed, so it needs to be discarded.) For example, if you want the tag to

appear in bold, you can do:

269

https://www.dickimaw-books.com/gallery
https://www.dickimaw-books.com/gallery

11. Cross-Referencing Entries

�

\renewcommand*{\glsseeformat}[3][\seename]{\textbf
{#1}
\glsseelist{#2}}

The list of labels is formatted by:

�

\glsseelist{〈label-list〉}

This iterates through the comma-separated list of entry labels 〈label-list〉 and formats each entry
in the list. The entries are separated by:

�

\glsseesep initial: ,␣

between all but the last pair, and

�

\glsseelastsep initial: ,␣

between the last pair.

Each entry item in the list is formatted with:

�

\glsseeitem{〈entry-label〉}

This does:

\glshyperlink[\glsseeitemformat{#1}]{#1}

which creates a hyperlink, if enabled, to the cross-referenced entry. The hyperlink text is given

by:

�

\glsseeitemformat{〈entry-label〉}

This does:

\ifglshasshort{〈entry-label〉}
{\glsentrytext{〈entry-label〉}}% acronym
{\glsentryname{〈entry-label〉}}% non-acronym

which uses the text field for acronyms and the name field otherwise.

270

11. Cross-Referencing Entries

�

When \glssee was first introduced in v1.17, the cross-referenced entry was displayed

with just \glsentryname, but this caused problems because back then the name
field had to be sanitized because it was written to the glossary file, which caused strange re-

sults if thename contained any commands. So in v3.0, the default definition was switched

to using \glsentrytext to avoid the issue. In v3.08a, the information written to the

glossary file was changed and the name was no longer sanitized, but the new definition

was retained for backward-compatibility.

However, the original definition is more appropriate in some ways, as it makes more

sense for the cross-reference to show the name as it appears in the glossary, except

for acronyms which could have wide names if the long form is included. So in v4.50,

which had major compatibility-breaking changes to remove the unconditional dependency

on the now deprecated textcase package, the original use of name was restored for

non-acronyms, which brings it into line with glossaries-extra.

For example, to make the cross-referenced list use small caps with the text (not name)
field:

�

\renewcommand{\glsseeitemformat}[1]{%
\textsc{\glsentrytext{#1}}}

glossaries-extra

The glossaries-extra package redefines \glsseeitemformat to use \glsfmt-
text for abbreviations and \glsfmtname otherwise. Additionally, it provides

\glsxtrhiername which can be used as an alternative for hierarchical entries. See

the glossaries-extra manual for further details.

�

You can use \glsseeformat and \glsseelist in the main body of the text,

but they won’t automatically add the cross-referenced entries to the glossary. If you want

them added with that location, you can do:

�

Some information (see also
\glsseelist{FourierSeries,TaylorsTheorem}%
\glsadd{FourierSeries}\glsadd{TaylorsTheorem}).

271

12. Number Lists

Each entry in the glossary has an associated number list (or location list). By default, these

numbers (the entry locations) refer to the pages on which that entry has been indexed (using any

of the commands described in §5.1 and §10) and will also include any cross-references obtained

with \glssee (or the see key).

The locations in the number list are separated with:

�

\delimN

The number list can be suppressed using the nonumberlist package option, or an alter-

native counter can be set as the default using the counter package option. The glossaries

-extra package additionally provides the equations and floats options that can be used

to automatically switch the location counter in certain environments.

bib2gls

With bib2gls you can prevent the number list from being created with the save
-locations=false resource option, or only include the cross-references with the

save-locations=see option.

Number lists are more common with indexes rather than glossaries (although you can use the

glossaries package for indexes as well). However, Options 2 and 3 makes use of makeindex
or xindy to hierarchically sort and collate the entries. These applications are readily available

with most modern TEX distributions, but because they are both designed as indexing applications

they both require that terms either have a valid location or a cross-reference.

�

Even if you use nonumberlist, the locations must still be provided and acceptable
to the indexing application or they will cause an error during the indexing stage, which

will interrupt the document build. Empty locations are not permitted with Options 2 and

3. See §12.5.

If you’re not interested in the locations, each entry only needs to be indexed once, so consider

using indexonlyfirst, which can improve the document build time by only indexing the
first use of each term.

The \glsaddall command (see §10), which is used to automatically index all entries,

iterates over all defined entries (in non-ignored glossaries) and does \glsadd{〈entry-label〉}

272

12. Number Lists

for each entry (where 〈entry-label〉 is that entry’s label). This means that \glsaddall auto-

matically adds the same location to every entry’s number list, which looks weird if the number

list hasn’t been suppressed.

With Option 4, the indexing is performed by bib2gls, which was specifically designed for
the glossaries-extra package. So it will allow empty or unusual locations. (As from bib2gls
v3.0, empty locations will be converted to ignored locations.) Additionally, the selection
=all resource option option will select all entries without adding an unwanted location to the

number list. If bib2gls can deduce a numerical value for a location, it will attempt to form a

range over consecutive locations, otherwise it won’t try to form a range and the location will just

form an individual item in the list.

Option 1 also allows any location but it doesn’t form ranges. Any empty locations or location

with the glsignore format will result in an invisible location in the number list.

12.1. Encap Values (Location Formats)

The location encap or format is the encapsulating command used to format an entry location.

That is, it’s a command that takes an argument that will be the location.

�

If you aren’t using hyperref then you can use the control sequence name of any text-block

command that takes a single argument. For example, format=emph. If you require
hyperlinks then it’s more complicated.

The “encap” usually refers to the control sequence name without the leading backslash (such

as textbf) and is essentially the same as the makeindex encap value that can be provided

within the standard \index command.

�

Be careful not to use a declaration (such as \bfseries) instead of a text-block com-
mand (such as \textbf) as the effect is not guaranteed to be localised, either within

the number list or throughout the glossary.

There is a special format:

�

\glsignore{〈text〉}

which simply ignores its argument. With Options 1, 2 and 3 this creates an empty (invisible) loca-

tion which can lead to spurious commas or en-dashes if the number list contains other locations.

However, with bib2gls, this format identifies the location as a special ignored location which
won’t be added to the location list but will influence selection.

If you want to apply more than one style to a given location (for example, bold and italic) you

will need to create a command that applies both formats. For example:

273

12. Number Lists

�

\newcommand*{\textbfem}[1]{\textbf{\emph{#1}}}

and use that command.

In this document, standard location format refer to the standard text block commands such as

\textbf or \emph or any of the commands listed in Table 12.1.

�

If you use xindy instead of makeindex, you must use \GlsAddXdy-
Attribute to identify any non-standard formats that you want to use with the

format key. So if you use xindy with the above example \textbfem, you would
need to add:

�

\GlsAddXdyAttribute{textbfem}

See §14 for further details.

If you are using hyperlinks and you want to change the font of the hyperlinked location don’t

use \hyperpage (provided by the hyperref package) as the locations may not refer to a page

number and the location argument may contain the range delimiter \delimR. Instead, the
glossaries package provides hyperlink-supported encaps listed in Table 12.1. These commands

all use \glshypernumber (described below) and so shouldn’t be used in other contexts.

The \hyper〈xx〉 can also be used without hyperref, since \glshypernumber will

simply do its argument if \hyperlink hasn’t been defined. In which case, only the font

change will be applied.

Table 12.1.: Predefined Hyperlinked Location Formats

hyperrm serif (\textrm) hyperlink
hypersf sans-serif (\textsf) hyperlink
hypertt monospaced (\texttt) hyperlink
hyperbf bold (\textbf) hyperlink
hypermd medium weight (\textmd) hyperlink
hyperit italic (\textit) hyperlink
hypersl slanted (\textsl) hyperlink
hyperup upright (\textup) hyperlink
hypersc small caps (\textsc) hyperlink
hyperemph emphasized (\emph) hyperlink

If you want to make a new location format that supports hyperlinks, you will need to de-

fine a command which takes one argument and use that with the location encapsulated with

\glshypernumber or the appropriate \hyper〈xx〉 command. For example, if you want

274

12. Number Lists

the location number to be in a bold sans-serif font, you can define a command called, say,

\hyperbsf:

�

\newcommand{\hyperbsf}[1]{\textbf{\hypersf{#1}}}

and then use hyperbsf as the value for the format key.

�

When defining a custom location format command that uses one of the \hyper〈xx〉
commands, make sure that the argument of \hyper〈xx〉 is just the location. Any for-
matting must be outside of \hyper〈xx〉 (as in the above \hyperbfsf example).

Remember that if you use xindy, you will need to add this to the list of location xindy

attributes:

�

\GlsAddXdyAttribute{hyperbsf}

Complications can arise if you use different encap values for the same location. For example,

suppose on page 10 you have both the default glsnumberformat and hyperbf encaps.

While it may seem apparent that hyperbf should override glsnumberformat in this

situation, the indexing application may not know it. This is therefore something you need to be

careful about if you use the format key or if you use a command that implicitly sets it.

In the case of xindy, it only accepts one encap (according to the order of precedence given
in the xindy module) and discards the others for identical locations (for the same entry). This

can cause a problem if a discarded location forms the start or end of a range.

In the case ofmakeindex, it accepts different encaps for the same location, but warns about
it (“multiple encaps”). This leads to a number list with the same location repeated in different

formats. If you use the makeglossaries Perl script with Option 2 it will detect make-
index’s warning and attempt to fix the problem, ensuring that the glsnumberformat
encap always has the least precedence unless it includes a range identifier. Other conflicting

encaps will have the last one override earlier ones for the same location with range identifiers

taking priority. If you actually want the repeat, you can disable this feature with the -e switch.

No discard occurs with Option 1 so again you get the same location repeated in different for-

mats. With Option 4, bib2gls will discard according to order of precedence, giving priority

to start and end ranges. (See the bib2gls manual for further details.)

The default location format is:

�

\glsnumberformat{〈location(s)〉}

This will simply do its argument 〈location(s)〉 if hyperref hasn’t been loaded, otherwise it will

use:

275

12. Number Lists

�

\glshypernumber{〈location(s)〉}

This will create a hyperlink to the location or will simply do its argument if hyperref hasn’t been

loaded. The 〈location(s)〉 argument may contain multiple locations. If so, they must be separated
with \delimR or \delimN. (Usually \delimN won’t occur. The \delimR separator

may occur with ranges and makeindex.) Any other markup is likely to cause a problem (see

§12.5).

Each location within \glshypernumber will have a hyperlink created with:

\hyperlink{〈anchor〉}{〈text〉}

where the 〈text〉 is the location encapsulated with:
�

\glswrglosslocationtextfmt{〈location〉}

This just does its argument by default.

The 〈anchor〉 is constructed from the location but requires the prefix and location counter,

which first have to be set with:

�

\setentrycounter[〈prefix〉]{〈counter〉}

This command will be automatically inserted before the location in the number list by the ap-

propriate indexing method. In the case of makeindex, this will be inserted at the start of

the encap information, but with xindy the counter will form part of the attribute and a helper

command has to be provided that uses \setentrycounter. With Option 1 the command

occurs inside the definition of \glsnoidxdisplayloc.
The 〈counter〉 will be stored in:

�

\glsentrycounter initial: \glscounter

andmay be used in the hooks described below. Note that the prefix can’t be referenced as\gls-
wrglossdisableanchorcmds is also used when obtaining the prefix during indexing.

The 〈anchor〉 is then constructed as follows:

1. Use the \glswrglossdisableanchorcmds hook to disable problematic com-

mands (scoped).

2. Expand (protected)

〈counter〉〈prefix〉\glswrglosslocationtarget{〈location〉}

276

12. Number Lists

3. Sanitize the result.

For example:

\setentrycounter[]{page}
% page counter and empty prefix
\glshypernumber{1}

will essentially do:

\hyperlink{page.1}1

whereas

\setentrycounter[1]{equation}%
\glshypernumber{2}

will essentially do:

\hyperlink{equation.1.2}2

The initial hook to disable the problematic commands is:

�

\glswrglossdisableanchorcmds

By default, this is defined to:

\let\glstexorpdfstring\@secondoftwo

If hyperref is loaded the definition will also include:

\let\texorpdfstring\@secondoftwo
\pdfstringdefPreHook

The location is encapsulated with:

�

\glswrglosslocationtarget{〈location〉}

This must expand but may be used to make adjustments. The default definition is to simply

expand to its argument. The \glswrglossdisableanchorcmds hook may be used

to alter the definition if some condition is required, but bear in mind that \glswrgloss-
locationtarget won’t be used when the prefix is obtained during indexing.

Any leftover robust or protected commands will end up sanitized to prevent an obscure error

from occurring, but an invalid target name is likely to result. See §12.5 for an example.

277

12. Number Lists

The use of \setentrycounter to set the prefix and counter is necessary because the

hypertarget can’t be included in the indexing information supplied to makeindex or xindy,
because neither the makeindex nor xindy syntax supports it. Unfortunately, not all defi-

nitions of \theH〈counter〉 can be split into a prefix and location that can be recombined in this
way. This problem can occur, for example, with counter=equation when it depends on the
chapter counter. This can result in warnings in the form:

name{〈target-name〉} has been referenced but does not
exist, replaced by a fixed one

The sampleEq.tex sample file deals with this issue by redefining \theHequation as

follows:

�

\renewcommand*\theHequation{\theHchapter.\arabic
{equation}}

bib2gls

This issue is avoided with bib2gls and record=nameref as that syntax allows

the hyperlink target to be supplied with the indexing information.

12.2. Range Formations

There are two types of ranges: explicit and implicit. Neither are supported with Option 1. Both

are supported by Options 2, 3 and 4. Implicit ranges can be switched off using the appropriate

option for the required indexing application. The start and end of a range is separated with:

�

\delimR

Options 2 and 3 can merge implicit and explicit ranges that overlap. With Option 4, individual

locations can be merged into an explicit range, but an individual location on either side of the

explicit range won’t be merged into the explicit range.

As with \index, the characters (and) can be used at the start of the format value to

specify the beginning and ending of a number range. They must be in matching pairs with the

same encap. For example,

�

\gls[format=(emph]{sample}

on one page to start the range and later:

278

12. Number Lists

�

\gls[format=)emph]{sample}

to close the range. This will create an explicit range in the number list that’s encapsulated with

\emph. If the default glsnumberformat should be used, you can omit it and just have

the (and) characters.

glossaries-extra

Explicit ranges can also be created using \glsstartrange and \glsendrange
with glossaries-extra.

Implicit ranges are formed by concatenating a sequence of three or more consecutive locations.

For example, if an entry is indexed on pages 3, 4, 5, and 6, this will be compacted into “3–6”.

With Option 3, you can vary the minimum sequence length using \GlsSetXdyMin-
RangeLength where the argument is either the minimum number or the keyword none,
which indicates that no implicit ranges should be formed. See §14.3 for further details.

glossaries-extra

With Option 4, the minimum number for form implicit ranges is given by the min-loc
-range resource option. Again, the value is either the minimum number or the keyword

none, which indicates that no implicit ranges should be formed. It’s also possible to

compact a ragged sequence into a range with max-loc-diff. For example, with

max-loc-diff=2, the sequence “2, 4, 5, 6, 8” can be compressed into the range

“2–8”. Another range-related option is compact-ranges which allows ranges to be

more compact by omitting matching initial digits at the end of the range. For example,

“184–189” can be compacted into “184–9”.

With both makeindex and xindy (Options 2 and 3), you can replace the separator and

the closing number at the end of the range using:

�

\glsSetSuffixF{〈suffix〉}

to set the suffix for two consecutive locations and

�

\glsSetSuffixFF{〈suffix〉}

to set the suffix for three or more consecutive locations. Option 4 provides a similar feature with

the suffixF and suffixFF resource options.

For example:

279

12. Number Lists

�

\glsSetSuffixF{f.}
\glsSetSuffixFF{ff.}

Note that if you use xindy (Option 3), you will also need to set the minimum range length to

1 if you want to change these suffixes:

�

\GlsSetXdyMinRangeLength{1}

If you use the hyperref package, you will need to use \nohyperpage in the suffix to ensure

that the hyperlinks work correctly. For example:

�

\glsSetSuffixF{\nohyperpage{f.}}
\glsSetSuffixFF{\nohyperpage{ff.}}

�

Note that \glsSetSuffixF and \glsSetSuffixFF must be used before

\makeglossaries and have no effect if \noist is used.

12.3. Locations

Each location in an entry’s number list is the result of indexing the entry at the point in the

document that corresponds to the location (typically where a command such as \gls occurred).

By default, this is the page number, but can be changed with the counter package option, the

〈counter〉 optional argument in\newglossary, thecounter key in\newglossary-
entry or the counter option in the \gls-like and \glstext-like commands (or in
\glsadd).
The syntax of the location must be valid for the given indexing application if you use Options 2

or 3. In the case of makeindex, the syntax is quite restricted. The location may be a digit
(\arabic), upper or lowercase Roman numerals (\Roman or \roman) or upper or low-
ercase ASCII letters (\Alph or \alph). The syntax also allows composite locations formed
by combining the allowed digits, numerals and letters with a compositor (which can be identified

with \glsSetCompositor).
The following locations are valid, assuming the default full stop compositor:

• “325”: a numeric location (\arabic);

• “IV”: a Roman numeral location (\Roman);

• “B”: an alphabetic location (\Alph);

280

12. Number Lists

• “12.3.4”: a composite location.

The following are invalid:

• “I-3.2”: mixed compositors not permitted;

• “X7”: a separator must be used in composite locations;

• “Ø”: letters must be ASCII;

• “\textsc{iv}”: commands not permitted in locations;

• “”: locations can’t be empty.

�

Invalid locations will be rejected by makeindex, which will result in the entry being

dropped from the glossary if it has no valid locations.

In the case of xindy, the location syntax must be declared in the xdy style file. This covers

both the way that the location appears in the indexing file as a result of protected expansion but

also the counter used to obtain the location, and is described inmore detail in §14.3. The standard

digit (\arabic), upper or lowercase Roman numerals (\Roman or \roman) or upper or
lowercase ASCII letters (\Alph or \alph) are automatically added for the page counter.
If a location doesn’t match any declared syntax, a warning will be written to xindy’s tran-

script file (glg):

WARNING: location-reference "{〈prefix〉}{〈location〉}" did not
match any location-class! (ignored)

As with makeindex when it encounters an invalid location, xindy will drop that location,

which will result in the entry being dropped from the glossary if it has no valid locations.

Additional problems can occur with xindy if any of xindy’s special characters occur in
the location. This includes the backslash \ character, which is particularly problematic if any

robust or protected commands are written in the location as \〈csname〉 will have to be written to
the file as\\〈csname〉. This is quite difficult to do without prematurely expanding\thepage.
If esclocationstrue, an attempt will be made to hack commands like \@arabic and

\@roman to enable this, but, like all hacks, this is problematic and liable to break in awkward

situations or with future releases of the LATEX kernel or other packages. This setting is now off

by default and it’s better to use the hooks below to ensure that the content written to the file is

valid.

�

Any commands that end up in the location can interfere with \glsdohypertarget
when it tries to create hyperlinks.

281

12. Number Lists

The following hook is used during the protected write:

�

\glswrglossdisablelocationcmds

This does nothing by default but may be used to disable problematic commands that could lead to

an invalid location. Note that this can lead to unexpected results in the number list, but you may

be able to correct this with a custom encap or (if \glshypernumber creates a hyperlink)

a custom definition of \glswrglosslocationtextfmt. See §12.5 for an example.

�

The \glswrglossdisablelocationcmds hook occurs after

\protected@write sets \thepage to \relax. By the time \the-
page actually gets expanded when it’s written to the indexing file, any changes made

within the hook will be lost.

Both Options 1 and 4 write the indexing information in the aux file and will accept any

location syntax (that’s valid in a LATEX document). In the case of Option 4, bib2gls will try

parsing the location and if it fits a common pattern that allows it to obtain a numeric value, then

it will be able to form an implicit range (if required), otherwise it will accept the location but not

form any implicit ranges.

With Options 1 – 4 (except with record=nameref) the location anchor isn’t included in
the indexing information. If a hyperlink is required for the location, the target (anchor name) has

to be constructed from the location. The hyperref package provides \hyperpage for normal

indexes (with \index), but this forms the anchor from page.〈location〉 which isn’t suitable
with glossaries as the location countermay not be the default page. Therefore the counter is saved

within the encap. A prefix is also necessary if \theH〈counter〉 is defined and isn’t equivalent
to \the〈counter〉.
The assumption here is that \theH〈counter〉 expands to the equivalent of 〈prefix〉\the-

〈counter〉. If \theH〈counter〉 and \the〈counter〉 are equivalent then 〈prefix〉 will be empty.
The prefix is found as follows:

1. Use the \glswrglossdisableanchorcmds hook to disable problematic com-

mands (scoped).

2. Perform a protected expansion on\theH〈counter〉 (〈Hloc〉) and\the〈counter〉 (〈loc〉).
If 〈Hloc〉 ends with 〈loc〉, so that 〈Hloc〉 is 〈prefix〉〈loc〉, then the prefix is the 〈prefix〉
substring.

In this step, \thepage may be incorrect, due to TEX’s asynchronous output routine,

but it will be incorrect in both 〈Hloc〉 and 〈loc〉 and shouldn’t occur in the prefix (unless
you have an unusual numbering system that’s reset on every page, in which case you may

have other problems), so it shouldn’t affect the prefix formation. When the actual write

operation occurs, \thepage should then expand correctly.

Unfortunately, not all definitions of \theH〈counter〉 will expand in the form 〈prefix〉\the-
〈counter〉. In which case a warning will occur:

282

12. Number Lists

Hyper target `〈Hloc〉' can't be formed by prefixing
location `〈loc〉'. You need to modify the definition of
\theH〈counter〉
otherwise you will get the warning:
"`name{〈counter〉.〈loc〉}' has been
referenced but does not exist"

If you need the location hyperlink, you will either have to redefine \theH〈counter〉 or switch
to Option 4 and record=nameref.

12.4. Page Precedence

The page precedence indicates the location ordering within the number list based on the location

syntax. For example, if an entry has been indexed on pages 5, 7, i and ii, then the number list

will be “i, ii, 5, 7” with the default order of precedence.

With makeindex, the default precedence is rnaRA, which indicates: lowercase Ro-

man (\roman), numeric (\arabic), lowercase alphabetic (\alph), uppercase Roman

(\Roman), and uppercase alphabetic (\Alph). This order can be changed by adding the

page_precedence parameter to the ist file. There’s no specific command provided for

this, so you will need to use the \GlsSetWriteIstHook to add this. For example:

�

\GlsSetWriteIstHook{%
\write\glswrite{page_precedence "arnAR"}%
}

Withxindy, the precedence is given by the order the location classes are listed indefine-
location-class-order within the xdy style file. This order can either be changed in

a custom xdy file or can be set with \GlsSetXdyLocationClassOrder.
Since neither Options 1 and 4 recognise specific location classes, they have no concept of page

precedence. They will both create location lists that are in the same order as the locations were

indexed, which means they will match the order those locations occur in the document. However,

with bib2gls, it’s possible to gather the locations into sub-groups according to the associated
counter or split off locations with identified primary formats. See the bib2gls manual for

further details.

12.5. Problematic Locations

The default location counter is the page counter, the value of which is obtained with \the-
page. Due to TEX’s asynchronous output routine, \thepagemay be incorrect at the start of

a new page. To ensure that the page number is correct, a delayed write is needed, which is what

is usually done when writing information to the aux and toc files (and to indexing files).

283

12. Number Lists

This works fine with Options 1 and 4 since neither of those options have any restrictions on

the location syntax (provided that it’s valid LATEX code). With bib2gls, if it can’t work out

a numeric value for the location then it simply won’t be able to form a range. Additionally,

bib2gls v3.0+, converts an empty location into an ignored location, which means the entry

will still be selected so that it can be included in the glossary, but it won’t cause a spurious comma

or en-dash as there won’t be an invisible location in the number list.

The only problematic locations with Options 1 and 4 are where hyperlinks are required but

the target name can’t be formed from the prefix, counter and location information (see §12.3).

The best solution with bib2gls in this case is to use record=nameref, which saves the
actual target name in the indexing record. With Option 1 you will have to redefine \theH-
〈counter〉 as appropriate.
With Options 2 and 3, the location must expand to content that is compatible with the indexing

application’s syntax. The syntax for makeindex is quite restrictive and is described in §12.3.

For example, \thepart is normally formatted as an uppercase Roman numeral. There’s

no Roman numeral for 0 so if the part counter is 0 (that is, before the first \part) then \the-
part will expand to nothing. This can be demonstrated in the following document:

�

\documentclass{article}
\usepackage[counter=part]{glossaries}
\makeglossaries
\newglossaryentry{sample}{name={sample},description=
{}}
\begin{document}
\gls{sample}% part = 0
\part{Sample Part}
\section{Sample Section}
\gls{sample}.
\printglossaries
\end{document}

In the above, the first instance of\gls{sample}will have an empty location. This will cause

makeindex to reject the location with the following message in the transcript (assuming the

document file is called myDoc.tex):

!! Input index error (file = myDoc.glo, line = 1):
-- Illegal page number or page_precedence rnaRA.

If makeglossaries encounters this warning, it will replace the empty location with “0”

and change the location encap to glsignore. In the above example, this will lead to an

invisible location in the number list, but that’s exactly what an empty location would do if make-
index allowed it.

Similarly, if the page compositor hasn’t been correctly identified, then it can also result in an

284

12. Number Lists

invalid location. For example:

�

\documentclass{article}
\usepackage[counter=section]{glossaries}
\makeglossaries
\newglossaryentry{sample}{name={sample},description=
{}}
% default compositor is '.' not '-'
\renewcommand{\thesection}{\thepart-\arabic{section}
}
\begin{document}
\part{Sample Part}
\section{Sample Section}
\gls{sample}.
\printglossaries
\end{document}

This will cause makeindex to reject the location with the following message in the transcript:

!! Input index error (file = myDoc.glo, line = 1):
-- Illegal Roman number: position 2 in I-1.

If makeglossaries encounters this warning, it will replace any invalid content (the hy-

phen, in this case) with the page compositor specified in the ist file.

In both of the above examples, using makeglossaries will help the document build to

complete without the entries disappearing from the glossary, however the resulting number list

may look strange. If you are using nonumberlist then this isn’t a problem.

If you don’t use makeglossaries but explicitly call makeindex then you won’t have

those corrections, and some or all of your entries may be omitted from the glossary. In which

case, you will have to adjust the location so that it fits makeindex’s syntax even if you have
nonumberlist. In the case of the invalid page compositor problem, you can simply use

\glsSetCompositor to set the correct compositor. In the case of empty locations you

will need to chose a different location counter.

Other problems occur with commands that don’t fully expand, which results in LATEX markup

in the location in the indexing file. For example, if babel is used with spanish, lowercase
Roman numerals (which may occur in the front matter) will expand to the internal command

\es@scroman, as in the following:

�

\documentclass{book}
\usepackage[T1]{fontenc}

285

12. Number Lists

\usepackage[spanish]{babel}
\usepackage{glossaries}
\makeglossaries
\newglossaryentry{sample}{name={sample},description=
{un ejemplo}}
\begin{document}
\frontmatter
\chapter{Foreword}
\gls{sample}% problem location
\mainmatter
\chapter{Sample}
\gls{sample}
\printglossaries
\end{document}

The first instance of \gls occurs in the front matter on page i, which in this case is formatted

in faked small caps with \es@scroman. This can be found in the glo file, which contains:

�

\glossaryentry{sample?\glossentry{sample}
|setentrycounter[]{page}"\glsnumberformat}
{\es@scroman {i}}
\glossaryentry{sample?\glossentry{sample}
|setentrycounter[]{page}"\glsnumberformat}{1}

Each line in the glo file corresponds to a single indexing instance (created with \gls in this

case).

The double-quote (") ismakeindex’s escape character (which can be changedwith\Gls-
SetQuote). It’s not necessary in the above but was added as a by-product of the internal

escaping of special characters (the backslash isn’t a special character for makeindex, except
in the ist file, but is for xindy).
The indexing data is contained in the arguments of:

�

\glossaryentry{〈data〉}{〈location〉}

This isn’t a defined command but is simply used as a keyword in the indexing file. By default,

makeindex expects \indexentry. The custom ist style file created by \make-
glossaries identifies \glossaryentry as the keyword:

keyword "\\glossaryentry"

The syntax for the second argument 〈location〉 is as described in §12.3. The syntax for the

first argument 〈data〉 is in the form:

286

12. Number Lists

〈sort〉?〈text〉|〈encap〉

or for sub-entries:

〈parent sort〉?〈parent text〉!〈sort〉?〈text〉|〈encap〉

The question mark (?) is the “actual character” and separates the sort value from the actual text

that’s written to the gls file (which is input by \printglossary).
By default, makeindex uses @ as the actual character but this caused a problem for early

versions of glossaries where there was a greater chance of internal commands occurring in the

glo file. The custom ist file identifies ? as the actual character:

actual '?'

You may remember from §12.1 that the format option specifies the encap, which I claimed

was essentially the same as the encap with\index, but as can be seen from the above example,

that’s not strictly speaking true. The real encap has to include \setentrycounter so that

(if hyperlinks are supported) the appropriate target name can be constructed.

The way that makeindex works is that it will write

\〈encap〉{〈location〉}

in the gls (or equivalent) file. What glossaries actually needs for the hyperlinks to work is:

\setentrycounter[〈prefix〉]{〈counter〉}\〈cs〉{〈location〉}

where 〈cs〉 is the real formatting command name (identified in the format option).

So frommakeindex’s point of view, the real encap in the above example is the literal string:

setentrycounter[]{page}\glsnumberformat

In the above example, the location has ended up as \es@scroman {i} which is invalid,

as makeindex requires the location to consist solely of digits, Roman numerals or alphabetic,

optionally separated by a compositors.

That means that this example will trigger a message frommakeindexwhich will be written

to the glg transcript file:

287

12. Number Lists

Scanning input file myDoc.glo...
!! Input index error (file = myDoc.glo, line = 1):
-- Illegal space within numerals in second argument.
.done (1 entries accepted, 1 rejected).
Sorting entries...done (0 comparisons).
Generating output file myDoc.gls....done (6 lines
written, 0 warnings).

Note that 1 entry has been rejected, but it also shows 0 warnings and it has a 0 exit code, which

means that it won’t interrupt the overall document build.

If you run makeglossaries instead of running makeindex explicitly, then make-
glossaries will search the glg transcript for the “(〈n〉 entries accepted, 〈m〉 rejected)”
line, and if 〈m〉 is greater than 0 it will attempt to diagnose and fix the problem.
Messages about the “second argument” (as in “Illegal space within numerals in second argu-

ment”) indicate that the problem is with the location, so makeglossaries will search the

locations for content that matches \〈csname〉 {〈num〉} (with any or no spaces after the com-

mand name and optionally preceded by \protect). If it finds a match, it will shift 〈csname〉
into the encap with the following message:

Encap/location issue: potential LaTeX commands in
location detected. Attempting to remedy.
Reading myDoc.glo...
Invalid location '\es@scroman {i}' detected for
entry 'sample'. Replaced with 'i'
Writing myDoc.glo...
Retrying

The altered glo file now contains:

\glossaryentry{sample?\glossentry{sample}
|setentrycounter[]{page}"\glslocationcstoencap
{glsnumberformat}{es@scroman}}{i}
\glossaryentry{sample?\glossentry{sample}
|setentrycounter[]{page}"\glsnumberformat}{1}

and makeglossaries will re-run makeindex.
Following this correction, the number list for the “sample” entry now contains:

\setentrycounter[]{page}\glslocationcstoencap{gls-
numberformat}{es@scroman}{i}\delimN
\setentrycounter[]{page}\glsnumberformat{1}

288

12. Number Lists

The corrected location needs to be encapsulated with both the designated encap (glsnumber-
format in this case) and the formatting command that needs to be applied to the location. This

is done via:

�

\glslocationcstoencap{〈encap-csname〉}{〈location-csname〉}

This is simply defined to do:

\csuse{〈location-csname〉}{\csuse{〈encap-csname〉}{〈location〉}}

This puts the intended encap (glsnumberformat in this case) closer to the location to

enable it to work better with hyperlinks, although this may not always work, particularly if the

command with the name 〈location-csname〉 expects a numerical argument.
In the above example, the location command is\es@scromanwhich is provided by babel-

spanish and performs fake small caps. Internal commands provided by other packages for their

own private use can’t be relied upon. So the glossaries package can’t assume they will stay the

same, and the above example document may produce a different result with different versions

of babel. However, in this case (provided you use makeglossaries), the document will
correctly end up with the number list “ı, 1” for the “sample” entry in the glossary, which matches

the document page numbering. If you use makeindex explicitly, the number list will simply

be “1”.

This become more complicated if hyperref is added to the document (before glossaries). Now

\glsnumberformat uses \glshypernumber, which needs to take into account that
its argument may contain a range with the start and end location separated by \delimR (the

range delimiter), and it needs to create a separate hyperlink for each location component.

Here’s a modified example that has an implicit range in the front matter and an explicit range

in the main matter.

�

\documentclass{book}
\usepackage[T1]{fontenc}
\usepackage[spanish]{babel}
\usepackage[colorlinks]{hyperref}
\usepackage{glossaries}
\makeglossaries
\newglossaryentry{sample}{name={sample},description=
{un ejemplo}}
\begin{document}
\frontmatter
\chapter{Foreword}
\gls{sample}
\newpage

289

12. Number Lists

\gls{sample}
\newpage
\gls{sample}
\mainmatter
\chapter{Sample}
\gls[format=(hyperbf]{sample}
\newpage
Some text
\newpage
\gls[format=)hyperbf]{sample}
\printglossaries
\end{document}

This again has problematic locations, butmakeglossaries can shift the\es@scroman
into the encap as before. The resulting gls file has the following number list for the “sample”

entry:

\setentrycounter[]{page}% prefix and counter
\glslocationcstoencap{glsnumberformat}{es@scroman}
{i\delimR iii}\delimN
\setentrycounter[]{page}% prefix and counter
\hyperbf{1\delimR 3}

Both ranges have been compacted so that the range, including the \delimR separator, is in

the argument of the encap command.

The default definition of \glslocationcstoencap means that the first range is for-

matted according to:

\es@scroman{\glshypernumber{i\delimR iii}}

This allows \glshypernumber to detect the delimiter and split up the range so that it can

apply a separate hyperlink to the start and end locations, so that it effectively becomes:

\es@scroman{\hyperlink{〈target1〉}{i}\delimR
\hyperlink{〈target2〉}{iii}}

In this type of situation, the most problematic document is one where the 〈location-csname〉
can’t handle \hyperlink in its argument and needs to be shifted into the hyperlink text. In

the above example document, no actual error occurs, but there are warnings from pdfTEX:

290

12. Number Lists

pdfTeX warning (dest): name{page.iii} has been
referenced but does not exist, replaced by a fixed
one
[...]
pdfTeX warning (dest): name{page.i} has been
referenced but does not exist, replaced by a fixed
one

This is due to the way that \glshypernumber forms the target name. Since the actual

target name isn’t saved in the indexing data, it has to be reconstituted from available information:

the prefix, the counter and the location. So the targets become page.i for location “i” and

page.iii for location “iii”. This usually works for common page formats, but it doesn’t in

this case. Adding debug to hyperref’s package options reveals the following information in the

transcript:

Package hyperref Info: Anchor `page.I'
[...]
Package hyperref Info: Anchor `page.II'

So the correct anchors are “page.I” and “page.II”.

The case change occurs as a result of the fake small caps, but since\es@scroman is outside

of \glshypernumber, the case change isn’t part of the location and so doesn’t affect the
anchor name.

I can redefine \glslocationcstoencap to swap them around:

�

\renewcommand{\glslocationcstoencap}[3]{\csuse{#1}
{\csuse{#2}{#3}}}

However, now the transcript shows:

pdfTeX warning (dest):
name{page.\\protect\040\\es@scroman\040\040{i--iii}}
has been referenced but does not exist, replaced by
a fixed one

This is because \es@scroman doesn’t fully expand.

The\glswrglossdisableanchorcmds hook provides a workaround for the prob-

lematic command:

291

12. Number Lists

�

\appto\glswrglossdisableanchorcmds{\csletcs
{es@scroman}{text_uppercase:n}}

This will cause\es@scroman to be locally redefined to just convert its argument to uppercase

while the anchor is being constructed. Unfortunately this patch is only partially successful as the

transcript now has:

pdfTeX warning (dest): name{page.I--III} has been
referenced but does not exist, replaced by a fixed
one

The problem now is that \glshypernumber can’t split on the range delimiter, so the

location is now “I--III”.

If the number list doesn’t contain any ranges, then the above redefinition of\glslocation-
cstoencap and the addition to \glswrglossdisableanchorcmds will fix the

hyperlink.

Instead of redefining\glslocationcstoencap and altering\glswrglossdisable-
anchorcmds, a solution that works with ranges can be achieved by redefining \glswr-
glosslocationtarget to convert its argument to uppercase. You can do this with:

�

\renewcommand{\glswrglosslocationtarget}[1]{\gls-
uppercase{#1}}

This will successfully construct the anchor names page.I and page.III. It won’t affect
the anchors for the main matter as digits aren’t affected by the case-changing command.

If you’re not using makeglossaries and are either calling makeindex explicitly or

via makeglossaries-lite or with the automake option, then you will need to find

another way of converting problematic location into a form that won’t be discarded by make-
index. This is quite difficult if the problematic content is inside \thepage since its delayed

expansion means that any attempt at locally changing the problematic within \glswrgloss-
disablelocationcmds will be lost.

The earlier example can be rewritten to (sort of!) work without makeglossaries:

�

\documentclass{book}
\usepackage[T1]{fontenc}
\usepackage[spanish]{babel}
\usepackage[colorlinks]{hyperref}
\usepackage{glossaries}
\makeglossaries

292

12. Number Lists

\newglossaryentry{sample}{name={sample},description=
{un ejemplo}}

\newcommand{\locthepage}{\Roman{page}}
\newcommand{\delayedlocthepage}{\expandonce
{\locthepage}}
\appto\glswrglossdisablelocationcmds{\let\the-
page\delayedlocthepage}

\begin{document}
\frontmatter
\chapter{Foreword}
\gls{sample}
\newpage
\gls{sample}
\newpage
\gls{sample}
\mainmatter
\renewcommand{\locthepage}{\arabic{page}}
\chapter{Sample}
\gls[format=(hyperbf]{sample}
\newpage
Some text
\newpage
\gls[format=)hyperbf]{sample}
\printglossaries
\end{document}

Note that the custom \locthepage command needs to be redefined after the page number-

ing changes at the start of the main matter.

This ensures that the locations are valid in the glo file, so makeindex will process it

without losing any rejecting any entry lines. The hyperlink targets will also be correct. The only

problem now is that the front matter locations will be in uppercase in the glossary.

The above problems are all due to makeindex having a restrictive location syntax. With

xindy, you can define location classes for custom locations. Unfortunately, the backslash \ is

a special character forxindy that indicates an escape sequence that indicates the next character

should be interpreted literally, which means that any LATEX commands that end up in the xindy
indexing file must have their initial backslash escaped. This is quite tricky to do given the delayed

expansion of \thepage. If it’s expanded early in order to pre-process it then the page number
could end up being incorrect.

The sample file samplexdy.tex provides a custom page format that uses a robust com-

mand called\tallynum, which ends up in theglo file. With the defaultesclocations
=false setting, the location for the first page is written to the file as:

293

12. Number Lists

:locref "{}{\tallynum {1}}"

This results in the following message from xindy:

WARNING: location-reference "{}{tallynum {1}}" did
not match any location-class! (ignored)

Note that the backslash has gone from the start oftallynum. As withmakeindex, invalid
locations are dropped.

If you usemakeglossaries rather than runningxindy directly,makeglossaries
will detect the warning and provide some diagnostic information:

You may have forgotten to add a location
class with \GlsAddXdyLocation or you may have
the format incorrect or you may need
the package option esclocations=true.

In this case, you need to use the package option esclocations=true. This will use a
hack to provide a way to escape the backslash without prematurely expanding the actual value of

the page counter. As this is a hack, it may not work and can result in obscure error messages.

Returning to the earlier babel-spanish example, if it’s converted to use xindy instead of

makeindex, a similar problem arises. For example, simply adding the xindy package

option:

�

\documentclass{book}
\usepackage[T1]{fontenc}
\usepackage[spanish]{babel}
\usepackage[colorlinks]{hyperref}
\usepackage[xindy]{glossaries}
\makeglossaries
\newglossaryentry{sample}{name={sample},description=
{un ejemplo}}
\begin{document}
\frontmatter
\chapter{Foreword}
\gls{sample}
\newpage
\gls{sample}
\newpage
\gls{sample}

294

12. Number Lists

\mainmatter
\chapter{Sample}
\gls[format=(hyperbf]{sample}
\newpage
Some text
\newpage
\gls[format=)hyperbf]{sample}
\printglossaries
\end{document}

The glo file now contains locations with \es@scroman, but as with the \tallynum
example, the leading backslash hasn’t been escaped:

:locref "{}{\es@scroman {i}}"

This needs esclocations=true to escape the backslash.

�

\usepackage[xindy,esclocations]{glossaries}

Note that this produces a different result in the glo file:

:locref "{}{\\protect \\es@scroman {i}}"

This results from the partial protected expansion used on \thepage before the special char-

acters are escaped. If you inspect the xdy file created by \makeglossaries, you should
find the following:

(define-location-class "roman-page-numbers"
(:sep "{}{" :sep "\protect \es@scroman

{" "roman-numbers-lowercase" :sep "}" :sep "}")
:min-range-length 2

)

This is because the non-default behaviour of \roman has been detected and a custom location

class has automatically been supplied. (Whereas with the samplexdy.tex sample file,

it was necessary to provide the custom class to support \tallynum with \GlsAddXdy-
Location.)

295

12. Number Lists

12.6. Iterating Over Locations

�

Not available with Options 2 and 3. The commands described here rely on the locations

being stored in the loclist internal field in an etoolbox internal list format, which is

what happens with Option 1.

The \printnoidxglossary command displays the location list using:

�

\glsnoidxloclist{〈list cs〉}

where 〈list cs〉 is a temporary command that contains the value of the loclist field. This

uses \forlistloop to iterate over all the locations in the list with the handler macro:

�

\glsnoidxloclisthandler{〈location〉}

This keeps track of the previous element in the list to determine whether or not to insert the

\delimN separator. Note that it doesn’t attempt to determine whether or not any of the loca-

tions are ranges.

glossaries-extra

The \printunsrtglossary command will also use \glsnoidxloclist
if the loclist field has been set but the location field hasn’t, but in general it’s

better to instruct bib2gls to save the formatted location list (which is the default).

You can iterate over an entry’s loclist field using:

�

\glsnumberlistloop{〈entry-label〉}{〈handler〉}{〈xr handler cs〉}

where 〈entry-label〉 is the entry’s label and 〈handler cs〉 is a handler control sequence with the

syntax:

〈handler cs〉{〈prefix〉}{〈counter〉}{〈format〉}{〈location〉}

where 〈prefix〉 is the hypertarget prefix, 〈counter〉 is the name of the location counter, 〈format〉
is the location encap (for example, textbf) and 〈location〉 is the location.
The third argument 〈xr handler cs〉 is the control sequence that will be applied to any cross-

references in the list. This handler should have the syntax:

〈xr handler cs〉[〈tag〉]{〈xr list〉}{〈empty〉}

296

12. Number Lists

where 〈tag〉 is the cross-referenced textual tag (for example, “see”) and 〈xr list〉 is a comma-
separated list of entry labels. The final argument 〈empty〉 will always be empty, but it allows for
\glsseeformat to be used as the handler.

bib2gls

This method is designed for Option 1, but bib2gls also saves individual locations

in the loclist field (in addition to the formatted location list which is stored in the

location field). However, the format for each item in the internal list varies depend-

ing on whetherrecord=only orrecord=namerefwas used. See the glossaries

-extra manual for further details.

For example, if on page 12 I have:

�

\gls[format=textbf]{apple}

and on page 18 I have:

�

\gls[format=emph]{apple}

then

�

\glsnumberlistloop{apple}{\myhandler}

will be equivalent to:

�

\myhandler{}{page}{textbf}{12}%
\myhandler{}{page}{emph}{18}%

There is a predefined handler that’s used to display the number list in\printnoidxglossary:

�

\glsnoidxdisplayloc{〈prefix〉}{〈counter〉}{〈format〉}{〈location〉}

This simply does:

\setentrycounter[〈prefix〉]{〈counter〉}%
\csuse{〈format〉}{〈location〉}

which sets up the hyperlink information needed for \glshypernumber (in case it’s re-

quired by the encap) and encapsulates the location, with the provided formatting command.

297

12. Number Lists

Internally, \glsnumberlistloop uses etoolbox’s \forlistloop with the han-

dler:

�

\glsnoidxnumberlistloophandler{〈location item〉}

The default behaviour is simply to do its argument, which (for Option 1) will be in the form:

\glsnoidxdisplayloc{〈prefix〉}{〈counter〉}{〈format〉}{〈location〉}

The\glsnumberlistloopworks by temporarily redefining\glsnoidxdisplay-
loc to 〈handler〉 and \glsseeformat to 〈xr handler cs〉.

glossaries-extra

With glossaries-extra, you can use the more general purpose \glsxtrfieldfor-
listloop and provide your own handler that can be customized to suit record=
only or record=nameref.

298

13. Glossary Styles

The markup used in the glossary is described in §8.2. §13.2 describes how to define a new

glossary style. Commands that may be used in styles, but should not be redefined by styles, are

described in §§13.2.1 & 13.2.2. The commands that should be redefined by the glossary style

are described in §13.2.3.

Glossary styles typically use \glossentryname to display the entry’s name, but some

may use the sentence case version \Glossentryname instead. Both encapsulate the name

with:

�

\glsnamefont{〈text〉}

which takes one argument: the entry name (obtained with \glsentryname or \Gls-
entryname).
By default, \glsnamefont simply displays its argument in whatever the surrounding font

happens to be, but bear in mind that the glossary style may switch the font.

glossaries-extra

With glossaries-extra the glossnamefont and glossname category attributes

can be used to adjust font and, for \glossentryname only, case-changing.

For example, the tree style displays the name as follows:

\glstreenamefmt{\glstarget{〈entry-label〉}{\glossentryname
{〈entry-label〉}}}

which is essentially (ignoring the hyperlink target):

\glstreenamefmt{\glsnamefont{\glsentryname{〈entry-label〉}}
}

Since \glstreenamefmt is defined to display its argument in bold, the name will end up

in bold unless \glsnamefont is redefined to change it.

The list style displays the name in the option argument of \item:

\item[\glsentryitem{〈entry-label〉}\glstarget{〈entry-label〉}
{\glossentryname{〈entry-label〉}}]

299

13. Glossary Styles

which is essentially (ignoring the entry counter and hyperlink target):

\item[\glsnamefont{\glsentryname{〈entry-label〉}}]

This occurs within the description environment, which by default uses bold for the item text.

However, this may be changed by various classes or packages. So the name may end up in bold

or may be in some other font, such as sans-serif.

The long style displays the name in the first column of a longtable:

\glsentryitem{〈entry-label〉}\glstarget{〈entry-label〉}{\gloss-
entryname{〈entry-label〉}} &

So the only font change will come from \glsnamefont, which doesn’t apply any change

by default.

Glossary styles will typically display the description with \glossentrydesc but may

not show the symbol. If the symbol is shown, it should be displayed with \glossentry-
symbol.
There’s no analogous font command for the description or symbol, but the glossaries-extra

package provides the glossdescfont and glosssymbolfont attributes to change

the font according to the entry’s category.

Some styles may supply their own helper commands (such as \glstreenamefmt) to
make it easier to adjust the formatting without having to define a new glossary style.

Example 35: Changing the Font Used to Display Entry Names in the

Glossary

Suppose youwant all the entry names to appear inmediumweight small caps in your glossaries,

then you can do:

�

\renewcommand{\glsnamefont}[1]{\textsc{\mdseries #1}
}

glossaries-extra

The glossaries-extra-stylemods package provides additional hooks that can be used to

make other minor adjustments.

Some styles support groups. These may simply insert a vertical gap between groups, but some

may also include a heading with the group title. The base glossaries package only has a simple

mechanism for obtaining the title from the group label via \glsgetgrouptitle, which

300

13. Glossary Styles

will test if \〈group-label〉groupname exists where the 〈group-label〉 is glssymbols,
glsnumbers or a single character.

glossaries-extra

The glossaries-extra package has commands \glsxtrsetgrouptitle and

\glsxtrlocalsetgrouptitle to set the group title, which take precedence

over \〈group-label〉groupname.

13.1. Predefined Styles

The predefined styles can accommodate numbered top level (level 0) and level 1 entries. See

the package options entrycounter, counterwithin and subentrycounter
described in §2.3. There is a summary of available styles in Table 13.1 on the next page. You

can view samples of all the predefined styles at dickimaw-books.com/gallery/
glossaries-styles/. Note that glossaries-extra provides additional styles in the sup-
plementary packages glossary-bookindex, glossary-topic and glossary-longextra. See the glossaries
-extra manual for further details.

�

Note that the group styles (such as listgroup) will have unexpected results if used with the

sort=def or sort=use options. If you don’t sort your entries alphabetically, it’s

best to set the nogroupskip package option to prevent odd vertical gaps appearing.

The group title is obtained using \glsgetgrouptitle{label}, which is described in

§13.2.

The tabular-like styles that allow multi-line descriptions and number lists use the length:

�

\glsdescwidth

to set the width of the description column and the length

�

\glspagelistwidth

to set the width of the number list column.

�

These lengths will not be available if you use both the nolong and nosuper pack-

age options or if you use the nostyles package option unless you explicitly load the

relevant package.

These will need to be changed using \setlength if the glossary is too wide. Note that

the long4col and super4col styles (and their header and border variations) don’t use these lengths

301

https://www.dickimaw-books.com/gallery/glossaries-styles/
https://www.dickimaw-books.com/gallery/glossaries-styles/

13. Glossary Styles

Table 13.1.: Glossary Styles. An asterisk in the style name indicates anything that matches

that doesn’t match any previously listed style (for example, long3col* matches

long3col, long3colheader, long3colborder and long3colheaderborder). A maximum

level of 0 indicates a flat glossary (sub-entries are displayed in the same way as main

entries). Where the maximum level is given as ∞ there is no limit, but note that

makeindex (Option 2) imposes a limit of 2 sub-levels. If the homograph column

is checked, then the name is not displayed for sub-entries. If the symbol column is

checked, then the symbol will be displayed.

Style Maximum Level Homograph Symbol

listdotted 0

sublistdotted 1

list* 1 4

altlist* 1 4

long*3col* 1 4

long4col* 1 4 4

altlong*4col* 1 4 4

long* 1 4

super*3col* 1 4

super4col* 1 4 4

altsuper*4col* 1 4 4

super* 1 4

index 2 4

treenoname* ∞ 4 4

alttree ∞ 4

tree ∞ 4

inline 1 4

302

13. Glossary Styles

as they are designed for single line entries. Instead you should use the analogous altlong4col and

altsuper4col styles. If you need to explicitly create a line-break within a multi-line description

in a tabular-like style it’s better to use \newline instead of \\ (but consider using a ragged

style with narrow columns).

�

Remember that a cell within a tabular-like environment can’t be broken across a page, so

even if a tabular-like style, such as long, allows multilined descriptions, you’ll probably

encounter page-breaking problems if you have entries with long descriptions. You may

want to consider using the alttree style instead.

Note that if you use the style key in the optional argument to \print〈…〉glossary,
it will override any previous style settings for the given glossary, so if, for example, you do

�

\renewcommand*{\glsgroupskip}{}% no effect
\printglossary[style=long]

then the new definition of \glsgroupskip will not have an affect for this glossary, as

\glsgroupskip is redefined by style=long. Likewise, \setglossarystyle
will also override any previous style definitions, so, again

�

\renewcommand*{\glsgroupskip}% no effect
\setglossarystyle{long}

will reset \glsgroupskip back to its default definition for the named glossary style (long

in this case). If you want to modify the styles, either use \newglossarystyle (described

in the next section) or make the modifications after \setglossarystyle. For example:

�

\setglossarystyle{long}
\renewcommand*{\glsgroupskip}{}

In this case, it’s better to usenogroupskip to suppress the gap between groups for the default

styles instead of redefining \glsgroupskip.
All the styles except for the three- and four-column styles and the listdotted style use the post-

description hook:

�

\glspostdescription

after the description. This simply displays a full stop by default. To eliminate this full stop (or

replace it with something else, say, a comma) you will need to redefine\glspostdescrip-

303

13. Glossary Styles

tion before the glossary is displayed. Alternatively, you can suppress it for a given entry

by placing \nopostdesc in the entry’s description. Note that \longnewglossary-
entry puts \nopostdesc at the end of the description. The glossaries-extra package

provides a starred version that doesn’t.

Alternatively, you can use the package option nopostdot to suppress this full stop. This

is implemented by default with glossaries-extra. You can switch it back on with nopostdot
=false or postdot=or you can use postpunc for a different punctuation character.

glossaries-extra

The glossaries-extra-stylemods package provides some adjustments to some of the pre-

defined styles listed here, allowing for greater flexibility. See the glossaries-extra docu-
mentation for further details.

13.1.1. List Styles

�

\usepackage{glossary-list}
automatically loaded with \usepackage{glossaries}

The glossary styles described in this section are all defined in the package glossary-list. Since
they all use the description environment, they are governed by the same parameters as that envi-

ronment. These styles all ignore the entry’s symbol. Note that these styles will automatically
be available unless you use the nolist or nostyles package options.

�

Note that, except for the listdotted style, these list styles are incompatible with classic-

thesis. They may also be incompatible with other classes or packages that modify the

description environment.

There is an initialisation hook that provides a patch if the gettitlestring package is loaded, since

this is used by hyperref.

�

\glslistinit

Note that this automatically implements:

�

\GetTitleStringSetup{expand}

This patch should ensure that the combination of hyperref and entrycounter will correctly

expand the entry name to the aux file. The name is expanded using:

304

13. Glossary Styles

�

\glslistexpandedname{〈entry-label〉}

This uses \glsunexpandedfieldvalue. If you need the name to fully expand, you

can redefine this. For example:

�

\newcommand{\glslistexpandedname}[1]{\glsentryname
{#1}}

If nogroupskip=false, the \glsgroupskip command creates a vertical space

using:

�

\indexspace

This command is defined by some other packages, so it’s only defined by glossary-list if it hasn’t
already been defined.

For the styles that should group headings, the group title is encapsulated with:

�

\glslistgroupheaderfmt{〈title〉}

This simply does its argument by default, but it occurs inside the optional argument of \item
so may appear bold from the item font change.

For the styles that have a navigation line, the line is formatted according to:

�

\glslistnavigationitem{〈navigation items〉}

This puts its argument inside the optional argument of \item, which can cause a problem if the

navigation line is too long, in which case you will need to redefine\glslistnavigation-
item. For example:

�

\renewcommand*{\glslistnavigationitem}[1]
{\item \textbf{#1}}

You may prefer to use the tree-like styles, such as treehypergroup instead.

�

list

The list style uses the description environment. The entry name is placed in the optional argument

of the \item command (so it will usually appear in bold by default). The description follows,

and then the associated number list for that entry. The symbol is ignored. If the entry has child

305

13. Glossary Styles

entries, the description and number list follows (but not the name) for each child entry. Groups

are separated using \indexspace with the default nogroupskip=true.
The closest matching non-list style is the index style.

�

listgroup

The listgroup style is like list but the groups have headings obtained using \glsgetgroup-
title, which is described in §13.2.

�

listhypergroup

The listhypergroup style is like listgroup but has a navigation line at the start of the glossary with

links to each group that is present in the glossary, which is displayed in the glossary header with

\glslistnavigationitem. This requires an additional run through LATEX to ensure

the group information is up to date. Within the navigation line, each group item is separated by

\glshypernavsep.

�

altlist

The altlist style is like list but the description starts on the line following the name. (As with the

list style, the symbol is ignored.) Each child entry starts a new line, but as with the list style, the

name associated with each child entry is ignored.

The closest matching non-list style is the index style with the following adjustment:

�

\renewcommand{\glstreepredesc}{%
\glstreeitem\parindent\hangindent}

�

altlistgroup

The altlistgroup style is like altlist but the glossary groups have headings.

�

altlisthypergroup

The altlisthypergroup style is like altlistgroup but has a set of links to the glossary groups. The

navigation line is the same as that for listhypergroup, described above.

�

listdotted

This style uses the description environment.1 Each entry starts with \item[], followed by the
name followed by a dotted line, followed by the description. Note that this style ignores both the

1This style was supplied by Axel Menzel.

306

13. Glossary Styles

number list and the symbol. The length

�

\glslistdottedwidth

governs where the description should start. This is a flat style, so child entries are formatted in

the same way as the parent entries.

A non-list alternative is to use the index style with

�

\renewcommand{\glstreepredesc}{\dotfill}
\renewcommand{\glstreechildpredesc}{\dotfill}

Note that this doesn’t use \glslistdottedwidth and causes the description to be flush-

right and will display the symbol, if provided. (It also doesn’t suppress the number list, but that

can be achieved with the nonumberlist option.)

�

sublistdotted

This is a variation on the listdotted style designed for hierarchical glossaries. The main entries

have just the name displayed. The sub entries are displayed in the same manner as listdotted.

Unlike the listdotted style, this style is incompatible with classicthesis.

13.1.2. Longtable Styles

�

\usepackage{glossary-long}
automatically loaded with \usepackage{glossaries}

The glossary styles described in this section are all defined in the package glossary-long. Since
they all use the longtable environment, they are governed by the same parameters as that envi-

ronment. Note that these styles will automatically be available unless you use the nolong or

nostyles package options. These styles fully justify the description and number list columns.

If you want ragged right formatting instead, use the analogous styles described in §13.1.3. If you

want to incorporate rules from the booktabs package, try the styles described in §13.1.4.

Groups are separated with a blank row unless nogroupskip is used before the style is set.

For example:

�

\usepackage[nogroupskip]{glossaries}
\setglossarystyle{long}

Both may be combined in the same option list. For example:

307

13. Glossary Styles

�

\usepackage[nogroupskip,style=long]{glossaries}

Or

�

\printglossary[nogroupskip,style=longragged]

The following doesn’t work:

\setglossarystyle{long}
\printglossary[nogroupskip]% too late

This is because the \ifglsnogroupskip conditional needs to be outside of \gls-
groupskip with tabular-like styles, so the conditional is in the style definition to determine

the appropriate definition of \glsgroupskip.

glossaries-extra

There are additional styles that use the longtable environment provided with the glossary

-longextra package, but that requires glossaries-extra.

�

long

The long style uses the longtable environment (defined by the longtable package). It has two

columns: the first column contains the entry’s name and the second column contains the descrip-

tion followed by the number list. The entry’s symbol is ignored. The width of the first column

is governed by the widest entry in that column. The width of the second column is governed by

the length \glsdescwidth. Child entries have a similar format to the parent entries except
that their name is suppressed.

�

longborder

The longborder style is like long but has horizontal and vertical lines around it.

�

longheader

The longheader style is like long but has a header row. You may prefer the long-booktabs
style instead.

�

longheaderborder

The longheaderborder style is like longheader but has horizontal and vertical lines around it.

308

13. Glossary Styles

The long-booktabs style is generally better.

�

long3col

The long3col style is like long but has three columns. The first column contains the entry’s

name, the second column contains the description and the third column contains the number list.

The entry’s symbol is ignored. The width of the first column is governed by the widest entry in

that column, the width of the second column is governed by the length \glsdescwidth,
and the width of the third column is governed by the length \glspagelistwidth.

�

long3colborder

The long3colborder style is like the long3col style but has horizontal and vertical lines around

it.

�

long3colheader

The long3colheader style is like long3col but has a header row. You may prefer the long3col

-booktabs style instead.

�

long3colheaderborder

The long3colheaderborder style is like long3colheader but has horizontal and vertical lines

around it. The long3col-booktabs style is generally better.

�

long4col

The long4col style is like long3col but has an additional column in which the entry’s associated

symbol appears. This style is used for brief single line descriptions. The column widths are

governed by the widest entry in the given column. Use altlong4col for multi-line descriptions.

�

long4colborder

The long4colborder style is like the long4col style but has horizontal and vertical lines around

it.

�

long4colheader

The long4colheader style is like long4col but has a header row. You may prefer the long4col

-booktabs style instead.

309

13. Glossary Styles

�

long4colheaderborder

The long4colheaderborder style is like long4colheader but has horizontal and vertical lines

around it.

�

altlong4col

The altlong4col style is like long4col but allows multi-line descriptions and number lists. The

width of the description column is governed by the length \glsdescwidth and the width

of the number list column is governed by the length \glspagelistwidth. The widths of
the name and symbol columns are governed by the widest entry in the given column.

�

altlong4colborder

The altlong4colborder style is like the long4colborder but allows multi-line descriptions and

number lists.

�

altlong4colheader

The altlong4colheader style is like long4colheader but allowsmulti-line descriptions and number

lists. You may prefer the altlong4col-booktabs style instead.

�

altlong4colheaderborder

The altlong4colheaderborder style is like long4colheaderborder but allows multi-line descrip-

tions and number lists.

13.1.3. Longtable Styles (Ragged Right)

�

\usepackage{glossary-longragged}
load explicitly or with

\usepackage[stylemods=longragged]{glossaries-extra}

The glossary styles described in this section are all defined in the package glossary-long-
ragged. These styles are analogous to those defined in glossary-long but the multiline columns
are left justified instead of fully justified. Since these styles all use the longtable environment,

they are governed by the same parameters as that environment. The glossary-longragged pack-
age additionally requires the array package. Note that these styles will only be available if you

explicitly load glossary-longragged:

310

13. Glossary Styles

�

\usepackage{glossaries}
\usepackage{glossary-longragged}
\setglossarystyle{longragged3col}

Note that you can’t set these styles using thestyle package option since the styles aren’t defined

until after the glossaries package has been loaded. If you want to incorporate rules from the

booktabs package, try the styles described in §13.1.4.

With glossaries-extra, you can load both the package and style with thestyle andstylemods
options. For example:

�

\usepackage[style=longragged3col,stylemods=
longragged]{glossaries-extra}

As with the glossary-long styles, groups are separated with a blank row unless nogroup-
skip is used before the style is set. For example:

�

\usepackage[nogroupskip]{glossaries}
\usepackage{glossary-longragged}
\setglossarystyle{longragged}

Or

�

\printglossary[nogroupskip,style=longragged]

�

longragged

The longragged style has two columns: the first column contains the entry’s name and the

second column contains the (left-justified) description followed by the number list. The entry’s

symbol is ignored. The width of the first column is governed by the widest entry in that column.

The width of the second column is governed by the length \glsdescwidth. Child entries
have a similar format to the parent entries except that their name is suppressed.

�

longraggedborder

The longraggedborder style is like longragged but has horizontal and vertical lines around it.

311

13. Glossary Styles

�

longraggedheader

The longraggedheader style is like longragged but has a header row. You may prefer the

longragged-booktabs style instead.

�

longraggedheaderborder

The longraggedheaderborder style is like longraggedheader but has horizontal and vertical

lines around it.

�

longragged3col

The longragged3col style is like longragged but has three columns. The first column contains

the entry’s name, the second column contains the (left justified) description and the third column

contains the (left justified) number list. The entry’s symbol is ignored. The width of the first col-

umn is governed by the widest entry in that column, the width of the second column is governed

by the length \glsdescwidth, and the width of the third column is governed by the length
\glspagelistwidth.

�

longragged3colborder

The longragged3colborder style is like the longragged3col style but has horizontal and vertical

lines around it.

�

longragged3colheader

The longragged3colheader style is like longragged3col but has a header row. You may prefer

the longragged3col-booktabs style instead.

�

longragged3colheaderborder

The longragged3colheaderborder style is like longragged3colheader but has horizontal and

vertical lines around it.

�

altlongragged4col

The altlongragged4col style is like longragged3col but has an additional column in which the

entry’s associated symbol appears. The width of the description column is governed by the length

\glsdescwidth and the width of the number list column is governed by the length \gls-
pagelistwidth. The widths of the name and symbol columns are governed by the widest
entry in the given column.

312

13. Glossary Styles

�

altlongragged4colborder

The altlongragged4colborder style is like the altlongragged4col but has horizontal and vertical

lines around it.

�

altlongragged4colheader

The altlongragged4colheader style is like altlongragged4col but has a header row. You may

prefer the altlongragged4col-booktabs style instead.

�

altlongragged4colheaderborder

The altlongragged4colheaderborder style is like altlongragged4colheader but has horizontal

and vertical lines around it.

13.1.4. Longtable Styles (booktabs)

�

\usepackage{glossary-longbooktabs}
load explicitly or with \usepackage[stylemods=longbooktabs]

{glossaries-extra}

The glossary styles described in this section are all defined in the package glossary-longbook-
tabs.

Since these styles all use the longtable environment, they are governed by the same parameters

as that environment. The glossary-longbooktabs package automatically loads the glossary-long
(§13.1.2) and glossary-longragged (§13.1.3) packages. Note that these styles will only be avail-
able if you explicitly load glossary-longbooktabs:

�

\usepackage{glossaries}
\usepackage{glossary-longbooktabs}

Note that you can’t set these styles using thestyle package option since the styles aren’t defined

until after the glossaries package has been loaded.

With glossaries-extra, you can load both the package and style with thestyle andstylemods
options. For example:

�

\usepackage[style=long3col-booktabs,stylemods=
longbooktabs]{glossaries-extra}

313

13. Glossary Styles

As with the glossary-long styles, groups are separated with a blank row unless nogroup-
skip is used before the style is set. For example:

�

\usepackage[nogroupskip]{glossaries}
\usepackage{glossary-longbooktabs}
\setglossarystyle{long-booktabs}

Or

�

\printglossary[nogroupskip,style=long-booktabs]

These styles are similar to the “header” styles in the glossary-long and glossary-longragged
packages, but they add the rules provided by the booktabs package, \toprule, \midrule
and \bottomrule. Additionally these styles patch the longtable environment to check for

instances of the group skip occurring at a page break. If you don’t want this patch to affect any

other use of longtable in your document, you can scope the effect by only setting the style through

the style key in the optional argument of \print〈…〉glossary.
Alternatively, you can restore the original longtable behaviour with:

�

\glsrestoreLToutput

The penalty check is tested with:

�

\glsLTpenaltycheck

The default definition is:

\ifnum\outputpenalty=-
50\vskip-\normalbaselineskip\relax\fi

With the default nogroupskip=false, \glsgroupskip will be defined to use:

�

\glspenaltygroupskip

to insert the vertical gap. This is defined as:

\noalign{\penalty-50\vskip\normalbaselineskip}

314

13. Glossary Styles

�

long-booktabs

This style is similar to the longheader style but adds rules above and below the header (\top-
rule and \midrule) and inserts a rule at the bottom of the table (\bottomrule).

�

long3col-booktabs

This style is similar to the long3colheader style but adds rules as per long-booktabs.

�

long4col-booktabs

This style is similar to the long4colheader style but adds rules as above.

�

altlong4col-booktabs

This style is similar to the altlong4colheader style but adds rules as above.

�

longragged-booktabs

This style is similar to the longraggedheader style but adds rules as above.

�

longragged3col-booktabs

This style is similar to the longragged3colheader style but adds rules as above.

�

altlongragged4col-booktabs

This style is similar to the altlongragged4colheader style but adds rules as above.

13.1.5. Supertabular Styles

�

\usepackage{glossary-super}
automatically loaded with \usepackage{glossaries}

The glossary styles described in this section are all defined in the package glossary-super.
Since they all use the supertabular environment, they are governed by the same parameters as that

environment. Note that these styles will automatically be available unless you use thenosuper
or nostyles package options. In general, the longtable environment is better, but there are

some circumstances where it is better to use supertabular. (For example, with the flowfram

package.) These styles fully justify the description and number list columns. If you want ragged

right formatting instead, use the analogous styles described in §13.1.6.

315

13. Glossary Styles

As with the glossary-long styles, groups are separated with a blank row unless nogroup-
skip is used before the style is set. For example:

�

\usepackage[nogroupskip]{glossaries}
\setglossarystyle{super}

Or

�

\usepackage[nogroupskip,style=super]{glossaries}

Or

�

\printglossary[nogroupskip,style=super]

�

Sometimes the supertabular style doesn’t put page breaks in the right place. If you have

unexpected output, try the glossary-long styles instead. Alternatively, try the alttree style.

�
super

The super style uses the supertabular environment (defined by the supertabular package). It

has two columns: the first column contains the entry’s name and the second column contains

the description followed by the number list. The entry’s symbol is ignored. The width of the

first column is governed by the widest entry in that column. The width of the second column is

governed by the length \glsdescwidth. Child entries have a similar format to the parent
entries except that their name is suppressed.

�

superborder

The superborder style is like super but has horizontal and vertical lines around it.

�

superheader

The superheader style is like super but has a header row.

�

superheaderborder

The superheaderborder style is like superheader but has horizontal and vertical lines around

316

13. Glossary Styles

it.

�

super3col

The super3col style is like super but has three columns. The first column contains the entry’s

name, the second column contains the description and the third column contains the number list.

The entry’s symbol is ignored. The width of the first column is governed by the widest entry in

that column. The width of the second column is governed by the length \glsdescwidth.
The width of the third column is governed by the length \glspagelistwidth.

�

super3colborder

The super3colborder style is like the super3col style but has horizontal and vertical lines around

it.

�

super3colheader

The super3colheader style is like super3col but has a header row.

�

super3colheaderborder

The super3colheaderborder style is like the super3colheader style but has horizontal and ver-

tical lines around it.

�

super4col

The super4col style is like super3col but has an additional column in which the entry’s as-

sociated symbol appears. This style is designed for entries with brief single line descriptions.

The column widths are governed by the widest entry in the given column. Use altsuper4col for

multi-line descriptions.

�

super4colborder

The super4colborder style is like the super4col style but has horizontal and vertical lines around

it.

�

super4colheader

The super4colheader style is like super4col but has a header row.

�

super4colheaderborder

The super4colheaderborder style is like the super4colheader style but has horizontal and ver-

tical lines around it.

317

13. Glossary Styles

�

altsuper4col

The altsuper4col style is like super4col but allows multi-line descriptions and number lists.

The width of the description column is governed by the length \glsdescwidth and the

width of the number list column is governed by the length \glspagelistwidth. The

width of the name and symbol columns is governed by the widest entry in the given column.

�

altsuper4colborder

The altsuper4colborder style is like the super4colborder style but allowsmulti-line descriptions

and number lists.

�

altsuper4colheader

The altsuper4colheader style is like super4colheader but allows multi-line descriptions and

number lists.

�

altsuper4colheaderborder

The altsuper4colheaderborder style is like super4colheaderborder but allows multi-line de-

scriptions and number lists.

13.1.6. Supertabular Styles (Ragged Right)

�

\usepackage{glossary-superragged}
load explicitly or with

\usepackage[stylemods=superragged]{glossaries-extra}

The glossary styles described in this section are all defined in the package glossary-super-
ragged. These styles are analogous to those defined in glossary-super but the multiline columns
are left justified instead of fully justified. Since these styles all use the supertabular environment,

they are governed by the same parameters as that environment. The glossary-superragged pack-
age additionally requires the array package. Note that these styles will only be available if you

explicitly load glossary-superragged:

�

\usepackage{glossaries}
\usepackage{glossary-superragged}

Note that you can’t set these styles using thestyle package option since the styles aren’t defined

until after the glossaries package has been loaded.

318

13. Glossary Styles

With glossaries-extra, you can load both the package and style with thestyle andstylemods
options. For example:

�

\usepackage[style=superragged3col,stylemods=
superragged]{glossaries-extra}

As with the glossary-long styles, groups are separated with a blank row unless nogroup-
skip is used before the style is set. For example:

�

\usepackage[nogroupskip]{glossaries}
\usepackage{glossary-superragged}
\setglossarystyle{superragged}

Or

�

\printglossary[nogroupskip,style=superragged]

�

superragged

The superragged style uses the supertabular environment (defined by the supertabular pack-

age). It has two columns: the first column contains the entry’s name and the second column

contains the (left justified) description followed by the number list. The entry’s symbol is ig-

nored. The width of the first column is governed by the widest entry in that column. The width

of the second column is governed by the length \glsdescwidth. Child entries have a

similar format to the parent entries except that their name is suppressed.

�

superraggedborder

The superraggedborder style is like superragged but has horizontal and vertical lines around

it.

�

superraggedheader

The superraggedheader style is like superragged but has a header row.

�

superraggedheaderborder

The superraggedheaderborder style is like superraggedheader but has horizontal and vertical

lines around it.

319

13. Glossary Styles

�

superragged3col

The superragged3col style is like superragged but has three columns. The first column con-

tains the entry’s name, the second column contains the (left justified) description and the third

column contains the (left justified) number list. The entry’s symbol is ignored. The width of the

first column is governed by the widest entry in that column. The width of the second column is

governed by the length \glsdescwidth. The width of the third column is governed by the
length \glspagelistwidth.

�

superragged3colborder

The superragged3colborder style is like the superragged3col style but has horizontal and ver-

tical lines around it.

�

superragged3colheader

The superragged3colheader style is like superragged3col but has a header row.

�

superragged3colheaderborder

The superragged3colheaderborder style is like the above but has horizontal and vertical lines

around it.

�

altsuperragged4col

The altsuperragged4col style is like superragged3col but has an additional column in which

the entry’s associated symbol appears. The column widths for the name and symbol column are

governed by the widest entry in the given column.

�

altsuperragged4colborder

The altsuperragged4colborder style is like the altsuperragged4col style but has horizontal and

vertical lines around it.

�

altsuperragged4colheader

The altsuperragged4colheader style is like altsuperragged4col but has a header row.

�

altsuperragged4colheaderborder

The altsuperragged4colheaderborder style is like the above but has horizontal and vertical

lines around it.

320

13. Glossary Styles

13.1.7. Tree-Like Styles

�

\usepackage{glossary-tree}
automatically loaded with \usepackage{glossaries}

The glossary styles described in this section are all defined in the package glossary-tree. These
styles are designed for hierarchical glossaries but can also be used with glossaries that don’t have

sub-entries. These styles will display the entry’s symbol if it has been set. Note that these styles

will automatically be available unless you use the notree or nostyles package options.

These styles all format the entry name using:

�

\glstreenamefmt{〈text〉}

This defaults to \textbf{〈text〉}, but note that 〈text〉 will include \glsnamefont so the

bold setting in \glstreenamefmt may be counteracted by another font change in \gls-
namefont (or in \acronymfont). The tree-like styles that also display the header use

�

\glstreegroupheaderfmt{〈text〉}

to format the heading. This defaults to \glstreenamefmt{〈text〉}. The tree-like styles
that display navigation links to the groups (such as indexhypergroup), format the navigation line

using

�

\glstreenavigationfmt{〈text〉}

which defaults to \glstreenamefmt{〈text〉}.
Note that this is different from \glslistnavigationitem, provided with the styles

such as listhypergroup, as that also includes \item.
With the exception of the alttree style (and those derived from it), the space before the de-

scription for top-level entries is produced with

�

\glstreepredesc

This defaults to \space.
With the exception of the treenoname and alttree styles (and those derived from them), the

space before the description for child entries is produced with

�

\glstreechildpredesc

This defaults to \space.

321

13. Glossary Styles

�

Most of these styles are not designed for multi-paragraph descriptions. (The tree style

isn’t too bad for multi-paragraph top-level entry descriptions, or you can use the index

style with the adjustment shown below.)

�

index

The index style is similar to the way standard indices are usually formatted in that it has a

hierarchical structure up to three levels (the main level plus two sub-levels). If the symbol is

present it is set in parentheses after the name and before the description. Sub-entries are indented

and also include the name, the symbol in brackets (if present) and the description. Groups are

separated using \indexspace.
Each main level item is started with

�

\glstreeitem

The level 1 entries are started with

�

\glstreesubitem

The level 2 entries are started with

�

\glstreesubsubitem

Note that the index style automatically sets

\let\item\glstreeitem
\let\subitem\glstreesubitem
\let\subsubitem\glstreesubsubitem

at the start of the theglossary environment for backward compatibility.

The index style isn’t suitable for multi-paragraph descriptions, but this limitation can be over-

come by redefining the above commands. For example:

�

\renewcommand{\glstreeitem}{%
\parindent0pt\par\hangindent40pt
\everypar{\parindent50pt\hangindent40pt}}

322

13. Glossary Styles

�

indexgroup

The indexgroup style is similar to the index style except that each group has a heading obtained

using \glsgetgrouptitle.

�

indexhypergroup

The indexhypergroup style is like indexgroup but has a set of links to the glossary groups. The

navigation line is the same as that for listhypergroup, described above, but is formatted using

\glstreenavigationfmt.

�
tree

The tree style is similar to the index style except that it can have arbitrary hierarchical levels.

(Note that makeindex is limited to three levels, so you will need to use another indexing

method if you want more than three levels.) Each sub-level is indented according to the length

�

\glstreeindent initial: 10pt

This value can be changed with \setlength.
Note that the name, symbol (if present) and description are placed in the same paragraph

block. If you want the name to be apart from the description, use the alttree style instead. (See

below.)

�
treegroup

The treegroup style is similar to the tree style except that each group has a heading.

�

treehypergroup

The treehypergroup style is like treegroup but has a set of links to the glossary groups. The

navigation line is the same as that for listhypergroup, described above, but is formatted using

\glstreenavigationfmt.

�
treenoname

The treenoname style is like the tree style except that the name for each sub-entry is ignored.

�
treenonamegroup

The treenonamegroup style is similar to the treenoname style except that each group has a

heading.

323

13. Glossary Styles

�

treenonamehypergroup

The treenonamehypergroup style is like treenonamegroup but has a set of links to the glos-

sary groups. The navigation line is the same as that for listhypergroup, described above, but is

formatted using \glstreenavigationfmt.

�

alttree

The alttree style is similar to the tree style except that the indentation for each level is deter-

mined by the width of the text specified by

�

\glssetwidest[〈level〉]{〈name〉}

The optional argument 〈level〉 indicates the hierarchical level, where 0 indicates the top-most

level, 1 indicates the first level sub-entries, etc. If \glssetwidest hasn’t been used for a

given sub-level, the level 0 widest text is used instead. If 〈level〉 is omitted, 0 is assumed.

�

If you use the alttree style without setting the widest top level (level 0) name, there will

be no room available for the name. If a name overlaps the description, then this is an

indication that there is a name wider than the one specified.

This requires keeping track of which entry has the widest name, which may not be practical

for large glossaries. Instead you can use:

�

\glsfindwidesttoplevelname[〈glossary labels〉]

This iterates over all entries in the glossaries identified by the comma-separated list 〈glossary
labels〉 and determines the widest top level (level 0) entry. If the optional argument is omitted,
all non-ignored glossaries are assumed.

For example, to have the same name width for all glossaries:

�

\glsfindwidesttoplevelname
\setglossarystyle{alttree}
\printglossaries

Alternatively, to compute the widest entry for each glossary before it’s displayed:

324

13. Glossary Styles

�

\renewcommand{\glossarypreamble}{%
\glsfindwidesttoplevelname[\currentglossary]}

\setglossarystyle{alttree}
\printglossaries

�

These commands only affects the alttree styles, including those listed below and the ones

in the glossary-mcols package.

glossaries-extra

The \glssetwidest command also affects the styles provided by glossary

-topic. The glossaries-extra-stylemods package provides additional commands. With

bib2gls, you may prefer the set-widest resource option.

For each level, the name is placed to the left of the paragraph block containing the symbol

(optional) and the description. If the symbol is present, it is placed in parentheses before the

description.

The name is placed inside a left-aligned \makebox, created with:

�

\glstreenamebox{〈width〉}{〈text〉}

where 〈width〉 is the width of the box (calculated from the widest name) and 〈text〉 is the contents
of the box. For example, to make the name right-aligned:

�

\renewcommand*{\glstreenamebox}[2]{%
\makebox[#1][r]{#2}%

}

�

alttreegroup

The alttreegroup is like the alttree style except that each group has a heading.

�

alttreehypergroup

The alttreehypergroup style is like alttreegroup but has a set of links to the glossary groups.

325

13. Glossary Styles

13.1.8. Multicols Style

�

\usepackage{glossary-mcols}
load explicitly or with

\usepackage[stylemods=mcols]{glossaries-extra}

The glossary-mcols package provides tree-like glossary styles that are in the multicols envi-

ronment (defined by the multicol package). The style names are as their analogous tree styles

(as defined in §13.1.7) but are prefixed with “mcol”. For example, the mcolindex style is es-

sentially the index style but put in a multicols environment. For the complete list, see Ta-

ble 13.2 on the following page. The glossary-tree package is automatically loaded by glossary

-mcols (even if the notree package option is used when loading glossaries). The formatting

commands \glstreenamefmt, \glstreegroupheaderfmt and \glstree-
navigationfmt are all used by the corresponding glossary-mcols styles.

Note that these styles will only be available if you explicitly load glossary-mcols:

�

\usepackage{glossaries}
\usepackage{glossary-mcols}

Note that you can’t set these styles using thestyle package option since the styles aren’t defined

until after the glossaries package has been loaded.

With glossaries-extra, you can load both the package and style with thestyle andstylemods
options. For example:

�

\usepackage[style=mcolindex,stylemods=mcols]
{glossaries-extra}

The default number of columns is 2, but can be changed by redefining:

�

\glsmcols initial: 2

For example, for a three column glossary:

�

\usepackage{glossary-mcols}
\renewcommand*{\glsmcols}{3}
\setglossarystyle{mcolindex}

The styles with a navigation line, such as mcoltreehypergroup, now have a variant (as from

v4.22) with “hypergroup” replaced with “spannav” in the style name. The original “hypergroup”

326

13. Glossary Styles

Table 13.2.: Multicolumn Styles

glossary-mcols Style Analogous Tree Style

mcolindex index

mcolindexgroup indexgroup

mcolindexhypergroup or mcolindexspannav indexhypergroup

mcoltree tree

mcoltreegroup treegroup

mcoltreehypergroup or mcoltreespannav treehypergroup

mcoltreenoname treenoname

mcoltreenonamegroup treenonamegroup

mcoltreenonamehypergroup or mcoltreenonamespannav treenonamehypergroup

mcolalttree alttree

mcolalttreegroup alttreegroup

mcolalttreehypergroup or mcolalttreespannav alttreehypergroup

styles place the navigation line at the start of the first column. The newer “spannav” styles put

the navigation line in the optional argument of the multicols environment so that it spans across

all the columns.

13.1.9. In-Line Style

�

\usepackage{glossary-inline}
load explicitly or with

\usepackage[stylemods=inline]{glossaries-extra}

This section covers the glossary-inline package that supplies the inline style. This is a glossary
style that is designed for in-line use (as opposed to block styles, such as lists or tables). This style

doesn’t display the number list.

Note that this style will only be available if you explicitly load glossary-inline:

�

\usepackage{glossaries}
\usepackage{glossary-inline}

With glossaries-extra, you can load both the package and style with thestyle andstylemods
options. For example:

�

\usepackage[style=inline,stylemods=inline]
{glossaries-extra}

327

13. Glossary Styles

You will most likely need to redefine \glossarysection with this style. For example,

suppose you are required to have your glossaries and list of acronyms in a footnote, you can do:

�

\usepackage{glossary-inline}
\renewcommand*{\glossarysection}[2][]{\textbf{#1}: }
\setglossarystyle{inline}

Then where you need to include your glossaries as a footnote you can do:

�

\footnote{\printglossaries}

�

inline

This is the only style provided by glossary-inline.
The group skip command \glsgroupskip is defined to do nothing, regardless of the

nogroupskip option. Likewise, \glsgroupheading is defined to do nothing. If you

want to create a custom style base on the inline style that shows a heading, then add \glsin-
linedopostchild to the definition of \glsgroupheading in case a group heading

follows a child entry.

�

Don’t redefine \glsinlinedopostchild. It’s provided as a user command to

make it easier to add it to the start of a custom definition of \glossaryheader to

enable group headings. If you need to adjust the content between a sub-entry and the next

entry, redefine \glsinlinepostchild instead.

The inline style is governed by the following commands.

�

\glsinlineseparator initial: ;\space

This is used between top level (level 0) entries.

�

\glsinlinesubseparator initial: ,\space

This is used between sub-entries.

�

\glsinlineparentchildseparator initial: :\space

This is used between a top level (level 0) parent entry and its first sub-entry.

328

13. Glossary Styles

�

\glspostinline

This is used at the end of the glossary. The default definition is:

\glspostdescription\space

This is the only place that the post-description hook is used in this style.

�

\glsinlinenameformat{〈entry-label〉}{〈name〉}

This is used to create the target, where 〈name〉 is provided in the form \glossentryname
{〈entry-label〉} and 〈entry-label〉 is the entry’s label. The default definition is:

\glstarget{〈entry-label〉}{〈name〉}

For example, if you want the name to appear in small caps:

�

\renewcommand*{\glsinlinenameformat}[2]{\glstarget
{#1}{\textsc{#2}}}

This style needs to know if an entry has any children. This test is performed with:

�

\glsinlineifhaschildren{〈entry-label〉}{〈true〉}{〈false〉}

The default definition simply uses \ifglshaschildren, which is inefficient as it has to

iterate through all entries (in the same glossary as 〈entry-label〉) to determine which ones have
the given entry as a parent. This can be time-consuming for large glossaries, but the assump-

tion here is that an inline glossary is unlikely to be used with a large set of entries. However,

if you are using bib2gls with the save-child-count resource option, it’s more ef-

ficient to use \GlsXtrIfHasNonZeroChildCount instead (particularly if you are

using \printunsrtglossary with a filtered subset). For example:

�

\renewcommand{\glsinlineifhaschildren}[3]{%
\GlsXtrIfHasNonZeroChildCount{〈#1〉}{#2}{#3}%
}

Sub-entry names are formatted according to:

329

13. Glossary Styles

�

\glsinlinesubnameformat{〈entry-label〉}{〈name〉}

which has the same syntax as \glsinlinenameformat but a different definition:

\glstarget{〈entry-label〉}{}

which means that the sub-entry name is ignored.

If the description is empty or has been suppressed (according to \ifglshasdesc and

\ifglsdescsuppressed, respectively) then:

�

\glsinlineemptydescformat{〈symbol〉}{〈location list〉}

(which does nothing by default) is used, otherwise the description is formatted according to:

�

\glsinlinedescformat{〈description〉}{〈symbol〉}{〈location list〉}

This defaults to just \space〈description〉 so the symbol and location list are ignored.
For example, if you want a colon between the name and the description:

�

\renewcommand*{\glsinlinedescformat}[3]{: #1}

The sub-entry description is formatted according to:

�

\glsinlinesubdescformat{〈description〉}{〈symbol〉}{〈location list〉}

This defaults to just 〈description〉.
�

\glsinlinepostchild

This hook is used at the start of a top level (level 0) entry that immediate follows a sub-entry. It

does nothing by default.

13.2. Defining your own glossary style

The markup used in the glossary is described in §8.2. Commands that may be used by styles,

but should not be redefined by styles, are described in §§13.2.1 & 13.2.2. The commands that

should be redefined by the glossary style are described in §13.2.3.

330

13. Glossary Styles

�

Commands like \printglossary are designed to produce content in the PDF. If

your intention is to design a style that doesn’t print any content (for example, to simply

capture information) then you are likely to experience unwanted side-effects. If you just

want to capture indexing information (such as locations) then a much better approach is

to use bib2gls, which automatically stores this information in dedicated fields when

the entry is defined. If you still really want to use a style to capture information obtained

from makeindex or xindy then simply \input the indexing file instead of using

\printglossary.

If the predefined glossary styles don’t fit your requirements, you can define your own style

using:

�

\newglossarystyle{〈style-name〉}{〈definitions〉}

where 〈style-name〉 is the name of the new glossary style (to be used in the style option or

\setglossarystyle). An existing style can be redefined with:

�

\renewglossarystyle{〈style-name〉}{〈definitions〉}

In both cases, the second argument 〈definitions〉 needs to redefine all of the commands listed in
§13.2.3.

�

Bear in mind that parameters will need to be referenced with ## rather than .

A style may inherit from an existing style by starting 〈definitions〉 with \setglossary-
style and then just redefine the commands that are different from the inherited style.

For example, the indexgroup style is basically the same as the index style, except for the defi-

nition of \glsgroupheading, so the style is simply defined as:

\newglossarystyle{indexgroup}{%
\setglossarystyle{index}% inherit index
% alter the command that's different:
\renewcommand*{\glsgroupheading}[1]{%
\item\glstreegroupheaderfmt{\glsgetgrouptitle

{##1}}%
\indexspace

}%
}

331

13. Glossary Styles

13.2.1. Commands For Use in Glossary Styles

These commands are typically used in style definitions but should not be modified by the style.

See §13.2.2 for hyperlinks to group headings.

In order to support the entrycounter=option, a style needs to use:

�

\glsentryitem{〈label〉}

at the placewhere the associated number should appear if the option is set. Ifentrycounter
=true, \glsentryitem will do:

\glsstepentry{〈label〉}\glsentrycounterlabel

otherwise it will do\glsresetsubentrycounter (which ensures the sub-entry counter

is reset if it has been enabled with subentrycounter).
For example, the list style defines \glossentry as follows:

\renewcommand*{\glossentry}[2]{%
\item[\glsentryitem{##1}%

\glstarget{##1}{\glossentryname{##1}}]
\glossentrydesc{##1}\glspostdescrip-

tion\space ##2}

In order to support the subentrycounter=option, a style needs to use:

�

\glssubentryitem{〈label〉}

at the place where the associated number should appear if the option is set. If subentry-
counter=true, this will do:

\glsstepsubentry{〈label〉}\glssubentrycounterlabel

otherwise it does nothing. This will typically only be used with level 1 and omitted for deeper

hierarchical levels.

For example, the index style has:

332

13. Glossary Styles

\renewcommand{\subglossentry}[3]{%
\ifcase##1
% level 0
\item

\or
% level 1
\subitem
\glssubentryitem{##2}%

\else
% all other levels
\subsubitem

\fi
\glstreenamefmt{\glstarget{##2}{\glossentryname

{##2}}}%
\ifglshassymbol{##2}{\space(\glossentrysymbol{##2}

)}{}%
\glstreechildpredesc\glossentrydesc{##2}\glspost-

description\space ##3%
}

The test for level 0 is redundant in this case as \glossentry will be used for top level

(level 0) entries, but is provided for completeness. Note that \glssubentryitem is only

used for level 1.

The style will typically also create the target to enable hyperlinks from an entry reference

within the document (created with commands like \gls) to the entry line in the glossary.
The target is created with:

�

\glstarget{〈entry-label〉}{〈text〉}

If hyperlinks aren’t enabled, this simply does the second argument 〈text〉, otherwise it will create
a target with the name 〈prefix〉〈entry-label〉, where the prefix is obtained by expanding:

�

\glolinkprefix initial: glo:

The glossaries-extra package has options, such as prefix, that can be used to override this.

�

\glossentryname{〈entry-label〉}

This is used in glossary styles to display the name encapsulated with\glsnamefont. Unlike
\glsentryname, this command will trigger a warning if the entry hasn’t been defined. The
sentence case version is:

333

13. Glossary Styles

�

\Glossentryname{〈entry-label〉}

Both commands internally use \glsnamefont so there’s no need to explicitly use that com-

mand in a style.

glossaries-extra

With glossaries-extra, the glossnamefont and glossname category attributes

can be used to adjust font and, for \glossentryname, case-changing. If you just
use \glsentryname, the style won’t be influenced by those attributes.

�

\glossentrydesc{〈entry-label〉}

This is used in glossary styles to display the description. Unlike \glsentrydesc, this com-
mand will trigger a warning if the entry hasn’t been defined. The sentence case version is:

�

\Glossentrydesc{〈entry-label〉}

glossaries-extra

With glossaries-extra the glossdescfont and glossdesc category attributes

can be used to adjust font and, for \glossentrydesc, case-changing. If you just
use \glsentrydesc, the style won’t be influenced by those attributes.

�

\glossentrysymbol{〈entry-label〉}

This is used in glossary styles to display the symbol. Unlike \glsentrysymbol, this
command will trigger a warning if the entry hasn’t been defined. The sentence case version is:

�

\Glossentrysymbol{〈entry-label〉}

glossaries-extra

With glossaries-extra you can use the glosssymbolfont category attribute to ad-

just font. If you just use \glsentrysymbol, the style won’t be influenced by that
attribute.

glossary styles that support groups can obtain the group title with:

334

13. Glossary Styles

�

\glsgetgrouptitle{〈group-label〉}

This gets the title associated with the group identified by 〈group-label〉 and displays it. The title
is determined as follows:

• if 〈group-label〉 is a single character or eitherglsnumbers orglssymbols and the

command \〈group-label〉groupname exists, then that command is used as the title.

• otherwise the title is the same as the group label.

glossaries-extra

The glossaries-extra package provides improved support for group titles, but redefines

\glsgetgrouptitle to accommodate the enhanced features.

13.2.2. Hyper Group Navigation

�

\usepackage{glossary-hypernav}
automatically loaded with \usepackage{glossaries}

There is no need to load this package. It will automatically be loaded by glossaries. If hyperref

hasn’t been loaded, these commands will still be available but simply won’t form hyperlinks or

targets, so they can be used in glossary styles without any need to check for hyperlink support.

(However, the result might look a bit strange if the reader expects the navigation text to be

hyperlinks.)

�

\glsnavhypertarget[〈glossary-label〉]{〈group-label〉}{〈group-title〉}

Creates a hyper target for a group. The 〈glossary-label〉 argument is the label that identifies the
glossary. If omitted, \currentglossary is assumed. The 〈group-label〉 argument is the
label that identifies the group. This additionally writes information to the aux file so that on the

next LATEX run, \glsnavigation will have a list of groups for the glossary.

For example, the indexhypergroup includes a group target in the header:

\renewcommand*{\glsgroupheading}[1]{%
\item\glstreegroupheaderfmt
{\glsnavhypertarget{#1}{\glsgetgrouptitle{#1}}}

%
\indexspace

}

335

13. Glossary Styles

�

\glsnavhypergroupdotarget{〈glossary-label〉}{〈group-label〉}{〈group-
title〉}

This is used by \glsnavhypertarget to create the actual hyperlink target. So if you

need to change the way that the target is created, redefine this command rather than \glsnav-
hypertarget.

�

\glsnavhyperlink[〈glossary-label〉]{〈group-label〉}{〈group-title〉}

Creates a hyperlink to the given group, where the target name is obtained from:

�

\glsnavhyperlinkname[〈glossary-label〉]{〈group-label〉}

The 〈glossary-label〉 argument is the label that identifies the glossary. If omitted, \current-
glossary is assumed. Typically, styles don’t need to explicitly use this command as they can

use the following command instead.

�

Version 4.53 has switched from using an internal comma-separated list to a sequence

command. If you have hacked the internal commands you will need to either rollback to

v4.52 or switch to the newer commands.

�

\glsnavigation

Displays a simple navigation list, where each item in the list has a hyperlink created with \gls-
navhyperlink to a group, where the group title is obtained with \glsgetgroup-
title. Each item in the list has the title and hyperlink set with:

�

\glsnavigationitem{〈group-label〉}

This fetches the corresponding group title and creates a hyperlink with \glsnavhyper-
link. The items are separated with:

�

\glshypernavsep

The default definition is \space\textbar\space which creates a vertical bar with a

space on either side.

336

13. Glossary Styles

�

\glssymbolnav

Just produces a simple set of navigation links for the symbol and number groups and ends with

the \glshypernavsep separator. Unlike \glsnavigation, there’s no check to de-
termine if the glossary has those groups. This command is a historical artefact leftover from

early versions. There should be little need for it now as \glsnavigation should include

all the groups that are in the glossary.

13.2.3. Glossary Style Commands

The commands listed in this section should all be redefined by every glossary style. However, a

style may be based on another style, in which case the style definitions should start with \set-
glossarystyle and then only redefine the commands that should differ from the inherited

style.

Note that \print〈…〉glossary sets \currentglossary to the current glossary

label, so it’s possible to create a glossary style that varies according to the glossary type, but this

will generally limit its usefulness.

�

\begin{theglossary}〈content〉\end{theglossary}

The actual content of the glossary is placed inside the theglossary environment. For example,

the list style redefines this to start and end the description environment:

\renewenvironment{theglossary}%
{\glslistinit\begin{description}}{\end

{description}}

Immediately after \begin{theglossary} comes the header:

�

\glossaryheader

For example, the longheader style has:

\renewcommand*{\glossaryheader}{%
\bfseries \entryname & \bfseries \description-
name\tabularnewline\endhead}

(Note that this is not the same as the preamble which occurs before the start of the theglossary

environment and is not part of the style.)

The rest of the contents of the theglossary environment is divided into letter group blocks.

Each block starts with the group heading:

337

13. Glossary Styles

�

\glsgroupheading{〈group-label〉}

Note that the argument is a label that identifies the group. Some glossary styles redefine this

command to do nothing, which means there’s no group title displayed. Others, such as glossary

styles, will obtain the group title from the 〈group-label〉 and format the title to fit the style.

�

The 〈group-label〉 is typically obtained by the indexing application, based on the sort value.

With Options 1, 2 and 3, groups only related to top level (level 0) entries.

glossaries-extra

The glossaries-extra package additionally provides \glssubgroupheading to

support sub-groups, which are only available with Options 4 and 5. Glossary styles should

only include a redefinition of \glssubgroupheading if the style is specifically

designed for use with glossaries-extra as the command won’t be available with just the

base glossaries package. (A default definition will be provided if this command isn’t set

with glossaries-extra.)

After the group heading, each top level (level 0) entry line within the group is formatted with:

�

\glossentry{〈entry-label〉}{〈number-list〉}

The first argument is the entry’s label. The second is the number list that was collated by the

indexing application.

The 〈number-list〉 argumentmay be empty or\relax, or may contain the number list encap-
sulated with \glossaryentrynumbers, possibly prefixed with a pre-number list hook.
If 〈number-list〉 is an unbraced \relax, that typically indicates that Options 2 or 3 were used
and the entry was a parent that wasn’t indexed but has been included because it has an indexed

child entry. An empty 〈number-list〉 argument is more likely to be a result of Options 1, 4 or 5,
in which case nothing can be inferred about whether or not the entry was actually indexed.

Each sub-entry line is formatted with:

�

\subglossentry{〈level〉}{〈entry-label〉}{〈number-list〉}

where 〈level〉 is the hierarchical level. The other arguments are the same as for \gloss-
entry. Some glossary styles redefine this command to simply use \glossentry, in which
case the glossary will have a flat (no-hierarchy) appearance, but the indexing application will still

take the hierarchy into account when ordering the entries.

338

13. Glossary Styles

�

The glossary styles should redefine \glossentry and \subglossentry to fit

the style, but they should not redefine the markup in 〈number-list〉. If the style doesn’t

support number lists, then the 〈number-list〉 argument should simply be ignored.

The glossary styles will typically redefine \glossentry to use \glsentryitem to

support the entrycounter option, \glstarget to create the hyperlink target, and will

use \glossentryname to format the name.

Similarly, \subglossentry will typically start with \glssubentryitem to sup-

port thesubentrycounter option. Again\glstarget is needed to create the hyperlink

target. The entry name may be displayed with \glossentryname or may be omitted to

support homographs.

Between each letter group block (that is, before all instances of \glsgroupheading
except for the first one) is the group skip:

�

\glsgroupskip

Some glossary styles redefine this to do nothing, but some may define it to create a vertical gap

in order to visually separate the letter groups. Most of the predefined styles use the \ifgls-
nogroupskip conditional within this command to determine whether or not to add the gap.

For example, the list style defines \glsgroupskip as follows:

\renewcommand*{\glsgroupskip}{\ifglsnogroup-
skip\else\indexspace\fi}

This has the conditional inside the definition of \glsgroupskip which allows it to be

changed after the style has been set. This causes a problem for tabular-like styles, so those need

to have the conditional outside of the definition. For example, the long-booktabs style has:

\ifglsnogroupskip
\renewcommand*{\glsgroupskip}{}%

\else
\renewcommand*{\glsgroupskip}{\glspenaltygroup-

skip}%
\fi

This requires the conditional to be set before the style definitions are performed.

Example 36: Creating a completely new style

If you want a completely new style, you will need to redefine all of the commands and the

environment listed above in this section.

339

13. Glossary Styles

For example, suppose you want each entry to start with a bullet point. This means that the

glossary should be placed in the itemize environment, so theglossary should start and end that

environment. Let’s also suppose that you don’t want anything between the glossary groups (so

\glsgroupheading and \glsgroupskip should do nothing) and suppose you don’t

want anything to appear immediately after\begin{theglossary} (so\glossaryheader
should do nothing). In addition, let’s suppose the symbol should appear in brackets after the name,

followed by the description and last of all the number list should appear within square brackets

at the end. Then you can create this new glossary style, called, say, mylist, as follows:

�

\newglossarystyle{mylist}{%
% put the glossary in the itemize environment:
\renewenvironment{theglossary}%
{\begin{itemize}}{\end{itemize}}%

% no header after \begin{theglossary}
\renewcommand*{\glossaryheader}{}%
% no visual distinction between glossary groups:
\renewcommand*{\glsgroupheading}[1]{}%
\renewcommand*{\glsgroupskip}{}%
% set how each entry should appear:
\renewcommand*{\glossentry}[2]{%
\item % bullet point
\glstarget{##1}{\glossentryname{##1}}
% the entry name
\space (\glossentrysymbol{##1}
)% the symbol in brackets
\space \glossentrydesc{##1}% the description
\space [##2]% the number list in square brackets
}%
% set how sub-entries appear:
\renewcommand*{\subglossentry}[3]{%
\glossentry{##2}{##3}}%

}

Note that this style creates a flat glossary, where sub-entries are displayed in exactly the same way

as the top level entries. It also hasn’t used\glsentryitem or\glssubentryitem so

it won’t be affected by theentrycounter,counterwithin orsubentrycounter
package options.

Variations:

• Youmight want the entry name to start with a capital, in which case use\Glossentry-
name instead of \glossentryname.

• You might want to check if the symbol hasn’t been set and omit the parentheses if the

symbol is absent. In this case you can use \ifglshassymbol (see §15):

340

13. Glossary Styles

�

\renewcommand*{\glossentry}[2]{%
\item % bullet point
\glstarget{##1}{\glossentryname{##1}}
% the entry name
\ifglshassymbol{##1}% check if symbol exists
{%

\space (\glossentrysymbol{##1}
)% the symbol in brackets
}%
{}% no symbol so do nothing
\space \glossentrydesc{##1}% the description
\space
[##2]% the number list in square brackets
}%

Example 37: Creating a new glossary style based on an existing style

If you want to define a new style that is a slightly modified version of an existing style, you can

use \setglossarystyle within the second argument of \newglossarystyle
followed by whatever alterations you require. For example, suppose you want a style like the list

style but you don’t want the extra vertical space created by \indexspace between groups,

then you can create a new glossary style called, say, mylist as follows:

�

\newglossarystyle{mylist}{%
\setglossarystyle{list}
% base this style on the list style
% make nothing happen between groups:
\renewcommand{\glsgroupskip}{}%
}

(In this case, you can actually achieve the same effect using the list style in combination with the

package option nogroupskip.)

Example 38: Example: creating a glossary style that uses the user1, …,

user6 keys

Suppose each entry not only has an associated symbol, but also units (stored in user1) and

341

13. Glossary Styles

dimension (stored in user2). Then you can define a glossary style that displays each entry in a
longtable as follows:

�

\newglossarystyle{long6col}{%
% put the glossary in a longtable environment:
\renewenvironment{theglossary}%
{\begin{longtable}{lp{\glsdescwidth}cccp{\glspage-

listwidth}}}%
{\end{longtable}}%

% Set the table's header:
\renewcommand*{\glossaryheader}{%
\bfseries Term & \bfseries Description & \bfseries Symbol &
\bfseries Units & \bfseries Dimensions & \bfseries Page List
\\\endhead}%

% No heading between groups:
\renewcommand*{\glsgroupheading}[1]{}%

% top level (level 0) entries displayed in a row optionally numbered:
\renewcommand*{\glossentry}[2]{%
\glsentryitem{##1}% Entry number if required
\glstarget{##1}{\glossentryname{##1}}% Name
& \glossentrydesc{##1}% Description
& \glossentrysymbol{##1}% Symbol
& \glsentryuseri{##1}% Units
& \glsentryuserii{##1}% Dimensions
& ##2% Page list
\tabularnewline % end of row

}%
% Similarly for sub-entries (no sub-entry numbers)
\renewcommand*{\subglossentry}[3]{%

% ignoring first argument (sub-level)
\glstarget{##2}{\glossentryname{##2}}% Name
& \glossentrydesc{##2}% Description
& \glossentrysymbol{##2}% Symbol
& \glsentryuseri{##2}% Units
& \glsentryuserii{##2}% Dimensions
& ##3% Page list
\tabularnewline % end of row

}%
% Nothing between groups:
\renewcommand*{\glsgroupskip}{}%
}

342

13. Glossary Styles

343

14. Xindy (Option 3)

If you want to use xindy to sort the glossary, you must use the package option xindy:

�

\usepackage[xindy]{glossaries}

This ensures that the information is written to the indexing files using xindy’s raw syntax.

§1.6 covers how to use the external indexing application, and §12.3 covers the issues involved

in the location syntax. This section covers the commands provided by the glossaries package

that allow you to adjust the xindy style file (xdy) and parameters.
To assist writing information to the xindy style file, the glossaries package provides the

following commands:

�

\glsopenbrace

which expands to (a literal open brace) and

�

\glsclosebrace

which expands to (a literal closing brace). This is needed because \{ and \} don’t expand to

a simple brace character when written to a file.

�

\glspercentchar

Expands to (a literal percent).

�

\glstildechar

Expands to ~ (a literal tilde).

For example, a newline character is specified in a xindy style file using ~n so you can use

\glstildechar n to write this correctly (or you can do\string~ (literal)n).

�

\glsbackslash

Expands to \ (a literal tilde).

In addition, if you are using a package that makes " (double-quote) active you can use:

344

14. Xindy (Option 3)

�

\glsquote{〈text〉}

whichwill produce"〈text〉", where" is a literal character. Alternatively, you can use\string"
to write the double-quote character. This document assumes that the double quote character has

not been made active, so the examples just use " for clarity.

If you want greater control over the xindy style file than is available through the LATEX

commands provided by the glossaries package, you will need to edit the xindy style file. In

which case, you must use \noist to prevent the style file from being overwritten by \make-
glossaries package. For additional information about xindy, read the xindy docu-

mentation. I’m sorry I can’t provide any assistance with writing xindy style files. If you need

help, I recommend you ask on the xindy mailing list.1

14.1. Required Styles

The xdy file created by \makeglossaries starts with identifying the required styles. By

default, the tex style is automatically added, so the xdy file should contain:

; required styles
(require "tex.xdy")

Any additional styles can be identified in the preamble (before \makeglossaries) with:

�

\GlsAddXdyStyle{〈style-name〉}

The styles are all stored as a comma-separated list, so you can list multiple styles within the

argument, but avoid spurious spaces. You can reset the style list (for example, if a style needs to

be identified before tex.xdy) with:

�

\GlsSetXdyStyles{〈style name list〉}

The argument should be a comma-separated list where, again, you need to make sure there are

no spurious spaces.

1http://xindy.sourceforge.net/mailing-list.html

345

http://xindy.sourceforge.net/mailing-list.html
http://xindy.sourceforge.net/mailing-list.html

14. Xindy (Option 3)

14.2. Language and Encodings

�

The commands in this section are only relevant if you use makeglossaries or

automake. If you are callingxindy explicitly you need to set the-L and-C switches

appropriately.

When you use xindy, you need to specify the language and encoding used (unless you have
written your own custom xindy style file that defines the relevant alphabet and sort rules).

If you use makeglossaries, this information is obtained from the document’s auxiliary

(aux) file. Themakeglossaries script attempts to find thexindy language name given

your document settings, which may not match the babel or polyglossia name, using set of known

mappings.

�

Language mappings aren’t supported with makeglossaries-lite or

automake.

The default is to use \languagename. The information is written to the aux file at the

start of \printglossary, which means that it should match the language in the document
at that point.

In the event that makeglossaries gets the language name wrong or if xindy doesn’t

support that language, then you can specify the required language using:

�

\GlsSetXdyLanguage[〈glossary-type〉]{〈language〉}

where 〈language〉 is the name of the language. The optional argument can be used if you have
multiple glossaries in different languages. If 〈glossary type〉 is omitted, \glsdefaulttype
is assumed. If a language hasn’t been set for a particular glossary then the language will be as for

the default glossary.

�

The xindy codepage may not simply be the file encoding but may also include sorting

rules.

The default codepage will be obtained from the value of \inputencodingname. If

that command isn’t defined or is empty, utf8 is assumed. As with \languagename, the
input encoding name obtained with \inputencodingname may not match the xindy
codepage name, which may include additional information, such as ij-as-ij (with Dutch)

or din5007 (with German).

Again, makeglossaries will try to adjust the codepage for known cases, but it may get

it wrong. Neither makeglossaries-lite nor the automake option will make those

adjustments.

346

14. Xindy (Option 3)

If the default is incorrect, you can specify the correct codepage using:

�

\GlsSetXdyCodePage{〈codepage〉}

where 〈code-page〉 is the name of the codepage. Note there’s only one codepage for all glossaries
as it’s rare to switch encoding mid-document. For example:

�

\GlsSetXdyLanguage{dutch}
\GlsSetXdyCodePage{ij-as-y-utf8}

This can also be implemented as a package option:

�

\usepackage[xindy=language=dutch,codepage=ij-as-y-
utf8]{glossaries}

In the event that you want one glossary sorted withij-as-y and another withij-as-ij
you will need to call xindy explicitly for each glossary.

�

Somexindymodules only support one encoding for a particular language. For example,

the Latin language module only supports UTF-8

If you write your own custom xindy style file that includes the language settings, you need

to set the language to nothing:

�

\GlsSetXdyLanguage{}

(and remember to use \noist to prevent the style file from being overwritten).

14.3. Locations and Number lists

If you use xindy, the glossaries package needs to know which counters you will be using

in the number list in order to correctly format the xindy style file. Counters specified using

the counter package option or the 〈counter〉 option of \newglossary are automatically

taken care of, but if you plan to use a different counter in the counter key for the \gls-
like or \glstext-like commands, then you need to identify these counters before \make-
glossaries using:

347

14. Xindy (Option 3)

�

\GlsAddXdyCounters{〈counter list〉}

where 〈counter list〉 is a comma-separated list of counter names.
Xindy attributes normally correspond to the encap when using the standard \index com-

mand where the locations are all page numbers, but the glossaries package needs to incorporate

the location counter as well. For example, if the hyperbf encap is used with the section

counter, then the xindy attribute will be sectionhyperbf. This is in contrast to using

makeindex, where the counter is incorporated in the encap with \setentrycounter.
The most likely xindy attributes (such as pagehyperbf) are automatically added to the

xdy style file, but if you want to use another encap, you need to add it with:

�

\GlsAddXdyAttribute{〈name〉}

where 〈name〉 is the name of the encap, as used in the format key.

Note that \GlsAddXdyAttribute will define commands in the form:

�

\glsX〈counter〉X〈format〉{〈H-prefix〉}{〈location〉}

where 〈counter〉 is the location counter and 〈format〉 is the encap (identified by the 〈name〉 ar-
gument of \GlsAddXdyAttribute).
This command is provided for each counter that has been identified either by the counter

package option, the 〈counter〉 option for \newglossary or in the argument of \GlsAdd-
XdyCounters. Each command has a definition in the form:

\setentrycounter[〈H-prefix〉]{〈counter〉}\〈format〉{〈location〉}

This ensures that, if required, location hyperlinks can be supported.

�

The \glsX〈counter〉X〈format〉 commands may need redefining for unusual locations

where the default definition won’t work with hyperlinks (see Example 41 on page 351).

Take care if you have multiple instances of the same location with different formats. The

duplicate locations will be discarded according to the order in which the attributes are listed.

Consider defining semantic commands to use for primary references. For example:

�

\newcommand*{\primary}[1]{\hyperbf{1}}
\GlsAddXdyAttribute{primary}

Then in the document:

348

14. Xindy (Option 3)

�

A \gls[format=primary]{duck} is an aquatic bird.
There are lots of different types of \gls{duck}.

This will give the format=primary instance preference over the next use that doesn’t use

the format key.

Example 39: Custom Font for Displaying a Location

Suppose I want a bold, italic, hyperlinked location. I first need to define a command that will

do this:

�

\newcommand*{\hyperbfit}[1]{\textit{\hyperbf{1}}}

but with xindy, I also need to add this as an allowed attribute:

�

\GlsAddXdyAttribute{hyperbfit}

Now I can use it in the optional argument of commands like \gls:

�

Here is a \gls[formathyperbfit]{sample} entry.

(where “sample” is the label of the required entry).

�

Note that \GlsAddXdyAttribute has no effect if \noist is used or if

\makeglossaries is omitted. \GlsAddXdyAttribute must be used be-

fore \makeglossaries. Additionally, \GlsAddXdyCounters must come

before \GlsAddXdyAttribute.

If the locations include robust or protected formatting commands, then you need to add a

location style using the appropriate xindy syntax using:

�

\GlsAddXdyLocation[〈H-prefix〉]{〈name〉}{〈definition〉}

where 〈name〉 is the name of the location style and 〈definition〉 is the xindy definition. The

optional argument 〈H-prefix〉 is needed if \theH〈counter〉 either isn’t defined or is different

from \the〈counter〉. Be sure to also read §12.3 for some issues that you may encounter.

349

14. Xindy (Option 3)

�

Note that \GlsAddXdyLocation has no effect if \noist is used or if

\makeglossaries is omitted. \GlsAddXdyLocation must be used before

\makeglossaries.

Example 40: Custom Numbering System for Locations

Suppose I decide to use a somewhat eccentric numbering system for sections where I redefine

\thesection as follows:

�

\renewcommand*{\thesection}{[\thechapter]\arabic
{section}}

If I haven’t used the package option counter=section, then I need to specify that the

section counter will be used as a location counter:

�

\GlsAddXdyCounters{section}

Next I need to add the location syntax:

�

\GlsAddXdyLocation{section}{:sep "[" "arabic-
numbers" :sep "]"
"arabic-numbers"

}

This assumes that \thechapter is defined as \arabic{chapter}.
Note that if I have further decided to use the hyperref package and want to redefine \theH-

section as:

�

\renewcommand*{\theHsection}{\thepart.\thesection}
\renewcommand*{\thepart}{\Roman{part}}

then I need to modify the \GlsAddXdyLocation code above to:

�

\GlsAddXdyLocation["roman-numbers-uppercase"]
{section}{:sep "["
"arabic-numbers" :sep "]" "arabic-numbers"

350

14. Xindy (Option 3)

}

Since \Roman will result in an empty string if the counter is zero, it’s a good idea to add an

extra location to catch this:

�

\GlsAddXdyLocation{zero.section}{:sep "["
"arabic-numbers" :sep "]" "arabic-numbers"

}

This example is illustrated in the sample file samplexdy2.tex.

Example 41: Locations as Dice

This example will cause xindy special characters to appear in the location, which means

that location escaping will need to be enabled:

�

\usepackage[xindy,esclocations]{glossaries}
\glswrallowprimitivemodstrue

Suppose I want a rather eccentric page numbering system that’s represented by the number

of dots on dice. The stix package provides \dicei, …, \dicevi that represent the six

sides of a die. I can define a command that takes a number as its argument. If the number is

less than seven, the appropriate \dice〈n〉 command is used otherwise it does \dicevi the

required number of times with the leftover in a final \dice〈n〉. For example, the number 16 is
represented by \dicevi\dicevi\diceiv (6 + 6 + 4 = 16). I’ve called this command
\tallynum to match the example given earlier in §12.3:

�

\newrobustcmd{\tallynum}[1]{%
\ifnum\number1<7
$\csname dice\romannumeral1\endcsname$%

\else
\dicevi%
\expandafter\tallynum\expandafter{\numexpr1-6}%

\fi
}

Here’s the counter command:

351

14. Xindy (Option 3)

�

\newcommand{\tally}[1]{\tallynum{\arabic{1}}}

The page counter representation (\thepage) needs to be changed to use this command:

�

\renewcommand*{\thepage}{\tally{page}}

The \tally command expands to \tallynum {number} so this needs a location class

that exactly matches this format:

�

\GlsAddXdyLocation{tally}{%
:sep "\string\tallynum\space\glsopenbrace"
"arabic-numbers"
:sep "\glsclosebrace"
}

The space between \tallynum and {number} is significant to xindy so \space is re-

quired.

The sample file samplexdy.tex, which comes with the glossaries package, uses the

default page counter for locations, and it uses the default\glsnumberformat and a custom

\hyperbfit format. A new xindy location called “tallynum”, as illustrated above, is

defined to make the page numbers appear as dice. In order for the location numbers to hyperlink

to the relevant pages, I need to redefine the necessary \glsX〈counter〉X〈format〉 commands:

�

\renewcommand{\glsXpageXglsnumberformat}[2]{%
\linkpagenumber2%
}

\renewcommand{\glsXpageXhyperbfit}[2]{%
\textbf{\em\linkpagenumber2}%
}

\newcommand{\linkpagenumber}[2]{\hyperlink{page.2}{1
{2}}}

Note that the second argument of\glsXpageXglsnumberformat is in the form\tallynum
{〈number〉} so the line

�

\linkpagenumber2%

352

14. Xindy (Option 3)

does

�

\linkpagenumber\tallynum{〈number〉}

so \tallynum is the first argument of \linkpagenumber and 〈number〉 is the second
argument.

�

This method is very sensitive to the internal definition of the location command. If you are

defining your own command, you control how it expands, but if you are using a command

provided by another package, be aware that it may stop working in a future version of that

package.

Example 42: Locations as Words not Digits

This example will cause xindy special characters to appear in the location, which means

that location escaping will need to be enabled:

�

\usepackage[xindy,esclocations]{glossaries}
\glswrallowprimitivemodstrue

Suppose I want the page numbers written as words rather than digits and I use the fmtcount

package to do this. I can redefine \thepage as follows:

�

\renewcommand*{\thepage}{\Numberstring{page}}

This used to get expanded to

\protect \Numberstringnum {〈n〉}

where 〈n〉 is the Arabic page number. This means that I needed to define a new location with

the form:

�

\GlsAddXdyLocation{Numberstring}
{:sep "\string\protect\space
\string\Numberstringnum\space\glsopenbrace"
"arabic-numbers" :sep "\glsclosebrace"}

353

14. Xindy (Option 3)

and if I’d used the \linkpagenumber command from the previous example, it would need

three arguments (the first being \protect):

�

\newcommand{\linkpagenumber}[3]{\hyperlink{page.3}
{12{3}}}

The internal definition of \Numberstring has since changed so that it now expands to

\Numberstringnum {〈n〉}

(no \protect). This means that the location class definition must be changed to:

�

\GlsAddXdyLocation{Numberstring}{% no \protect now!
:sep "\string\Numberstringnum\space\glsopenbrace"
"arabic-numbers" :sep "\glsclosebrace"}

and \linkpagenumber goes back to only two arguments:

�

\newcommand{\linkpagenumber}[2]{\hyperlink{page.2}{1
{2}}}

The other change is that \Numberstring uses

\the\value{〈counter〉}

instead of

\expandafter\the\csname c@〈counter〉\endcsname

so it hides \c@page from the location escaping mechanism (see §12.3). This means that the

page number may be incorrect if the indexing occurs during the output routine.

Amore recent change to fmtcount (v3.03) now puts three instances of\expandafter be-

fore \the\value which no longer hides \c@page from the location escaping mechanism,

so the page numbers should once more be correct. Further changes to the fmtcount package may

cause a problem again.

�

When dealing with custom formats where the internal definitions are outside of your con-

trol and liable to change, it’s best to provide a wrapper command.

354

14. Xindy (Option 3)

Instead of directly using\Numberstring in the definition of\thepage, I can provide
a custom command in the same form as the earlier \tally command:

�

\newcommand{\customfmt}[1]{\customfmtnum{\arabic{1}}
}
\newrobustcmd{\customfmtnum}[1]{\Numberstringnum{1}}

This ensures that the location will always be written to the indexing file in the form:

:locref "\glsopenbrace\glsclosebrace\glsopen-
brace\string\\customfmtnum {〈n〉}\glsclosebrace"

So the location class can be defined as:

\GlsAddXdyLocation{customfmt}{
:sep "\string\customfmtnum\space\glsopenbrace"
"arabic-numbers"
:sep "\glsclosebrace"}

The sample file samplexdy3.tex illustrates this.

In the number list, the locations are sorted according to the list of provided location classes.

The default ordering is:

1. roman-page-numbers (i, ii, …);

2. arabic-page-numbers (1, 2, …);

3. arabic-section-numbers (for example, 1.1 if the compositor is a full stop or

1-1 if the compositor is a hyphen);

4. alpha-page-numbers (a, b, …);

5. Roman-page-numbers (I, II, …);

6. Alpha-page-numbers (A, B, …);

7. Appendix-page-numbers (for example, A.1 if theAlpha compositor, see\gls-
SetAlphaCompositor, is a full stop or A-1 if the Alpha compositor is a hyphen);

8. user defined location names (as specified by \GlsAddXdyLocation in the order in

which they were defined);

9. see (cross-referenced entries).

355

14. Xindy (Option 3)

glossaries-extra

With glossaries-extra seealso is appended to the end of the list.

This ordering can be changed using:

�

\GlsSetXdyLocationClassOrder{〈location names〉}

where each location name is delimited by double quote marks and separated by white space. For

example:

�

\GlsSetXdyLocationClassOrder{
"arabic-page-numbers"
"arabic-section-numbers"
"roman-page-numbers"
"Roman-page-numbers"
"alpha-page-numbers"
"Alpha-page-numbers"
"Appendix-page-numbers"
"see"

}

(Remember to add "seealso" if you’re using glossaries-extra.)

�

Note that \GlsSetXdyLocationClassOrder has no effect if \noist is

used or if \makeglossaries is omitted. \GlsSetXdyLocationClass-
Order must be used before \makeglossaries.

If a number list consists of a sequence of consecutive numbers, the range will be concatenated.

The number of consecutive locations that causes a range formation defaults to 2, but can be

changed using:

�

\GlsSetXdyMinRangeLength{〈value〉}

The 〈value〉 may be the keyword none, to indicate no range formation, or a number. For

example:

�

\GlsSetXdyMinRangeLength{3}

See the xindy manual for further details on range formations.

356

14. Xindy (Option 3)

�

Note that \GlsSetXdyMinRangeLength has no effect if \noist is used or

if \makeglossaries is omitted. \GlsSetXdyMinRangeLength must be

used before \makeglossaries.

See also §12.2.

14.4. Glossary Groups

The glossary is divided into groups according to the first letter of the sort key. The glossaries

package also adds a number group by default, unless you suppress it in the xindy package

option. For example:

�

\usepackage[xindy=glsnumbers=false]{glossaries}

Any entry that doesn’t go in one of the letter groups or the number group is placed in the default

group. If you want xindy to sort the number group numerically (rather than by a string sort)

then you need to use xindy’s numeric-sort module:

�

\GlsAddXdyStyle{numeric-sort}

With the default glsnumbers=true, the number group will be placed before the “A”

letter group. This is done in the define-letter-group block in the xdy file:

(define-letter-group "glsnumbers"
:prefixes ("0" "1" "2" "3" "4" "5" "6" "7" "8" "9")
:before "A")

If you are not using a Roman alphabet, you need to change this with:

�

\GlsSetXdyFirstLetterAfterDigits{〈letter〉} modifier: *

{letter} where 〈letter〉 is the first letter of your alphabet. This will change :before "A" to

:before "〈letter〉".
A starred version of this command was added to v4.33 which sanitized 〈letter〉 before writing

it to the xdy file to protect it from expansion with inputenc. This shouldn’t be necessary with

recent LATEX kernels.

Alternatively you can use:

357

14. Xindy (Option 3)

�

\GlsSetXdyNumberGroupOrder{〈relative location〉} modifier: *

This will change :before "A" to 〈relative location〉. Again, a starred version was provided
to sanitize the argument, which should no longer be necessary unless " (double-quote) is active.

For example:

�

\GlsSetXdyNumberGroupOrder{:after "Z"}

will put the number group after the “Z” letter group.

�

Note that these commands have no effect if \noist is used or if \make-
glossaries is omitted. \GlsSetXdyFirstLetterAfterDigits must

be used before \makeglossaries.

358

15. Utilities

This section describes the utility commands provided with the base glossaries package.

glossaries-extra

The glossaries-extra package provides extra utility commands, such as\glsxtruse-
field and \glsxtrfieldformatlist. See the glossaries-extra manual for
further details.

15.1. hyperref

The hyperref package needs to be loaded before glossaries to ensure that the commands provided

by hyperref are only used if they have been defined.

�

\glsdisablehyper

This disables the creation of hyperlinks and targets by commands such as \glshyperlink,
the \gls-like and \glstext-like commands and \glstarget. This setting is the de-
fault if hyperref hasn’t been loaded.

The commands that normally create a hyperlink will use:

�

\glsdonohyperlink{〈target〉}{〈text〉}

The internal command used by\glstarget to create a target is just set to\@secondoftwo.

�

\glsenablehyper

This enables the creation of hyperlinks and targets, and is the default if hyperref has been loaded.

The internal command used by \glstarget to create a target is set to:

�

\glsdohypertarget{〈target〉}{〈text〉}

This will include the debugging information if debug=showtargets has been used, but

also measures the height of 〈text〉 so that it can place the actual target at the top of 〈text〉 rather

359

15. Utilities

than along the baseline. This helps to prevent 〈text〉 from scrolling off the top of the page out of

sight.

The corresponding command that’s used to link to this target is:

�

\glsdohyperlink{〈target〉}{〈text〉}

This includes the debugging information, if applicable, and creates a link with \hyperlink.
Both the above target and link commands have a corresponding hook that does nothing by

default. These commands are not used if hyperlinks have been disabled (or if hyperref has not

been loaded).

�

\glsdohypertargethook{〈target〉}{〈text〉}

This hook occurs after the height of the 〈text〉 has beenmeasured and before the target is inserted.
�

\glsdohyperlinkhook{〈target〉}{〈text〉}

This hook occurs immediately before the link is created with \hyperlink.

�

\glslabelhypertarget{〈target〉}{〈text〉}

This command is provided for use in\glsdohypertargethook and will simulate a label

corresponding to the target. It’s primarily intended for use with \pageref rather than \ref
as there is no corresponding counter to provide a numeric value. It is an alternative to using the

entrycounter option. The label is given by 〈prefix〉〈target〉, where the 〈prefix〉 is obtained
by expanding:

�

\glslabelhypertargetprefix initial: empty

The target 〈text〉 will be the title corresponding to the label (which can be referenced with

\nameref). Since there is no numeric value, the text obtained with \ref will either be

empty or the name of the most recent entry in the glossary list where the hypertarget occurs. For

example:

�

\renewcommand{\glsdohypertargethook}[2]{\glslabel-
hypertarget{#1}{#2}}

Certain commands that may occur in the 〈text〉 argument, such as \glossentryname, are
locally redefined during the protected write to the aux file. These redefinitions are performed

by:

360

15. Utilities

�

\glslabelhypertargetdefs

You can append any additional redefinitions of problematic commands to this hook.

The “value” part of the label (that is, the text produced with \ref) is obtained by expanding:

�

\glslabelhypertargetvalue

The default definition expands

\glsentryname\glscurrententrylabel

if\glscurrententrylabel is defined and not empty. Otherwise it expands to nothing.

�

\glstexorpdfstring{〈TEX〉}{〈PDF〉}

If you’re not sure whether or not the hyperref package will be loaded, this command will use

\texorpdfstring if that command has been defined, otherwise it will simply expand to

〈TEX〉.

15.2. Case-Changing

These commands may be used to perform a case change.

�

Ensure you have at least mfirstuc v2.08 installed to take advantage of improved case-

changing. If you also use glossaries-extra, make sure you have at least v1.49. See the

mfirstuc manual for further details.

�

\glsuppercase{〈text〉}

An expandable command that converts 〈text〉 to uppercase (all caps). This is used by com-

mands such as \GLS and \GLStext and is affected by \glsmfuexcl.

�

\glslowercase{〈text〉}

361

15. Utilities

An expandable command that converts 〈text〉 to lowercase. This isn’t used by the glossaries

package, but you may find it useful with acronym or abbreviation font commands for small caps

styles. This command is affected by \glsmfuexcl.

�

\MFUsentencecase{〈text〉}

This command is used by sentence case commands, such as \Glsentrytext, when ex-
panding in a PDF bookmark.

This command is actually defined by mfirstuc v2.08+, but if an old version of mfirstuc is in-

stalled, the glossaries package will provide the same command. This command is affected by

\glsmfuexcl.

�

\glssentencecase{〈text〉}

Converts 〈text〉 to sentence case. This is used by commands such as \Gls and \Glstext,
and also by commands like \Glsentrytext in the document text.

The default definition is to use the robust \makefirstuc provided by the mfirstuc pack-

age. If you need an expandable command, use \MFUsentencecase instead.

Note that \makefirstuc internally uses \glsmakefirstuc, which is provided by
mfirstuc. The default definition is:

\newcommand*{\glsmakefirstuc}[1]{\MFUsentencecase
{\unexpanded{1}}}

Themfirstuc=expanded package optionwill redefine this commandwithout\unexpanded.
The reason for the use of \unexpanded is mostly a backward-compatibility feature, as

without it there is now the possibility for fragile commands to expand prematurely and cause an

error.

This is because the LATEX3 kernel command used by \MFUsentencecase expands its

argument before applying the case change. With previous versions of mfirstuc, \glsmake-
firstuc would simply apply the case change to the first token.

Suppose a document created with mfirstuc v2.07 had something like:

\newglossaryentry{sample}{
name={sample},
description={an example with a \fragilecommand}

}

and a glossary style is used that performs automated sentence-casing for the description (for

example, with the topic style, provided by glossaries-extra), then this would essentially do:

362

15. Utilities

\makefirstuc{an example with a \fragilecommand}

With old versions of mfirstuc, this would simply end up as:

\MakeTextUppercasean example with a \fragilecommand

so the fragile command is unaffected.

However, with mfirstuc v2.08 and mfirstuc=expanded this would end up as:

\MFUsentencecasean example with a \fragilecommand

and the underlying\text_titlecase_first:nwill expand the entire argument, which

will break the fragile command.

The use of \unexpanded prevents this from happening, but if you don’t have fragile com-

mands and you want the content to be expanded, then use mfirstuc=expanded.

�

\glscapitalisewords{〈content〉}

Converts 〈text〉 to title case. The default definition is to use the robust \capitalise-
words provided bymfirstuc. Youmay need to redefine this command to use\capitalise-
fmtwords instead.

�

\glsmfuexcl{〈cs〉}

This uses\MFUexclwithmfirstuc v2.08+, otherwise its defined in the same way (so it won’t

affect \makefirstuc but will affect commands like \glsuppercase).

�

\glsmfublocker{〈cs〉}

This uses\MFUblockerwithmfirstuc v2.08+, otherwise it simply uses\glsmfuexcl.

�

\glsmfuaddmap{〈cs1〉}{〈cs2〉}

This uses \MFUaddmap with mfirstuc v2.08+, otherwise it simply does

\glsmfuexcl{〈cs〉}
\glsmfublocker{〈Cs〉}

363

15. Utilities

This uses \MFUblocker if defined, otherwise it simply uses \glsmfuexcl.

15.3. Loops

�

Some of the commands described here take a comma-separated list as an argument. As

with LATEX’s\@for command, make sure your list doesn’t have any unwanted spaces in it

as they don’t get stripped. (Discussed in more detail in §2.7.2 of “LATEX for Administrative

Work”.a)

adickimaw-books.com/latex/admin/html/docsvlist.shtml#
spacesinlists

�

\forallglossaries[〈types〉]{〈cs〉}{〈body〉}

This iterates through 〈types〉, a comma-separated list of glossary labels (as supplied when the

glossary was defined). At each iteration the command 〈cs〉 is defined to the glossary label for the
current iteration and 〈body〉 is performed. If 〈types〉 is omitted, the default is to iterate over all
non-ignored glossaries.

�

\forallacronyms{〈cs〉}{〈body〉}

This is like \forallglossaries but only iterates over the lists of acronyms (that have

previously been declared using\DeclareAcronymList or theacronymlists pack-

age option). This command doesn’t have an optional argument. If youwant to explicitly say which

lists to iterate over, just use the optional argument of \forallglossaries.

glossaries-extra

The glossaries-extra package provides an analogous command

\forallabbreviationlists.

�

\forglsentries[〈type〉]{〈cs〉}{〈body〉}

This iterates through all entries in the glossary given by 〈type〉. At each iteration the command
〈cs〉 is defined to the entry label for the current iteration and 〈body〉 is performed. If 〈type〉 is
omitted, \glsdefaulttype is used.

�

\forallglsentries[〈types〉]{〈cs〉}{〈body〉}

364

https://www.dickimaw-books.com/latex/admin/html/docsvlist.shtml#spacesinlists
https://www.dickimaw-books.com/latex/admin/html/docsvlist.shtml#spacesinlists
https://www.dickimaw-books.com/latex/admin/html/docsvlist.shtml#spacesinlists
https://www.dickimaw-books.com/latex/admin/html/docsvlist.shtml#spacesinlists

15. Utilities

This is just a nested loop that essentially does:

\forallglossaries[〈types〉]{〈type-cs〉}{〈% outer loop

\forglsentries[〈type-cs〉]{〈cs〉}{〈body〉}% inner loop

〉}

If 〈types〉 is omitted, the default is the list of all non-ignored glossaries. (The current glossary
label can be obtained using \glsentrytype{〈cs〉} within 〈body〉.)

glossaries-extra

The glossaries-extra package provides commands like \glsxtrforcsvfield to

iterate over any fields that contain comma-separated lists.

15.4. Conditionals

glossaries-extra

The glossaries-extra package provides many more conditional commands.

�

\ifglossaryexists{〈glossary-type〉}{〈true〉}{〈false〉} modifier: *

This checks if the glossary given by 〈glossary-type〉 exists (that is, if it has been defined). If it
does exist 〈true part〉 is performed, otherwise 〈false part〉.
The unstarred form will treat ignored glossaries as non-existent. The starred form will con-

sider them as existing. So both forms will do 〈true〉 if 〈glossary-type〉 was defined by \new-
glossary, but only the starred form will do 〈true〉 if 〈glossary-type〉was defined with\new-
ignoredglossary.
For example, given:

�

\newignoredglossary{common}

then

�

\ifglossaryexists{common}{true}{false}
\ifglossaryexists*{common}{true}{false}

will produce “false true”.

365

15. Utilities

�

\ifglsentryexists{〈entry-label〉}{〈true〉}{〈false〉}

This checks if the glossary entry given by 〈entry-label〉 exists. If it does exist then 〈true〉 is
performed, otherwise this does 〈false〉. Simply uses etoolbox’s \ifcsundef so can expand.

�

\glsdoifexists{〈entry-label〉}{〈code〉}

Does 〈code〉 if the entry given by 〈entry-label〉 exists. If it doesn’t exist, an undefined error is

generated.

�

\glsdoifnoexists{〈entry-label〉}{〈code〉}

Does 〈code〉 if the entry given by 〈entry-label〉 doesn’t exist. If it does exist, an already defined
error is generated.

�

\glsdoifexistsorwarn{〈entry-label〉}{〈code〉}

As \glsdoifexists but issues a warning rather than an error if the entry doesn’t exist.

�

\glsdoifexistsordo{〈entry-label〉}{〈true〉}{〈false〉}

Does 〈code〉 if the entry given by 〈entry-label〉 exists otherwise it generates an undefined error
and does 〈else code〉.

glossaries-extra

The undefined/already defined errors can be converted to warnings withundefaction
=warn.

�

\ifglsused{〈entry-label〉}{〈true〉}{〈false〉}

Tests the entry’s first use flag. If the entry has been used, 〈true〉 will be done, otherwise (if the
entry has been defined) 〈false〉 will be done. If the entry isn’t defined, then an undefined error
will occur and neither 〈true〉 nor 〈false〉 will be done (see §7).
This means that \ifglsused is unreliable with bib2gls as no entries are defined on

the first LATEX run, which means there’s no way of determining if it has been used, so glossaries

-extra provides a similar command:

366

15. Utilities

�

\GlsXtrIfUnusedOrUndefined{〈entry-label〉}{〈true〉}{〈false〉}

In this case, 〈true〉 will be done if the entry hasn’t been used or hasn’t been defined, which is

essentially the logical negation of \ifglsused for defined entries.

�

Some of the following \ifglshas〈xxx〉 commands use \glsdoifexists. In

those cases, the 〈true〉 or 〈false〉 parts are only performed if the entry exists. Neither are
done if the entry doesn’t exist.

�

\ifglshaschildren{〈entry-label〉}{〈true〉}{〈false〉}

This does 〈true〉 if any entries in the same glossary as 〈entry-label〉 had parent={〈entry-
label〉}. This is inefficient and time-consuming if there are a large number of entries defined.

Uses \glsdoifexists.

bib2gls

If you use bib2gls, a more efficient method is to use the save-child-count
resource option and test the value of the childcount field with \GlsXtrIfHas-
NonZeroChildCount.

�

\ifglshasparent{〈entry-label〉}{〈true〉}{〈false〉}

This does 〈true〉 if the parent field is non-empty for the entry identified by 〈entry-label〉.
Uses \glsdoifexists.

�

\ifglshassymbol{〈entry-label〉}{〈true〉}{〈false〉}

A robust command that does 〈true〉 if the symbol field is non-empty and not \relax for

the entry identified by 〈entry-label〉.
�

\ifglshaslong{〈entry-label〉}{〈true〉}{〈false〉}

A robust command that does 〈true〉 if the long field is non-empty and not \relax for the

entry identified by 〈entry-label〉.

367

15. Utilities

�

\ifglshasshort{〈entry-label〉}{〈true〉}{〈false〉}

A robust command that does 〈true〉 if the short field is non-empty and not \relax for

the entry identified by 〈entry-label〉.
�

\ifglshasdesc{〈entry-label〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the description is empty for the entry identified by 〈entry-label〉,
otherwise expands to 〈false〉. Compare with:

�

\ifglsdescsuppressed{〈entry-label〉}{〈true〉}{〈false〉}

This expands to 〈true〉 if description={\nopostdesc} for the entry identified by

〈entry-label〉 otherwise expands to 〈false〉.
There are also commands available for arbitrary fields. Some may allow the field to be iden-

tified by its corresponding key (such as description) but some require the internal field
label (such as desc). See Table 4.1 on page 156 for the internal field labels that correspond

to each key. If you provide your own keys, for example with \glsaddkey, then the internal
label will be the same as the key.

�

\ifglsfieldvoid{〈field-label〉}{〈entry-label〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the field identified by its internal field label 〈field-label〉 is void for the entry
identified by 〈entry-label〉, otherwise it expands to 〈false〉. The void test is performed with etool-
box’s\ifcsvoid. This means that an undefined field or an undefined entry will be considered
void. An empty field value or a field set to \relax are also considered void.

�

\ifglshasfield{〈field〉}{〈entry-label〉}{〈true〉}{〈false〉}

This robust command tests the value of the field given by 〈field〉 for the entry identified by

〈entry-label〉. The 〈field〉 argument may either be the key associated with the field or the internal
field label.

If the field value is empty or \relax, then 〈false〉 is performed, otherwise 〈true〉 is per-
formed. If the field supplied is unrecognised 〈false part〉 is performed and a warning is issued.
If the entry is undefined, an undefined error occurs.

Within 〈true〉, you can access the field’s value with:

368

15. Utilities

�

\glscurrentfieldvalue

This command is initially defined to empty but has no relevance outside of the 〈true〉 argument.
This saves re-accessing the field if the test is true. For example:

�

\ifglshasfield{useri}{sample}{, \glscurrentfield-
value}{}

will insert a comma, space and the field value if the user1 key has been set for the entry whose

label is “sample”.

�

\ifglsfieldeq{〈entry-label〉}{〈field-label〉}{〈string〉}{〈true〉}{〈false〉}

This robust command does 〈true〉 if the entry identified by 〈entry-label〉 has the field identified
by its internal field label (not the key) 〈field-label〉 defined and set to the given 〈string〉. The test
is performed by etoolbox’s \ifcsstring. An error will occur if the field value is undefined
or if the entry hasn’t been defined.

The result may vary depending on whether or not expansion was on for the given field when

the entry was defined (see §4.4). For example:

�

\documentclass{article}

\usepackage{glossaries}

\newcommand*{\foo}{FOO}

\newglossaryentry{sample1}{name={sample1}
,description={an example},
user1={FOO}}
\newglossaryentry{sample2}{name={sample2}
,description={an example},
user1={\foo}}
\begin{document}
\ifglsfieldeq{sample1}{useri}{FOO}{TRUE}{FALSE}.

\ifglsfieldeq{sample2}{useri}{FOO}{TRUE}{FALSE}.
\end{document}

This will produce “TRUE” in both cases since expansion is on for the user1 key, so \foo
was expanded to “FOO” when “sample2” was defined. If the tests are changed to:

369

15. Utilities

�

\ifglsfieldeq{sample1}{useri}{\foo}{TRUE}{FALSE}.

\ifglsfieldeq{sample2}{useri}{\foo}{TRUE}{FALSE}.

then this will produce “FALSE” in both cases. Now suppose expansion is switched off for the

user1 key:

�

\documentclass{article}

\usepackage{glossaries}

\newcommand*{\foo}{FOO}

\glssetnoexpandfield{useri}

\newglossaryentry{sample1}{name={sample1}
,description={an example},
user1={FOO}}
\newglossaryentry{sample2}{name={sample2}
,description={an example},
user1={\foo}}
\begin{document}
\ifglsfieldeq{sample1}{useri}{FOO}{TRUE}{FALSE}.

\ifglsfieldeq{sample2}{useri}{FOO}{TRUE}{FALSE}.
\end{document}

This now produces “TRUE” for the first case (comparing “FOO” with “FOO”) and “FALSE” for

the second case (comparing “\foo” with “FOO”).
The reverse happens in the following:

�

\documentclass{article}

\usepackage{glossaries}

\newcommand*{\foo}{FOO}

\glssetnoexpandfield{useri}

370

15. Utilities

\newglossaryentry{sample1}{name={sample1}
,description={an example},
user1={FOO}}
\newglossaryentry{sample2}{name={sample2}
,description={an example},
user1={\foo}}
\begin{document}
\ifglsfieldeq{sample1}{useri}{\foo}{TRUE}{FALSE}.

\ifglsfieldeq{sample2}{useri}{\foo}{TRUE}{FALSE}.
\end{document}

This now produces “FALSE” for the first case (comparing “FOO” with “\foo”) and “TRUE”
for the second case (comparing “\foo” with “\foo”).
You can test if the value of a field is equal to the replacement text of a command using:

�

\ifglsfielddefeq{〈entry-label〉}{〈field-label〉}{〈cs〉}{〈true〉}{〈false〉}

This robust command is essentially like\ifglsfieldeq but internally uses etoolbox’s\if-
defstrequal command to perform the comparison. The argument 〈cs〉 argument must be
a macro.

For example:

�

\documentclass{article}

\usepackage{glossaries}

\newcommand*{\foo}{FOO}

\glssetnoexpandfield{useri}

\newglossaryentry{sample1}{name={sample1}
,description={an example},
user1={FOO}}
\newglossaryentry{sample2}{name={sample2}
,description={an example},
user1={\foo}}

\begin{document}
\ifglsfielddefeq{sample1}{useri}{\foo}{TRUE}{FALSE}.

371

15. Utilities

\ifglsfielddefeq{sample2}{useri}{\foo}{TRUE}{FALSE}.
\end{document}

Here, the first case produces “TRUE” since the value of the useri field (“FOO”) is the same

as the replacement text (definition) of \foo (“FOO”). We have the result “FOO” is equal to
“FOO”.
The second case produces “FALSE” since the value of the useri field (“\foo”) is not the

same as the replacement text (definition) of \foo (“FOO”). No expansion has been performed

on the value of the useri field. We have the result “\foo” is not equal to “FOO”.
If we add:

�

\newcommand{\FOO}{\foo}
\ifglsfielddefeq{sample2}{useri}{\FOO}{TRUE}{FALSE}.

we now get “TRUE” since the value of theuseri field (“\foo”) is the same as the replacement
text (definition) of \FOO (“\foo”). We have the result “\foo” is equal to “\foo”.
There is a similar command that requires the control sequence name (without the leading

backslash) instead of the actual control sequence:

�

\ifglsfieldcseq{〈entry-label〉}{〈field-label〉}{〈cs-name〉}{〈true〉}
{〈false〉}

This robust command is like ifglsfielddefeq but internally uses etoolbox’s \ifcsstrequal
command instead of \ifdefstrequal.

15.5. Measuring

Sometimes it’s necessary to measure the width or height of some text. For example, \glsdo-
hypertargetmeasures the height of the supplied text to position the target at the top of the

line instead of at the baseline (where it can cause the line to scroll up out of view). Some styles

measure the width of text to assist with alignment.

Measuring can be performed using \settowidth, \settoheight and \setto-
depth, but if the content being measured contains any \gls-like or \glstext-like com-
mands, or if it contains commands like \glsentryitem, it can cause duplication. (See also
§7 for the problems this can cause with unsetting and resetting the first use flag.)

The following measuring commands locally disable indexing, the unset/reset commands, and

\label, and adjust \refstepcounter to only locally update the counter value.

�

\glsmeasureheight{〈length〉}{〈text〉}

Measures the height of 〈text〉 and stores the result in the supplied 〈length〉 register.

372

15. Utilities

�

\glsmeasuredepth{〈length〉}{〈text〉}

Measures the depth of 〈text〉 and stores the result in the supplied 〈length〉 register.
�

\glsmeasurewidth{〈length〉}{〈text〉}

Measures the width of 〈text〉 and stores the result in the supplied 〈length〉 register.
You can test if content is inside an area that’s being measured with:

�

\glsifmeasuring{〈true〉}{〈false〉}

This will do 〈true〉 if it occurs inside either of the above commands and does 〈false〉 otherwise.
This will also take amsmath’s \ifmeasuring@ into account.

If tabularx is loaded, its \TX@trial command can be patched with:

�

\glspatchtabularx

If you use tabularx and have any of the \gls-like commands inside a tabularx environment,

you will need to use \glspatchtabularx in the preamble to disable unset/reset while

the environment measures its content.

�

Patches made on other package’s internal commands may break if the other package re-

moves those commands or changes their definitions.

15.6. Fetching and Updating the Value of a Field

In addition to the commands described in §5.2, the commands described in this section may also

be used to fetch field information.

glossaries-extra

The glossaries-extra package has additional commands, such as \glsxtruse-
field.

�

\glsentrytype{〈entry-label〉}

Expands to the value of the entry’s type field, which is the label of the glossary the entry has

been assigned to. No existence check is performed.

373

15. Utilities

�

\glsentryparent{〈entry-label〉}

Expands to the value of the entry’s parent field, which is the label identifying the entry’s

parent. No existence check is performed.

�

\glsentrysort{〈entry-label〉}

Expands to the entry’s sort value. No existence check is performed. This is not intended for

general use, but can be useful to display the value for debugging purposes. Note that there is also

an internal field sortvaluewhich contains the escaped sort value, which may not necessarily

be the same as the sort value.

�

\glsfieldfetch{〈entry-label〉}{〈field-label〉}{〈cs〉}

{label}{field}{cs}

This robust command fetches the value of the field identified by its internal field label〈field-
label〉 for the entry identified by 〈entry-label〉 and stores it in the given command 〈cs〉. An error
will occur if the entry doesn’t exist or if the field hasn’t been defined.

�

\glsletentryfield{〈cs〉}{〈entry-label〉}{〈field-label〉}

This command simply assigns the supplied command 〈cs〉 to the value of the field identified
by its internal field label〈field-label〉 for the entry identified by 〈entry-label〉. This differs from
\glsfieldfetch in that it doesn’t test for existence. If either the field or the entry haven’t

been defined, no error or warning will be trigger but 〈cs〉 will be undefined. You can then use
etoolbox’s \ifdef or \ifundef on 〈cs〉.
For example, to store the description for the entry whose label is “apple” in the control se-

quence \tmp:

�

\glsletentryfield{\tmp}{apple}{desc}
\ifdef{\tmp}description: \tmp{no description}

An alternative is to use \ifglshasfield or, with glossaries-extra, \glsxtrifhas-
field.

�

\glsunexpandedfieldvalue{〈entry-label〉}{〈field-label〉}

374

15. Utilities

This command is provided for use in expandable contexts where the field value is required but

the contents should not be expanded. The 〈field-label〉 argument must be the internal field label.
Does nothing if the field or entry isn’t defined.

You can change the value of a given field using one of the following commands. Note that

these commands only change the value of the given field. They have no affect on any related

field. For example, if you change the value of the text field, it won’t modify the value given

by the name, plural, first or any other related key.

�

There are some fields that should only be set when the entry is defined and will cause

unexpected results if changed later. For example, type (which additionally needs to add

the entry’s label to the corresponding glossary’s internal list), parent (which needs to

calculate the hierarchical level and setup the indexing syntax appropriately), and sort
(which may need pre-processing and is required to setup the indexing syntax).

In all the four related commands below, 〈entry-label〉 identifies the entry and 〈field-label〉 is
the internal field label. The 〈definition〉 argument is the new value of the field. Both the entry

and field must already be defined. If you want internal fields that don’t require a corresponding

key to be defined, you will need the supplementary commands provided by glossaries-extra.

�

\glsfielddef{〈entry-label〉}{〈field〉}{〈value〉}

This robust command uses \def to change the value of the field (so it will be localised by any

grouping).

�

\glsfieldedef{〈entry-label〉}{〈field〉}{〈value〉}

This robust command uses \protected@csedef to change the value of the field (so it

will be localised by any grouping).

\glsfieldgdef This uses \gdef to change the value of the field (so it will have a

global effect).

�

\glsfieldxdef{〈entry-label〉}{〈field〉}{〈value〉}

This robust command uses \protected@csxdef to change the value of the field (so it

will be localised by any grouping).

375

16. Prefixes or Determiners

�

\usepackage[〈options〉]{glossaries-prefix}
automatically loaded with \usepackage[prefix]{glossaries-extra}

The glossaries-prefix package that comes with the glossaries package provides additional keys
that can be used as prefixes. For example, if you want to specify determiners (such as “a”, “an”

or “the”). The glossaries-prefix package automatically loads the glossaries package and has the
same package options.

glossaries-extra

The glossaries-prefix package can automatically be loaded with glossaries-extra via the
prefix package option.

The extra keys for \newglossaryentry are as follows:

�

prefix={〈text〉}

The prefix associated with the text key. This defaults to nothing.

�

prefixplural={〈text〉}

The prefix associated with the plural key. This defaults to nothing.

�

prefixfirst={〈text〉}

The prefix associated with the first key. If omitted, this defaults to the value of the

prefix key.

�

prefixfirstplural={〈text〉}

The prefix associated with the firstplural key. If omitted, this defaults to the value of

the prefixplural key.

Example 43: Defining Determiners

Here’s the start of my example document:

376

16. Prefixes or Determiners

�

\documentclass{article}

\usepackage[colorlinks]{hyperref}
\usepackage[toc,acronym]{glossaries-prefix}

Note that I’ve simply replaced glossaries from previous sample documents with glossaries-prefix.
Now for a sample definition:

�

\newglossaryentry{sample}{namesample,
description={an example},
prefix={a~},
prefixplural={the\space}

}

(Single letter words, such as “a” and “I” should typically not appear at the end of a line, hence

the non-breakable space ~ after “a” in the prefix field.)

Note that I’ve had to explicitly insert a space after the prefix since there’s no designated sep-

arator between the prefix and the term being referenced. This not only means that you can vary

between a breaking space and non-breaking space, but also allows for the possibility of prefixes

that shouldn’t have a space, such as:

�

\newglossaryentry{oeil}{name={oeil},
plural={yeux},
description={eye},
prefix={l'},
prefixplural={les\space}}

�

Where a space is required at the end of the prefix, you must use a spacing command, such

as \space, \ (backslash space) or ~ due to the automatic spacing trimming performed

in 〈key〉=〈value〉 options.

In the event that you always require a space between the prefix and the term, then you can

instead redefine \glsprefixsep to do a space. For example:

�

\renewcommand{\glsprefixsep}{\space}

The prefixes can also be used with acronyms. For example:

377

16. Prefixes or Determiners

�

\newacronym
[
prefix={an\space},prefixfirst={a~}

]{svm}{SVM}{support vector machine}

The glossaries-prefix package provides convenient commands to use these prefixes with com-
mands such as \gls. Note that the prefix is not considered part of the link text, so it’s not in-
cluded in the hyperlink (where hyperlinks are enabled). The options and any star or plus modifier

are passed on to the appropriate \gls-like command. (See §5.1 for further details.)

�

\glsprefixsep initial: empty

The separator used between the appropriate prefix and the corresponding \gls-like command.
Each of the following commands \p〈gls〉 essentially does 〈prefix〉\glsprefixsep〈gls〉

if the appropriate prefix field has been set, otherwise it simply does 〈gls〉, where 〈gls〉 is the
corresponding \gls-like command.
The all caps commands \P〈GLS〉 will convert the prefix to all caps (using \glsupper-

case) and use the all caps \gls-like counterpart.
The sentence case commands\P〈Gls〉 are slightly more complicated. If the appropriate prefix

field has been set, then the prefix will have the case change applied and the non-case \gls-like
command will be used (\gls or \glspl). If the appropriate prefix field hasn’t been set, then
the sentence case \gls-like command is used (\Gls or \Glspl).
The usual \gls-like optional argument and star (*) and plus (+) modifiers can be used with

these commands, in which case they will be applied to the applicable \gls-like command.

�

\pgls[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

Does 〈prefix〉\glsprefixsep\gls if 〈prefix〉 is non-empty otherwise just uses \gls.
The 〈prefix〉 will be the value of the prefixfirst key on first use or the prefix key

on subsequent use.

�

\pglspl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

Does 〈prefix〉\glsprefixsep\glspl if 〈prefix〉 is non-empty otherwise just uses\glspl.
The 〈prefix〉 will be the value of the prefixfirstplural key on first use or the

prefixplural key on subsequent use.

378

16. Prefixes or Determiners

�

\Pgls[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

Does 〈prefix〉\glsprefixsep\gls if 〈prefix〉 is non-empty otherwise just uses \Gls.
As\pgls, the prefix fields areprefixfirst on first use or theprefix on subsequent

use, but the 〈prefix〉 will now be obtained from the sentence case commands \Glsentry-
prefix and \Glsentryprefixfirst.

�

\Pglspl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

Does 〈prefix〉\glsprefixsep\glspl if 〈prefix〉 is non-empty otherwise just uses\Glspl.
As\pglspl, the prefix fields areprefixfirstplural on first use or theprefix-

plural on subsequent use, but the 〈prefix〉 will now be obtained from the sentence case com-

mands \Glsentryprefixplural and \Glsentryprefixfirstplural.

�

\PGLS[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

Does:

\glsuppercase{〈prefix〉\glsprefixsep}\GLS

if 〈prefix〉 is non-empty otherwise just uses \GLS.
The 〈prefix〉 will be the value of the prefixfirst key on first use or the prefix key

on subsequent use.

�

\PGLSpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +

Does:

\glsuppercase{〈prefix〉\glsprefixsep}\GLSpl

if 〈prefix〉 is non-empty otherwise just uses \GLSpl.
The 〈prefix〉 will be the value of the prefixfirstplural key on first use or the

prefixplural key on subsequent use.

glossaries-extra

The glossaries-extra package provides additional commands, such as \pglsxtr-
short, for use in section headings.

379

16. Prefixes or Determiners

Example 44: Using Prefixes

Continuing from Example 43 on page 376, now that I’ve defined my entries, I can use them in

the text via the above commands:

�

First use: \pgls{svm}. Next use: \pgls{svm}.
Singular: \pgls{sample}, \pgls{oeil}.
Plural: \pglspl{sample}, \pglspl{oeil}.

which produces:

�

First use: a support vector machine (SVM). Next use: an SVM. Singular: a sample, l’oeil.

Plural: the samples, les yeux.

For a complete document, see sample-prefix.tex.

This package also provides the commands described below, none of which perform any check

to determine the entry’s existence.

�

\ifglshasprefix{〈entry-label〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the prefix field is non-empty, otherwise expands to 〈false〉.
�

\ifglshasprefixplural{〈entry-label〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the prefixplural field is non-empty, otherwise expands to 〈false〉.
�

\ifglshasprefixfirst{〈entry-label〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the prefixfirst field is non-empty, otherwise expands to 〈false〉.
�

\ifglshasprefixfirstplural{〈entry-label〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the prefixfirstplural field is non-empty, otherwise expands to

〈false〉.
�

\glsentryprefix{〈entry-label〉}

Expands to the value if the prefix field.

380

16. Prefixes or Determiners

�

\glsentryprefixplural{〈entry-label〉}

Expands to the value if the prefixplural field.

�

\glsentryprefixfirst{〈entry-label〉}

Expands to the value if the prefixfirst field.

�

\glsentryprefixfirstplural{〈entry-label〉}

Expands to the value if the prefixfirstplural field.

There are also variants that convert to sentence case. As with command like \Glsentry-
text, these will use \MFUsentencecase to expand in PDF bookmarks, but will use

\glssentencecase in the document.

�

\Glsentryprefix{〈entry-label〉}

As \glsentryprefix with sentence case applied.

�

\Glsentryprefixplural{〈entry-label〉}

As \glsentryprefixplural with sentence case applied.

�

\Glsentryprefixfirst{〈entry-label〉}

As \glsentryprefixfirst with sentence case applied.

�

\Glsentryprefixfirstplural{〈entry-label〉}

As \glsentryprefixfirstplural with sentence case applied.

Example 45: Adding Determiner to Glossary Style

You can use the above commands to define a new glossary style that uses the determiner. For

example, the following style is a slight modification of the list style that inserts the prefix before

the name:

381

16. Prefixes or Determiners

�

\newglossarystyle{plist}{%
\setglossarystyle{list}%
\renewcommand*{\glossentry}[2]{%
\item[\glsentryitem{1}%

\glsentryprefix{1}%
\glstarget{1}{\glossentryname{1}}]

\glossentrydesc{1}\glspostdescription\space 2}%
}

If you want to change the prefix separator (\glsprefixsep) then the following is better:

�

\newglossarystyle{plist}{%
%
\renewcommand*{\glossentry}[2]{%
\item[\glsentryitem{1}%

\ifglshasprefix{1}{\glsentryprefix{1}\gls-
prefixsep}{}%

\glstarget{1}{\glossentryname{1}}]
\glossentrydesc{1}\glspostdescription\space 2}

%
}

The conditional is also useful if you want the style to use an uppercase letter at the start of the

entry item:

�

\newglossarystyle{plist}{%
\setglossarystyle{list}%
\renewcommand*{\glossentry}[2]{%
\item[\glsentryitem{1}%

\glstarget{1}%
{%

\ifglshasprefix{1}%
{\Glsentryprefix{1}\glsprefixsep\gloss-

entryname{1}}%
{\Glossentryname{1}}%

}]
\glossentrydesc{1}\glspostdescription\space 2}

%
}

382

16. Prefixes or Determiners

383

17. Accessibility Support

�

\usepackage[〈options〉]{glossaries-accsupp}
automatically loaded with

\usepackage[accsupp]{glossaries-extra}

Limited accessibility support is provided by the accompanying glossaries-accsupp package,
but note that this package is experimental. This package automatically loads the glossaries pack-

age. Any options are passed to glossaries (if it hasn’t already been loaded). For example:

�

\usepackage[acronym]{glossaries-accsupp}

This will load glossaries with the acronym package option as well as loading glossaries

-accsupp.

glossaries-extra

If you are using the glossaries-extra extension package, you need to load glossaries-extra
with the accsupp package option. For example:

\usepackage[abbreviations,accsupp]{glossaries-extra}

This will load glossaries-extra (with the abbreviations option), glossaries and

glossaries-accsupp and make appropriate patches to integrate the accessibility support

with the extension commands.

17.1. Accessibility Keys

The glossaries-accsupp package defines additional keys that may be used when defining glossary
entries. If a key isn’t set, then there will be not accessibility support for the corresponding field.

�

access={〈text〉}

The value of this key is the replacement text corresponding to the name key.

384

17. Accessibility Support

�

textaccess={〈text〉}

The value of this key is the replacement text corresponding to the text key.

�

firstaccess={〈text〉}

The value of this key is the replacement text corresponding to the first key.

�

pluralaccess={〈text〉}

The value of this key is the replacement text corresponding to the plural key.

�

firstpluralaccess={〈text〉}

The value of this key is the replacement text corresponding to the firstplural key.

�

symbolaccess={〈text〉}

The value of this key is the replacement text corresponding to the symbol key.

�

symbolpluralaccess={〈text〉}

The value of this key is the replacement text corresponding to the symbolplural key.

�

descriptionaccess={〈text〉}

The value of this key is the replacement text corresponding to the description key. The

corresponding internal field label is descaccess.

�

descriptionpluralaccess={〈text〉}

The value of this key is the replacement text corresponding to thedescriptionplural
key. The corresponding internal field label is descpluralaccess.

�

longaccess={〈text〉}

The value of this key is the replacement text corresponding to the long key.

385

17. Accessibility Support

�

longpluralaccess={〈text〉}

The value of this key is the replacement text corresponding to the longplural key.

�

shortaccess={〈text〉}

The value of this key is the replacement text corresponding to the short key.

If you define acronyms with \newacronym, the shortaccess field will automatically

be set to:

�

\glsdefaultshortaccess{〈long〉}{〈short〉}

This just expands to 〈long〉. If redefined, this command must be fully expandable. It expands

when the acronym is defined.

�

shortpluralaccess={〈text〉}

The value of this key is the replacement text corresponding to the shortplural key.

�

user1access={〈text〉}

The value of this key is the replacement text corresponding to the user1 key. The corre-

sponding internal field label is useriaccess.

�

user2access={〈text〉}

The value of this key is the replacement text corresponding to the user2 key. The corre-

sponding internal field label is useriiaccess.

�

user3access={〈text〉}

The value of this key is the replacement text corresponding to the user3 key. The corre-

sponding internal field label is useriiiaccess.

�

user4access={〈text〉}

The value of this key is the replacement text corresponding to the user4 key. The corre-

sponding internal field label is userivaccess.

386

17. Accessibility Support

�

user5access={〈text〉}

The value of this key is the replacement text corresponding to the user5 key. The corre-

sponding internal field label is uservaccess.

�

user6access={〈text〉}

The value of this key is the replacement text corresponding to the user6 key. The corre-

sponding internal field label is userviaccess.
For example:

�

\newglossaryentry{tex}{name={\TeX},description=
{Document
preparation language},access={TeX}}

Now the link text produced by \gls{tex} will be:

�

\BeginAccSupp{ActualText={TeX}}\TeX\EndAccSupp

which is produced via \glsaccessibility. If you want to use another accessibility

package, see §17.5.

The sample file sampleaccsupp.tex illustrates the glossaries-accsupp package.

17.2. Incorporating Accessibility Support

The \gls-like and \glstext-like commands have their link text adjusted to incorporate

the accessibility support, if provided. A helper command is used to identify the replacement text

that depends on the field name:

�

\glsfieldaccsupp{〈replacement〉}{〈content〉}{〈field-label〉}{〈entry-label〉}

This will use

�

\gls〈field-label〉accsupp{〈replacement〉}{〈content〉}

if it’s defined otherwise it will just use:

�

\glsaccsupp{〈replacement〉}{〈content〉}

387

17. Accessibility Support

Note that 〈field-label〉 is the internal field label which may not match the corresponding key. For
example, the shortpl field label corresponds to the shortplural key.

glossaries-extra

With glossaries-extra, there’s a prior test for the existence of the command \gls-
xtr〈category〉〈field〉accsupp.

There are two commands pre-defined:

�

\glsshortaccsupp{〈replacement〉}{〈content〉}

which is defined as:

\glsaccessibility{E}{〈replacement〉}{〈content〉}

and

�

\glsshortplaccsupp{〈replacement〉}{〈content〉}

which is simply defined to use \glsshortaccsupp.
These helper commands all internally use:

�

\glsaccessibility[〈options〉]{〈PDF element〉}{〈value〉}{〈content〉}

The default definition uses commands provided by the accsupp package. If you want to experi-

ment with another accessibility package, see §17.5. The 〈options〉 are passed to the underlying
accessibility support command.

The 〈PDF element〉 argument is the appropriate PDF element tag. The PDF specification iden-

tifies three different types of replacement text:

Alt

Description of some content that’s non-textual (for example, an image). A word break is

assumed after the content.

ActualText

A character or sequence of characters that replaces textual content (for example, a dropped

capital, a ligature or a symbol). No word break is assumed after the content.

E

Expansion of an abbreviation to avoid ambiguity (for example, “St” could be short for

“saint” or “street”).

388

17. Accessibility Support

�

Many PDF viewers don’t actually support any type of replacement text. Some may support

“ActualText” but not “Alt” or “E”. PDFBox’s “PDFDebugger” tool can be used to inspect

the PDF content to make sure that the replacement text has been correctly set.

You can define your own custom helper commands for specific fields that require them. For

example:

�

\newcommand{\glssymbolaccsupp}[2]{%
\glsaccessibility[method=hex,unicode]{ActualText}
{1}{2}%
}

This definition requires the replacement text to be specified with the hexadecimal character code.

For example:

�

\newglossaryentry{int}{name={int},description=
{integral},
symbol={\ensuremath{\int}},symbolaccess={222B}

}

glossaries-extra

The glossaries-extra package provides additional support.

17.3. Incorporating the Access Field Values

These robust commands are all in the form

\gls〈field〉accessdisplay{〈text〉}{〈entry-label〉}

They may be used to apply the supplied accessibility information to 〈text〉. If the relevant access
field hasn’t been set, these simply do 〈text〉.
The glossaries-extra package provides convenient wrapper commands such as: glossaries

-extra

\newcommand*{\glsaccessname}[1]{%
\glsnameaccessdisplay{\glsentryname{1}}1%
}

See the glossaries-extra manual for further details.

389

https://pdfbox.apache.org/

17. Accessibility Support

�

\glsnameaccessdisplay{〈text〉}{〈entry-label〉}

Applies the accessibility information from the access field to 〈text〉.
�

\glstextaccessdisplay{〈text〉}{〈entry-label〉}

Applies the accessibility information from the textaccess field to 〈text〉.
�

\glspluralaccessdisplay{〈text〉}{〈entry-label〉}

Applies the accessibility information from the pluralaccess field to 〈text〉.
�

\glsfirstpluralaccessdisplay{〈text〉}{〈entry-label〉}

Applies the accessibility information from the firstpluralaccess field to 〈text〉.
�

\glssymbolaccessdisplay{〈text〉}{〈entry-label〉}

Applies the accessibility information from the symbolaccess field to 〈text〉.
�

\glssymbolpluralaccessdisplay{〈text〉}{〈entry-label〉}

Applies the accessibility information from the symbolpluralaccess field to 〈text〉.
�

\glsdescriptionaccessdisplay{〈text〉}{〈entry-label〉}

Applies the accessibility information from the descaccess field (which corresponds to the

descriptionaccess key) to 〈text〉.
�

\glsdescriptionpluralaccessdisplay{〈text〉}{〈entry-label〉}

Applies the accessibility information from the descpluralaccess field (which corre-

sponds to the descriptionpluralaccess key) to 〈text〉.
�

\glsshortaccessdisplay{〈text〉}{〈entry-label〉}

Applies the accessibility information from the shortaccess field to 〈text〉.

390

17. Accessibility Support

�

\glsshortpluralaccessdisplay{〈text〉}{〈entry-label〉}

Applies the accessibility information from the shortpluralaccess field to 〈text〉.
�

\glslongaccessdisplay{〈text〉}{〈entry-label〉}

Applies the accessibility information from the longaccess field to 〈text〉.
�

\glslongpluralaccessdisplay{〈text〉}{〈entry-label〉}

Applies the accessibility information from the longpluralaccess field to 〈text〉.
�

\glsuseriaccessdisplay{〈text〉}{〈entry-label〉}

Applies the accessibility information from the useriaccess field (which corresponds to the

user1access key) to 〈text〉.
�

\glsuseriiaccessdisplay{〈text〉}{〈entry-label〉}

Applies the accessibility information from the useriiaccess field (which corresponds to

the user2access key) to 〈text〉.
�

\glsuseriiiaccessdisplay{〈text〉}{〈entry-label〉}

Applies the accessibility information from the useriiiaccess field (which corresponds to

the user3access key) to 〈text〉.
�

\glsuserivaccessdisplay{〈text〉}{〈entry-label〉}

Applies the accessibility information from the userivaccess field (which corresponds to

the user4access key) to 〈text〉.
�

\glsuservaccessdisplay{〈text〉}{〈entry-label〉}

Applies the accessibility information from the uservaccess field (which corresponds to the

user5access key) to 〈text〉.
�

\glsuserviaccessdisplay{〈text〉}{〈entry-label〉}

391

17. Accessibility Support

Applies the accessibility information from the userviaccess field (which corresponds to

the user6access key) to 〈text〉.

17.4. Obtaining the Access Field Values

There are commands analogous to\glsentrytext if you need to obtain the value of any of

the accessibility fields. Since the accessibility information isn’t intended to be typeset but should

be written as a PDF string, use the expandable \MFUsentencecase or \glsupper-
case if any case change is required.

�

\glsentryaccess{〈entry-label〉}

Expands to the value of the access field.

�

\glsentrytextaccess{〈entry-label〉}

Expands to the value of the textaccess field.

�

\glsentryfirstaccess{〈entry-label〉}

Expands to the value of the firstaccess field.

�

\glsentrypluralaccess{〈entry-label〉}

Expands to the value of the pluralaccess field.

�

\glsentryfirstpluralaccess{〈entry-label〉}

Expands to the value of the firstpluralaccess field.

�

\glsentrysymbolaccess{〈entry-label〉}

Expands to the value of the symbolaccess field.

�

\glsentrysymbolpluralaccess{〈entry-label〉}

Expands to the value of the symbolpluralaccess field.

�

\glsentrydescaccess{〈entry-label〉}

392

17. Accessibility Support

Expands to the value of the descaccess field, which corresponds to the description-
access key.

�

\glsentrydescpluralaccess{〈entry-label〉}

Expands to the value of thedescpluralaccess field, which corresponds to thedescription-
pluralaccess key.

�

\glsentryshortaccess{〈entry-label〉}

Expands to the value of the shortaccess field.

�

\glsentryshortpluralaccess{〈entry-label〉}

Expands to the value of the shortpluralaccess field.

�

\glsentrylongaccess{〈entry-label〉}

Expands to the value of the longaccess field.

�

\glsentrylongpluralaccess{〈entry-label〉}

Expands to the value of the longpluralaccess field.

�

\glsentryuseriaccess{〈entry-label〉}

Expands to the value of the useriaccess field, which corresponds to the user1access
key.

�

\glsentryuseriiaccess{〈entry-label〉}

Expands to the value of theuseriiaccess field, which corresponds to theuser2access
key.

�

\glsentryuseriiiaccess{〈entry-label〉}

Expands to the value of the useriiiaccess field, which corresponds to the user3-
access key.

393

17. Accessibility Support

�

\glsentryuserivaccess{〈entry-label〉}

Expands to the value of theuserivaccess field, which corresponds to theuser4access
key.

�

\glsentryuservaccess{〈entry-label〉}

Expands to the value of the uservaccess field, which corresponds to the user5access
key.

�

\glsentryuserviaccess{〈entry-label〉}

Expands to the value of theuserviaccess field, which corresponds to theuser6access
key.

17.5. Developer’s Note

Currently there’s only support for accsupp. If you want to experiment with another package

that provides accessibility support, define the following command before glossaries-accsupp is
loaded:

�

\gls@accsupp@engine initial: accsupp

If this command has its default definition of accsupp when glossaries-accsupp loads then

the accsupp package will automatically be loaded, otherwise it won’t and you’ll need to redefine

\gls@accessibility to use the appropriate accessibility commands.

�

\gls@accessibility{〈options〉}{〈PDF element〉}{〈value〉}{〈content〉}

This command is used internally by\glsaccessibility. The default definition if\gls-
@accsupp@engine is defined to accsupp does:

\BeginAccSupp{〈options〉,〈PDF element〉={〈value〉}}〈content〉\EndAcc-
Supp{}

Otherwise it simply does 〈content〉.

394

18. Sample Documents

In addition to the examples within this manual, the glossaries package is provided with some

sample documents that illustrate the various functions. These should be located in thesamples
subdirectory (folder) of the glossaries documentation directory. This location varies according to

your operating system and TEX distribution. You can use texdoc to locate the main glossaries

documentation. For example:

�

texdoc -l glossaries

This should display a list of all the files in the glossaries documentation directory with their full

pathnames. (The GUI version of texdoc may also provide you with the information.)

If you can’t find the sample files on your computer, they are also available from your near-

est CTAN mirror at http://mirror.ctan.org/macros/latex/contrib/
glossaries/samples/. Each sample file listed below has a hyperlink to the file’s loca-

tion on the CTAN mirror.

The glossaries-extra package and bib2gls provide some additional sample files. There

are also examples in the Dickimaw Books Gallery.1

If you prefer to use UTF-8 aware engines (xelatex or lualatex) remember that you’ll
need to switch from fontenc & inputenc to fontspec where appropriate.

If you get any errors or unexpected results, check that you have up-to-date versions of all the

required packages. (Search the log file for lines starting with “Package: ”.) Where hyperref

is loaded you will get warnings about non-existent references that look something like:

pdfTeX warning (dest): name{glo:aca} has been
referenced but does not exist, replaced by a fixed
one

These warnings may be ignored on the first LATEX run. (The destinations won’t be defined until

the glossary has been created.)

18.1. Basic

�� minimalgls.tex

1dickimaw-books.com/gallery

395

https://www.tug.org/texdoc/
http://mirror.ctan.org/macros/latex/contrib/glossaries/samples/
http://mirror.ctan.org/macros/latex/contrib/glossaries/samples/
https://www.dickimaw-books.com/gallery
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/minimalgls.tex
https://www.dickimaw-books.com/gallery

18. Sample Documents

This document is a minimal working example. You can test your installation using this file.

To create the complete document you will need to do the following steps:

1. Run minimalgls.tex through LATEX either by typing

�

pdflatex minimalgls

in a terminal or by using the relevant button or menu item in your text editor or front-

end. This will create the required associated files but you will not see the glossary in the

document.

2. If you have Perl installed, run makeglossaries on the document (§1.6). This can

be done on a terminal by typing:

�

makeglossaries minimalgls

otherwise use makeglossaries-lite:

�

makeglossaries-lite minimalgls

If for some reason you want to call makeindex explicitly, you can do this in a terminal

by typing (all on one line):

�

makeindex -s minimalgls.ist -t minimalgls.glg -o
minimalgls.gls minimalgls.glo

See §1.6.4 for further details on using makeindex explicitly.

Note that if the file name contains spaces, you will need to use the double-quote character

to delimit the name.

3. Run minimalgls.tex through LATEX again (as step 1)

You should now have a complete document. The number following each entry in the glossary is

the location number. By default, this is the page number where the entry was referenced.

The acronym package option creates a second glossary with the label acronym (which

can be referenced with \acronymtype). If you decide to enable this option then there will
be a second set of indexing files that need to be processed by makeindex. If you use make-
glossaries or makeglossaries-lite you don’t need to worry about it, as those

scripts automatically detect which files need to be processed and will run makeindex (or

xindy) the appropriate number of times.

396

18. Sample Documents

If for some reason you don’t want to use makeglossaries or makeglossaries
-lite and you want the acronym package option then the complete build process is:

�

pdflatex minimalgls
makeindex -s minimalgls.ist -t minimalgls.glg -o
minimalgls.gls minimalgls.glo
makeindex -s minimalgls.ist -t minimalgls.alg -o
minimalgls.acr minimalgls.acn
pdflatex minimalgls

There are three other files that can be used as minimal working examples: mwe-gls.tex,
mwe-acr.tex and mwe-acr-desc.tex.
If you want to try out the glossaries-extra extension package, you need to replace the package glossaries

-extraloading line:

�

\usepackage[acronym]{glossaries}

with:

�

\usepackage[acronym,postdot,stylemods]{glossaries-
extra}

Note the different default package options. (You may omit the acronym package option in

both cases if you only want a single glossary.) The glossaries-extra package internally loads

the base glossaries package so you don’t need to explicitly load both (in fact, it’s better to let

glossaries-extra load glossaries).

Next, replace:

�

\setacronymstyle{long-short}

with:

�

\setabbreviationstyle[acronym]{long-short}

The optional argument acronym identifies the category that this style should be applied to. The

\newacronym command provided by the base glossaries package is redefined by glossaries

-extra to use \newabbreviation with the category set to acronym.

If you prefer to replace \newacronym with \newabbreviation then the default

category is abbreviation so the style should instead be:

397

http://www.dickimaw-books.com/latex/minexample/
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples//mwe-gls.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples//mwe-acr.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples//mwe-acr-desc.tex

18. Sample Documents

�

\setabbreviationstyle[abbreviation]{long-short}

This is actually the default category if the optional argument is omitted, so you can simply do:

�

\setabbreviationstyle{long-short}

The long-short style is the default for the abbreviation category so you can omit this line com-
pletely if you replace \newacronym. (The default style for the acronym category is short

-nolong, which only shows the short form on first use.)

As mentioned earlier, the acronym package option creates a new glossary with the label

acronym. This is independent of the acronym category. You can use the acronym package

option with either \newacronym or \newabbreviation.
You may instead prefer to use the abbreviations package option, which creates a new

glossary with the label abbreviations:

�

\usepackage[abbreviations,postdot,stylemods]
{glossaries-extra}

This can again be used with either \newacronym or \newabbreviation, but the file
extensions are different. This isn’t a problem if you are using makeglossaries or make-
glossaries-lite. If you are explicitly calling makeindex (or xindy) then you

need to modify the file extensions. See the glossaries-extra user manual for further details.
If you use both theacronym andabbreviations package options then\newacronym

will default to theacronym glossary and\newabbreviationwill default to theabbreviations
glossary.

If you want to try bib2gls, you first need to convert the document to use glossaries-extra bib2gls

as described above. Then add the record package option. For example:

�

\usepackage[record,postdot,stylemods]{glossaries-
extra}

Next you need to convert the entry definitions into thebib format required bybib2gls. This
can easily be done with convertgls2bib. For example:

�

convertgls2bib --preamble-only minimalgls.tex
entries.bib

This will create a file called entries.bib. Next, replace:

398

18. Sample Documents

�

\makeglossaries

with:

�

\GlsXtrLoadResources[src={entries}]

Now remove all the entry definitions in the document preamble (\longnewglossary-
entry, \newglossaryentry and \newacronym or \newabbreviation).
The abbreviation style command must go before \GlsXtrLoadResources. For ex-

ample (if you are using \newacronym):

�

\setabbreviationstyle[acronym]{long-short}
\GlsXtrLoadResources[src={entries}]

Finally, replace:

�

\printglossaries

with:

�

\printunsrtglossaries

The document build is now:

�

pdflatex minimalgls
bib2gls minimalgls
pdflatex minimalgls

sampleDB.tex This document illustrates how to load external files containing the glos-

sary entry definitions. It also illustrates how to define a new glossary type. This document has

the number list suppressed and uses \glsaddall to add all the entries to the glossaries with-

out referencing each one explicitly. (Note that it’s more efficient to use glossaries-extra and

bib2gls if you have a large number of entries.) To create the document do:

399

18. Sample Documents

�

pdflatex sampleDB
makeglossaries sampleDB
pdflatex sampleDB

or

�

pdflatex sampleDB
makeglossaries-lite sampleDB
pdflatex sampleDB

The glossary definitions are stored in the accompanying filesdatabase1.tex anddatabase2.
tex. If for some reason you want to call makeindex explicitly you must have a separate call

for each glossary:

1. Create the main glossary (all on one line):

�

makeindex -s sampleDB.ist -t sampleDB.glg -o
sampleDB.gls sampleDB.glo

2. Create the secondary glossary (all on one line):

�

makeindex -s sampleDB.ist -t sampleDB.nlg -o
sampleDB.not sampleDB.ntn

Note that both makeglossaries and makeglossaries-lite do this all in

one call, so they not only make it easier because you don’t need to supply all the switches

and remember all the extensions but they also call makeindex the appropriate number

of times.

If youwant to switch to usingbib2glswith glossaries-extra, you can convertdatabase1.bib2gls
tex and database2.tex to bib files using convertgls2bib:

�

convertgls2bib database1.tex database1.bib
convertgls2bib database2.tex database2.bib

The document code then needs to be:

400

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples//database1.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples//database2.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples//database2.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples//database1.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples//database1.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples//database1.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples//database1.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples//database2.tex

18. Sample Documents

�

\documentclass{article}

\usepackage[colorlinks,plainpages=false]{hyperref}
\usepackage[record,postdot]{glossaries-extra}

\newglossary*{punc}{Punctuation Characters}

\GlsXtrLoadResources[src={database1},
selection=all,sort=en]
\GlsXtrLoadResources[src={database2},type=punc,
selection=all,sort=letter-case]

\begin{document}
\printunsrtglossaries
\end{document}

Note that the nonumberlist package option has been omitted. It’s not needed because

there are no locations in this amended document (whereas in the original sampleDB.tex
locations are created with \glsaddall). The starred \newglossary* is used since the

makeindex/xindy extensions are now irrelevant.

Instead of using makeglossaries you need to use bib2gls when you build the doc-

ument:

�

pdflatex sampleDB
bib2gls sampleDB
pdflatex sampleDB

Note that one bib2gls call processes all the indexing (rather than one call per glossary).

Unlike makeindex and xindy, bib2gls processes each resource set in turn, but the

resource sets aren’t linked to a specific glossary. Multiple glossaries may be processed in a single

resource set or sub-blocks of a single glossary may be processed by multiple resource sets. In

this example, there happens to be one resource set per glossary because each glossary requires a

different sort method. (A locale-sensitive alphabetical sort for the first and a character code sort

for the second.)

If you want letter groups, you need to use the --group switch:

�

bib2gls --group sampleDB

and use an appropriate glossary style.

See also bib2gls gallery: sorting,2 glossaries-extra and bib2gls: An Introductory

2dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

401

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf

18. Sample Documents

Guide3 and the bib2gls user manual.

18.2. Acronyms and First Use

sampleAcr.tex This document has some sample acronyms. It also adds the glossary to

the table of contents, so an extra run through LATEX is required to ensure the document is up to

date:

�

pdflatex sampleAcr
makeglossaries sampleAcr
pdflatex sampleAcr
pdflatex sampleAcr

(or use makeglossaries-lite).
Note that if the glossary is at the start of the document and spans across multiple pages, then

this can cause the locations to be shifted. In that case, an extra makeglossaries and LATEX

call are required. In this particular example, the glossary is at the end of the document so it’s

not a problem. It’s also not a problem for a glossary at the start of the document if the page

numbering is reset at the end of the glossary. For example, if the glossary is at the end of the

front matter in a book-style document.

This document uses \ifglsused to determine whether to use “a” or “an” in:

�

… is \ifglsused{svm}{an}{a} \gls{svm} …

This clumsy bit of code can be tidied up with the glossaries-prefix package. Since that package
automatically loads glossaries and passes all its options to the base package it’s possible to do a

simple replacement of:

�

\usepackage[style=long,toc]{glossaries}

with:

�

\usepackage[style=long,toc]{glossaries-prefix}

The definition of “svm” now needs an adjustment:

3mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf

402

http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf

18. Sample Documents

�

\newacronym[description=
{statistical pattern recognition
technique~\protect\cite{svm}},
prefixfirst={a~},prefix={an\space}
]{svm}{svm}{support vector machine}

The clumsy text can now simply be changed to:

�

… is \pgls{svm} …

If youwant to convert this sample document to use glossaries-extra, youmaywant the patched glossaries

-extraversion of the styles provided in glossary-long, in which case you can also add stylemods:

�

\usepackage[stylemods,style=long]{glossaries-extra}

If you want to suppress all the other glossary style packages with nostyles, then you need
to specify exactly which package (or packages) that you do want:

�

\usepackage[nostyles,stylemods=long,style=long]
{glossaries-extra}

(Now that glossaries-extra is being used, there are more available “long” styles in the glossary
-longextra package, which you may prefer.)
If you want to use glossaries-prefix, you can simply add the prefix package option.

Note that thetoc package option has been dropped. This is the default with glossaries-extra,
so it doesn’t need to be specified now. The document build is now shorter:

�

pdflatex sampleAcr
makeglossaries sampleAcr
pdflatex sampleAcr

The third LATEX call is no longer required to make the table of contents up-to-date. This is

because glossaries-extra provides boilerplate text on the first LATEX call when the indexing files

are missing. This means that the glossary header is added to the toc file on the first LATEX

call, whereas with just the base glossaries package, the header isn’t present until the second

LATEX call. (As with just the base glossaries package, if the glossary occurs at the start of the

document without a page reset after it then part of the build process needs repeating to ensure all

referenced page numbers are up-to-date. This problem isn’t specific to the glossaries package.)

The other different default setting is the post-description punctuation. The base package has

403

18. Sample Documents

nopostdot=false as the default. This means that a full stop (period) is automatically

inserted after the description in the glossary. The extension package has nopostdottrue as
the default. If you want the original behaviour then you can use nopostdot=false or the

shorter synonym postdot.
The glossaries-extra package has different abbreviation handling that’s far more flexible than

that provided by the base glossaries package. The style now needs to be set with \set-
abbreviationstyle instead of \setacronymstyle:

�

\setabbreviationstyle[acronym]{long-short-sc}
\newacronym{svm}{svm}{support vector machine}

(Note the different style name long-short-sc instead of long-sc-short and the optional argu-
ment acronym.) If you prefer to replace \newacronymwith \newabbreviation then

omit the optional argument:

�

\setabbreviationstyle{long-short-sc}
\newabbreviation{svm}{svm}{support vector machine}

(The optional argument of \setabbreviationstyle is the category to which the style

should be applied. If it’s omitted, abbreviation is assumed. You can therefore have different

styles for different categories.)

Finally, you need to replace\acrshort,\acrlong and\acrfull and their variants

with \glsxtrshort, \glsxtrlong and \glsxtrfull etc.

�� sampleAcrDesc.tex

This is similar to the previous example, except that the acronyms have an associated descrip-

tion. As with the previous example, the glossary is added to the table of contents, so an extra run

through LATEX is required:

�

pdflatex sampleAcrDesc
makeglossaries sampleAcrDesc
pdflatex sampleAcrDesc
pdflatex sampleAcrDesc

This document uses the acronym package option, which creates a new glossary used by

\newacronym. This leaves the default main glossary available for general terms. How-

ever, in this case there are no general terms so the main glossary is redundant. The nomain
package option will prevent its creation. Obviously, if you decide to add some terms with\new-
glossaryentry you will need to remove the nomain option as the main glossary will

now be required.

As with the previous example, if you want to convert this document to use glossaries-extra glossaries

-extra

404

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleAcrDesc.tex

18. Sample Documents

you need to make a few modifications. The most obvious one is to replace glossaries with

glossaries-extra in the \usepackage argument. Again you can omit toc as this is the

default for glossaries-extra. As in the previous example, you may want to use the patched

styles. This document uses altlist which is provided by glossary-list, so the style can be patched
with stylemods.

�

\usepackage[acronym,nomain,style=altlist,stylemods]
{glossaries-extra}

Youmay prefer to replace theacronym option withabbreviations, but this will change
the file extensions. If you use makeglossaries or makeglossaries-lite you

don’t need to worry about it.

Again the style command needs to be changed:

�

\setabbreviationstyle[acronym]{long-short-sc-desc}

(Note the change in style name long-short-sc-desc instead of long-sc-short-desc and the

optional argument acronym.)

As with the previous example, if you prefer to use \newabbreviation instead of

\newacronym then you need to omit the optional argument:

�

\setabbreviationstyle{long-short-sc-desc}

The original document uses:

�

\renewcommand*{\glsseeitemformat}[1]{%
\acronymfont{\glsentrytext{#1}}}

to ensure that the cross-references (from thesee key) use the acronym font. The new abbreviation

styles don’t use \acronymfont so this isn’t appropriate with glossaries-extra. If you’re us-
ing at least version 1.42 of glossaries-extra, you don’t need to do anything as it automatically

redefines \glsseeitemformat to take the style formatting into account. If you have an

earlier version you can redefine this command as follows:

�

\renewcommand*{\glsseeitemformat}[1]{%
\ifglshasshort{#1}{\glsfmttext{#1}}{\glsfmtname{#1}
}%
}

405

18. Sample Documents

This will just show the short form in the cross-reference. If you prefer the name instead (which

includes the short and long form) you can use:

�

\renewcommand*{\glsseeitemformat}[1]{\glsfmtname{#1}
}

The glossaries-extra package provides two additional cross-referencing keys seealso and

alias, so see={[see also]{svm}} can be replaced with a more appropriate key:

�

\newacronym[description=
{Statistical pattern recognition
technique using the ``kernel trick''},
seealso={svm},
]{ksvm}{ksvm}{kernel support vector machine}

Finally, as with the previous example, you need to replace \acrshort, \acrlong and

\acrfull etc with \glsxtrshort, \glsxtrlong and \glsxtrfull etc.

If you want to convert this document so that it uses bib2gls, you first need to convert it to bib2gls

use glossaries-extra, as above, but remember that you now need the record option:

�

\usepackage[acronym,nomain,style=
altlist,record,postdot,stylemods]
{glossaries-extra}

Now you need to convert the acronym definitions to the bib format required by bib2gls.
This can be done with:

�

convertgls2bib --preamble-only sampleAcrDesc.tex
entries.bib

If you retained\newacronym from the original example file, then the newentries.bib
file will contain entries defined with @acronym. For example:

�

@acronym{ksvm,
description=

{Statistical pattern recognition technique
using the ``kernel trick''},
seealso={svm},

406

18. Sample Documents

short={ksvm},
long={kernel support vector machine}

}

If you switched to\newabbreviation then the entries will instead be definedwith@abbreviation.
Next replace\makeglossarieswith the resource command, but note that the abbreviation

style must be set first:

�

\setabbreviationstyle[acronym]{long-short-sc-desc}
\GlsXtrLoadResources[src={entries}
,% terms defined in entries.bib
abbreviation-sort-fallback=long]

Another possibility is tomake@acronym behave as though it was actually@abbreviation:

�

\setabbreviationstyle{long-short-sc-desc}
\GlsXtrLoadResources[src={entries},abbreviation-sort
-fallback=long,
entry-type-aliases={acronym=abbreviation}]

Note that the category is now abbreviation not acronym so the optional argument of \set-
abbreviationstyle needs to be removed.

If the sort field is missing (which should usually be the case), then both @acronym and

@abbreviation will fallback on the short field (not the name field, which is usually

set by the style and therefore not visible to bib2gls). For some styles, as in this example, it’s
more appropriate to sort by the long form so the fallback is changed. (Remember that you will

break this fallback mechanism if you explicitly set the sort value.) See the bib2gls manual

for further details and other examples.

Remember to delete any \newacronym or \newabbreviation in the tex file. Fi-

nally replace\printglossarywith \printunsrtglossary. The document build
is now:

�

pdflatex sampleAcrDesc
bib2gls sampleAcrDesc
pdflatex sampleAcrDesc

Note that it’s nowmuch easier to revert back to the descriptionless style used insampleAcr.tex:

407

18. Sample Documents

�

\setabbreviationstyle[acronym]{long-short-sc}
\GlsXtrLoadResources[src={entries},ignore-fields=
{description}]

With the other options it would be necessary to delete all the description fields from

the abbreviation definitions in order to omit them, but with bib2gls you can simply instruct

bib2gls to ignore the description. This makes it much easier to have a large database of

abbreviations for use across multiple documents that may or may not require the description.

�� sampleDesc.tex

This is similar to the previous example, except that it defines the acronyms as normal entries

using \newglossaryentry instead of \newacronym. As with the previous example,
the glossary is added to the table of contents, so an extra run through LATEX is required:

�

pdflatex sampleDesc
makeglossaries sampleDesc
pdflatex sampleDesc
pdflatex sampleDesc

This sample file demonstrates the use of the first and text keys but in general it’s better

to use \newacronym instead as it’s more flexible. For even greater flexibility use \new-
abbreviation provided by glossaries-extra. For other variations, such as showing the

symbol on first use, you may prefer to make use of the post-link category hook. For examples,

see the section “Changing the Formatting” in glossaries-extra and bib2gls: An Introductory
Guide.4

�� sampleFnAcrDesc.tex

This document has some sample acronyms that use the footnote-sc-desc acronym style. As

with the previous example, the glossary is added to the table of contents, so an extra run through

LATEX is required:

�

pdflatex sampleFnAcrDesc
makeglossaries sampleFnAcrDesc
pdflatex sampleFnAcrDesc
pdflatex sampleFnAcrDesc

If you want to convert this sample document to use glossaries-extra, then you just need to glossaries

-extrafollow the same steps as for sampleAcr.tex with a slight modification. This time the short

-sc-footnote-desc abbreviation style is needed:

4mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf

408

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleDesc.tex
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleFnAcrDesc.tex
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf

18. Sample Documents

�

\setabbreviationstyle[acronym]{short-sc-footnote
-desc}

The command redefinitions (performed with \renewcommand) should now all be deleted as

they are no longer applicable.

You may prefer to use the short-sc-postfootnote-desc style instead. There are subtle differ-
ences between the postfootnote and footnote set of styles. Try changing the abbreviation style to

short-sc-footnote and compare the position of the footnote marker with the two styles.
This modified sample file now has a shorter build:

�

pdflatex sampleFnAcrDesc
makeglossaries sampleFnAcrDesc
pdflatex sampleFnAcrDesc

This is because the glossaries-extra package produces boilerplate text when the indexing file is
missing (on the first LATEX run) which adds the glossary title to the table of contents (toc) file.

�� sampleCustomAcr.tex

This document has some sample acronyms with a custom acronym style. It also adds the

glossary to the table of contents, so an extra run through LATEX is required:

�

pdflatex sampleCustomAcr
makeglossaries sampleCustomAcr
pdflatex sampleCustomAcr
pdflatex sampleCustomAcr

This is a slight variation on the previous example where the name is in the form 〈long〉 (〈short〉)
instead of 〈short〉 (〈long〉), and the sort key is set to the long form instead of the short form.

On first use, the footnote text is in the form 〈long〉: 〈description〉 (instead of just the long form).
This requires defining a \newacronym style that inherits from the footnote-sc-desc style.
The conversion to glossaries-extra starts in much the same way as the previous examples: glossaries

-extra

�

\usepackage[acronym,nomain,postdot,stylemods,style=
altlist]
{glossaries-extra}

The abbreviation styles have associated helper commands that may be redefined to make minor

modifications. These redefinitions should be done before the abbreviations are defined.

The short-sc-footnote-desc abbreviation style is the closest match to the requirement, so

replace the \setacronymstyle command with:

409

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleCustomAcr.tex

18. Sample Documents

�

\setabbreviationstyle[acronym]{short-sc-footnote
-desc}

Again, youmay prefer short-sc-postfootnote-desc. Both styles use the same helper commands.
Next some adjustments need to be made to fit the new requirements. The name needs to be

〈long〉 (〈short〉):

�

\renewcommand*{\glsxtrfootnotedescname}{%
\protect\glslongfont{\the\glslongtok}%
\protect\glsxtrfullsep{\the\glslabeltok}%
\protect\glsxtrparen{\protect\glsabbrvfont

{\the\glsshorttok}}%
}

This command expands when the abbreviations are defined so take care to \protect com-

mands that shouldn’t be expanded at that point, and make sure that the token registers that store

the label, long and short values are able to expand. Similarly the sort value needs adjusting:

�

\renewcommand*{\glsxtrfootnotedescsort}{\the\gls-
longtok}

The footnote for all the footnote abbreviation styles is produced with:

�

\glsxtrabbrvfootnote{〈label〉}{〈text〉}

where 〈text〉 is the singular or plural long form, depending on what command was used to refer-
ence the abbreviation (\gls, \glspl etc). This can simply be redefined as:

�

\renewcommand*{\glsxtrabbrvfootnote}[2]{\footnote{%
#2: \glsentrydesc{#1}}}

This will mimic the result from the original sample document. Note that newer versions of

glossaries-extra may have additional helper commands associated with certain abbreviation

styles.

You may prefer to replace #2 with a reference to a specific field (or fields). For example:

410

18. Sample Documents

�

\renewcommand*{\glsxtrabbrvfootnote}[2]{\footnote{%
\Glsfmtlong{#1} (\glsfmtshort{#1}): \glsentrydesc
{#1}.}}

As with the earlier sampleAcrDesc.tex, you need to remove or change the redefinition
of \glsseeitemformat since \acronymfont is no longer appropriate.

In the original sampleCustomAcr.tex source code, I started the description with a

capital:

�

\newacronym[description=
{Statistical pattern recognition
technique using the ``kernel trick''},
see={[see also]{svm}},
]{ksvm}{ksvm}{kernel support vector machine}

This leads to a capital letter after the colon in the footnote, which is undesirable, but I would like

to have the description start with a capital in the glossary. The solution to this problem is easy

with glossaries-extra. I start the description with a lowercase letter and set the glossdesc
category attribute to firstuc to convert the description to sentence case in the glossary:

�

\glssetcategoryattribute{acronym}{glossdesc}
{firstuc}

The abbreviation definitions are modified slightly:

�

\newacronym[description=
{statistical pattern recognition
technique using the ``kernel trick''},
seealso={svm},
]{ksvm}{ksvm}{kernel support vector machine}

Note the use of the seealso key, which is only available with glossaries-extra.
If you prefer to use\newabbreviation instead of\newacronym, then the category

needs to be abbreviation rather than acronym:

�

\glssetcategoryattribute{abbreviation}{glossdesc}
{firstuc}

and the style command needs to be adjusted so that it omits the optional argument. For example:

411

18. Sample Documents

�

\setabbreviationstyle{short-sc-postfootnote-desc}

�� sample-FnDesc.tex

This example defines a custom entry formatdisplay format that puts the description in a foot-

note on first use.

�

pdflatex sample-FnDesc
makeglossaries sample-FnDesc
pdflatex sample-FnDesc

In order to prevent nested hyperlinks, this document uses thehyperfirst=false package

option (otherwise the footnote marker hyperlink would be inside the hyperlink around the link

text which would result in a nested hyperlink).

The glossaries-extra package has category post-link hooks that make it easier to adjust the glossaries

-extraformatting. The post-link hook is placed after the hyperlink around the link text, so a hyperlink

created by \footnote in the post-link hook won’t cause a nested link. This means that the

hyperfirst=false option isn’t required:

�

\usepackage[postdot,stylemods]{glossaries-extra}

�

Never use commands like \gls or \glsdesc in the post-link hook as you can end up

with infinite recursion. Use commands that don’t themselves have a post-link hook, such

as \glsentrydesc or \glossentrydesc, instead.

In the original sample-FnDesc.tex file, the entry format was adjusted with:

�

\renewcommand*{\glsentryfmt}{%
\glsgenentryfmt
\ifglsused{\glslabel}{}{\footnote{\glsentrydesc

{\glslabel}}}}

This can be changed to:

�

\glsdefpostlink
{general}% category label

412

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-FnDesc.tex

18. Sample Documents

{\glsxtrifwasfirstuse{\footnote{\glsentrydesc{\gls-
label}}}{}}

This sets the post-link hook for the general category (which is the default category for entries

defined with\newglossaryentry). If I added some abbreviations (which have a different
category) then this change wouldn’t apply to them.

The first paragraph in the document is:

�

First use: \gls{sample}.

So the PDF will have the word “sample” (the link text created by \gls{sample}) as a
hyperlink to the entry in the glossary followed by the footnote marker, which is a hyperlink

to the footnote. This is then followed by the sentence terminator. “First use: sample1.”

It would look tidier if the footnote marker could be shifted after the full stop. “First use:

sample.1” This can easily be achieved with a minor modification:

�

\glsdefpostlink
{general}% category label
{\glsxtrifwasfirstuse
{\glsxtrdopostpunc{\footnote{\glsentrydesc{\gls-
label}}}}%
{}%
}

Youmay prefer to use\glossentrydesc instead of\glsentrydesc. This will obey
the glossdesc category attribute. If you append \glspostdescription, you can
also pick up the postdot package option. For example:

�

\glssetcategoryattribute{general}{glossdesc}
{firstuc}

\glsdefpostlink
{general}% category label
{\glsxtrifwasfirstuse
{\glsxtrdopostpunc{\footnote{%
\glossentrydesc{\glslabel}\glspostdescription}}}

%
{}%
}

Alternatively, you could just use \Glsentrydesc and explicitly append the full stop.

413

18. Sample Documents

�� sample-custom-acronym.tex

This document illustrates how to define your own acronym style if the predefined styles don’t

suit your requirements.

�

pdflatex sample-custom-acronym
makeglossaries sample-custom-acronym
pdflatex sample-custom-acronym

In this case, a style is defined to show the short form in the text with the long form and description

in a footnote on first use. The long form is used for the sort value. The short form is displayed

in small caps in the main part of the document but in uppercase in the list of acronyms. (So it’s

a slight variation of some of the examples above.) The name is set to the long form (starting

with an initial capital) followed by the all caps short form in parentheses. The final requirement

is that the inline form should show the long form followed by the short form in parentheses.

AswithsampleFnAcrDesc.tex, the short-sc-footnote-desc and short-sc-postfootnoteglossaries
-extra-desc abbreviation styles produce almost the required effect so one of those can be used as a

starting point. However the final requirement doesn’t fit. It’s now necessary to actually define a

custom abbreviation style, but it can mostly inherit from the short-sc-footnote-desc or short
-sc-postfootnote-desc style:

�

\newabbreviationstyle{custom-fn}%
{%
\GlsXtrUseAbbrStyleSetup{short-sc-footnote-desc}%

}%
{%
\GlsXtrUseAbbrStyleFmts{short-sc-footnote-desc}%
\renewcommand*{\glsxtrinlinefullformat}[2]{%
\glsfirstlongfootnotefont{\glsaccesslong{##1}%

\ifglsxtrinsertinside##2\fi}%
\ifglsxtrinsertinside\else##2\fi\glsxtrfullsep

{##1}%
\glsxtrparen{\glsfirstabbrvscfont{\glsaccess-

short{##1}}}%
}%
\renewcommand*{\glsxtrinlinefullplformat}[2]{%
\glsfirstlongfootnotefont{\glsaccesslongpl{##1}

%
\ifglsxtrinsertinside##2\fi} \ifglsxtr-

insertinside\else##2\fi\glsxtrfullsep{##1}%
\glsxtrparen{\glsfirstabbrvscfont{\glsaccess-

shortpl{##1}}}%

414

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-custom-acronym.tex

18. Sample Documents

} \renewcommand*{\Glsxtrinlinefullformat}[2]{%
\glsfirstlongfootnotefont{\Glsaccesslong{##1}%

\ifglsxtrinsertinside##2\fi}%
\ifglsxtrinsertinside\else##2\fi\glsxtrfullsep

{##1}%
\glsxtrparen{\glsfirstabbrvscfont{\glsaccess-

short{##1}}}%
}%
\renewcommand*{\Glsxtrinlinefullplformat}[2]{%
\glsfirstlongfootnotefont{\Glsaccesslongpl{##1}

%
\ifglsxtrinsertinside##2\fi}%

\ifglsxtrinsertinside\else##2\fi\glsxtrfullsep
{##1}%

\glsxtrparen{\glsfirstabbrvscfont{\glsaccess-
shortpl{##1}}}%
}%

}

(See the glossaries-extra user manual for further details.)
This new custom style now needs to be set:

�

\setabbreviationstyle[acronym]{custom-fn}

Remember that if you decide to use \newabbreviation instead of \newacronym
then the category will be abbreviation not acronym:

�

\setabbreviationstyle{custom-fn}

This custom style simply adjusts the inline full form. There are other adjustments to be made that

apply to the inherited style. (The alternative is to design a new style from scratch.) The footnote

contains the long form followed by the description. This is the same as the modification to an

earlier example:

�

\renewcommand*{\glsxtrabbrvfootnote}[2]{\footnote
{#2:
\glsentrydesc{#1}.}}

As with sampleCustomAcr.tex, if you specifically want the singular long form then you

can ignore the second argument. For example:

415

18. Sample Documents

�

\renewcommand*{\glsxtrabbrvfootnote}[2]{\footnote
{\Glsfmtlong{#1}: \glsentrydesc{#1}.}}

The name now needs to be the long form followed by the short form in parentheses, but note

the new requirement that the short form should now be in all caps not small caps and the long

form should start with a capital letter.

�

\renewcommand*{\glsxtrfootnotedescname}{%
\protect\glsfirstlongfootnotefont
{\makefirstuc{\the\glslongtok}}

(\protect\glsuppercase{\the\glsshorttok})%
}

The inherited abbreviation style uses the short form as the sort value by default. This needs

to be changed to the long form:

�

\renewcommand*{\glsxtrfootnotedescsort}{\the\gls-
longtok}

bib2gls

If you want to switch to using bib2gls, remember to set the abbreviation style be-

fore the resource command and change the default sort fallback field to long, as with
sampleAcrDesc.tex.

�� sample-dot-abbr.tex

This document illustrates how to use the base post-link hook to adjust the space factor after

acronyms.

�

pdflatex sample-dot-abbr
makeglossaries sampledot-abbrf
pdflatex sample-dot-abbr

This example creates a custom storage key that provides a similar function to glossaries-extra’s
category key.

This example is much simpler with glossaries-extra. The custom storage key, which is defined glossaries

-extrausing:

416

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-dot-abbr.tex

18. Sample Documents

�

\glsaddstoragekey{abbrtype}{word}{\abbrtype}

can now be removed.

The category key is set to “initials” for the initialisms (which are defined with the custom

\newacr command). The abbreviation styles can be set with:

�

\setabbreviationstyle[acronym]{long-short}
\setabbreviationstyle[initials]{long-short}

The discardperiod category attribute will discard any full stop (period) following com-

mands like \gls:

�

\glssetcategoryattribute{initials}{discardperiod}
{true}

(If youwant to use thenoshortplural attribute then youwill also need to set theplural-
discardperiod attribute.)

The first use is governed by the retainfirstuseperiod category attribute. If set,

the period won’t be discarded if it follows the first use of commands like \gls. This is useful
for styles where the first use doesn’t end with the short form. In this case, the first use of the

long-short style ends with a closing parenthesis, so the end of sentence might be clearer if the
period is retained:

�

\glssetcategoryattribute{initials}{retainfirstuse-
period}{true}

The insertdots category attribute can automatically insert dots into the short form with

a final space factor adjustment:

�

\glssetcategoryattribute{initials}{insertdots}{true}

The custom helper command defined in the example needs to be slightly modified:

�

\newcommand*{\newabbr}[1][]{%
\newabbreviation[category=initials,#1]}

The definitions need to be slightly modified to work with the insertdots attribute:

417

18. Sample Documents

�

\newabbr{eg}{eg}{eg}
\newabbr{ie}{ie}{ie}
\newabbr{bsc}{B{Sc}}{Bachelor of Science}
\newabbr{ba}{BA}{BA}
\newabbr{agm}{AGM}{AGM}

(This makes it much easier to change your mind if you decide at a later date to omit the dots,

especially if you are storing all your definitions in a file that’s shared across multiple documents,

but note the need to group “Sc”.)

The “laser” definition remains unchanged:

�

\newacronym{laser}{laser}
{light amplification by stimulated
emission of radiation}

The remaining code in the document preamble must now be removed. (It will interfere with

glossaries-extra’s category post-link hooks.) No change is required in the document body.
See the glossaries-extra user manual for further details about category attributes and post-link

hooks.

�� sample-font-abbr.tex

This document illustrates how to have different fonts for acronyms within the style. The doc-

ument build is:

�

pdflatex sample-font-abbr
makeglossaries sample-font-abbr
pdflatex sample-font-abbr

The acronym mechanism provided by the base glossaries package isn’t well suited to having a

mixture of styles. This example provides a workaround that involves defining a new storage key

with \glsaddstoragekey that’s used to hold the font declaration (such as \em).

�

\glsaddstoragekey{font}{}{\entryfont}

A new custom acronym style is defined that fetches the font information from this new key so

that it can be applied to the acronym. Some helper commands are also provided to define the

different types of acronyms:

418

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-font-abbr.tex

18. Sample Documents

�

\newcommand*{\newitabbr}[1][]{\newacronym
[font=\em,#1]}
\newcommand*{\newupabbr}{\newacronym}

\newitabbr{eg}{e.g.}{exempli gratia}
\newupabbr{bsc}{BSc}{Bachelor of Science}

This makes the first use of \gls{eg} appear as “exempli gratia (e.g.)” whereas the first use

of \gls{bsc} is “Bachelor of Science (BSc)”.

This example document is much simpler with glossaries-extra. First the \usepackage glossaries

-extracommand needs adjusting:

�

\usepackage[postdot,stylemods]{glossaries-extra}

The custom storage key can now be removed and also the custom acronym style. Now replace

the \setacronymstyle line with:

�

\setabbreviationstyle[acronym]{long-short-em}

and change the definition of the helper commands:

�

\newcommand*{\newitabbr}{\newacronym}
\newcommand*{\newupabbr}{\newabbreviation}

Note that thefont=\em, part has been removed from the definition of the first command and

the second command uses \newabbreviation instead of \newacronym. This means
that\newitabbrwill default tocategory={acronym} and\newupabbrwill default

to category={abbreviation}. The default style for the abbreviation category is long-short,
which is the required style for this example. This just means that only the acronym category

needs to have the style set (with the above \setabbreviationstyle command).

Finally, the \acrshort, \acrlong and \acrfull commands need to be replaced

with \glsxtrshort, \glsxtrlong and \glsxtrfull.
You may notice that the spacing after “e.g.” and “i.e.” isn’t correct. This is similar to the

sample-dot-abbr.tex example where the space factor needs adjusting. In this case

I’ve inserted the dots manually (rather than relying on the insertdots attribute). You can

either remove the dots and use insertdots with discardperiod:

419

18. Sample Documents

�

\glssetcategoryattribute{acronym}{insertdots}{true}
\glssetcategoryattribute{acronym}{discardperiod}
{true}

\newitabbr{eg}{eg}{exempli gratia}
\newitabbr{ie}{ie}{id est}

Or you can manually insert the space factor adjustment with \@ and only use the discard-
period attribute:

�

\glssetcategoryattribute{acronym}{discardperiod}
{true}

\newitabbr{eg}{e.g.\@}{exempli gratia}
\newitabbr{ie}{i.e.\@}{id est}

You don’t have to use the acronym category. You may prefer a different label that fits better

semantically. For example:

�

\setabbreviationstyle[latinabbr]{long-short-em}
\newcommand*{\newlatinabbr}[1][]{\newabbreviation
[category={latinabbr},#1]}
\glssetcategoryattribute{latinabbr}{insertdots}
{true}
\glssetcategoryattribute{latinabbr}{discardperiod}
{true}

\newlatinabbr{eg}{e.g.\@}{exempli gratia}
\newlatinabbr{ie}{i.e.\@}{id est}

18.3. Non-Page Locations

�� sampleEq.tex

This document illustrates how to change the entry location to something other than the page

number. In this case, the equation counter is used since all glossary entries appear inside an

equation environment. To create the document do:

420

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleEq.tex

18. Sample Documents

�

pdflatex sampleEq
makeglossaries sampleEq
pdflatex sampleEq

The glossaries package provides some location formats, such as hyperrm and hyperbf,
that allow the locations in the number list to hyperlink to the appropriate place in the document

(if hyperref has been used). Since it’s not possible to include the hyperlink name in the indexing

information with makeindex and xindy, the glossaries package has to reform the name

from a prefix and the location value.

Unfortunately it’s not always possible to split the link name into a prefix and location. That

happens with the equation counter in certain classes, such as the report class (which is used in

this example). This means that it’s necessary to redefine \theHequation so that it has a

format that fits the requirement:

�

\renewcommand*\theHequation{\theHchapter.\arabic
{equation}}

If you don’t do this, the equation locations in the glossary won’t form valid hyperlinks.

Each glossary entry represents a mathematical symbol. This means that with Options 1, 2 and

3 it’s necessary to use the sort key. For example:

�

\newglossaryentry{Gamma}{name={\ensuremath
{\Gamma(z)}},
description={Gamma function},sort={Gamma}}

If you want to switch to using bib2gls, the first change you need to make is to switch bib2gls

from explicitly loading glossaries to loading glossaries-extra with the record package op-

tion. If record=only (or record without a value) is used, then the above redefinition of

\theHequation is still required. If record=nameref is used instead then the redefi-

nition of \theHequation isn’t required. You may also want to use the stylemods and

postdot options:

�

\usepackage[record=nameref,stylemods,postdot,
ucmark,style=long3colheader,counter=equation]
{glossaries-extra}

The entries now need to be converted into the bib format required by bib2gls, which can
be done with convertgls2bib:

421

18. Sample Documents

�

convertgls2bib --preamble-only sampleEq.tex
entries.bib

This will create a file called entries.bib that starts:

�

% Encoding: UTF-8
@entry{Gamma,
name={\ensuremath{\Gamma(z)}},
description={Gamma function}

}

You may prefer to change @entry to @symbol. (This should be easy to do with your text
editor’s search and replace function.)

Note that the sort key has been omitted. This is because it typically shouldn’t be used. The

difference between using @entry and @symbol is that with @entry the sort value will be

obtained from the name but with @symbol the sort value will be obtained from the label. If

you explicitly use the sort key then you will break this behaviour. (If you try this example out,

notice the difference in the ordering if you switch between @entry and @symbol. See also
bib2gls gallery: sorting.5)

Next replace \makeglossaries with:

�

\GlsXtrLoadResources[src={entries}]

If you have used record=nameref then you can remove the redefinition of \theH-
equation. Next remove all the lines defining the glossary entries (since they’re now defined

in the bib file).

Finally, replace \printglossary with \printunsrtglossary:

�

\printunsrtglossary[title=
{Index of Special Functions and Notations}]

The rest of the document remains unchanged (unless you want to use \glsxtrfmt as de-

scribed in the following example).

�� sampleEqPg.tex

This is similar to the previous example, but the number lists are a mixture of page numbers

and equation numbers. This example adds the glossary to the table of contents, so an extra LATEX

run is required:

5dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

422

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleEqPg.tex
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

18. Sample Documents

�

pdflatex sampleEqPg
makeglossaries sampleEqPg
pdflatex sampleEqPg
pdflatex sampleEqPg

As with the previous example, entries are defined like this:

�

\newglossaryentry{Gamma}name={\ensuremath{\Gamma(z)}
},
description={Gamma function},sort={Gamma}

The counter=equation package option is used to set the default indexing counter to equation.
Thismeans that it has to be changed for indexing outside of any numbered equation. For example:

�

\glslink[format=hyperbf,counter=page]{Gamma}
{gamma function}

I’ve set the format to hyperbf to indicate that this is a primary reference. (Note that I’m

using hyperbf not textbf in order to include a hyperlink in the location.)

The link text here is almost identical to the description. The only difference is that the de-

scription starts with a capital (sentence case). If it started with a lowercase character instead, I

could simply use \glsdesc instead of \glslink. If I change the entry descriptions so
that they all start with a lowercase letter then I would need to create a custom glossary style that

used \Glossentrydesc instead of \glossentrydesc.
If I switch to using glossaries-extra I wouldn’t need a new glossary style. Instead I could just glossaries

-extrause the glossdesc category attribute to perform the case change. Remember that the first

change to make is to replace glossaries with glossaries-extra:

�

\usepackage[style=long3colheader,postdot,stylemods,
counter=equation]{glossaries-extra}

The entries are now all defined so that the description starts with a lowercase letter (except for

the descriptions that start with a proper noun). For example:

�

\newglossaryentry{Gamma}{name={\ensuremath
{\Gamma(z)}},
description={gamma function},sort={Gamma}}

The glossdesc category attribute needs setting:

423

18. Sample Documents

�

\glssetcategoryattribute{general}{glossdesc}
{firstuc}

This means that I can now use \glsdesc instead of \glslink.
It’s a bit cumbersome typing [format=hyperbf,counter=page] for each pri-

mary reference, but glossaries-extra provides a convenient way of having a third modifier for

commands like \gls and \glstext. This needs to be a single punctuation character (but
not * or + which are already in use). For example:

�

\GlsXtrSetAltModifier{!}{format=hyperbf,counter=
page}

Now \glsdesc!{Gamma} is equivalent to:

�

\glsdesc[format=hyperbf,counter=page]{Gamma}

So the text at the start of the “Gamma Functions” chapter is now just:

�

The \glsdesc!{Gamma} is defined as

which is much more compact. Similar changes can be made for the other instance of \gls-
link where the link text is just the description:

�

The \glsdesc!{erf} is defined as

There are three other instances of \glslink, such as:

�

\glslink{Gamma}{\Gamma(x+1)}

If I just use \gls{Gamma} then I would get Γ(z) as the link text. For entries like this that

represent functions with variable parameters it would be more convenient (and help with consis-

tency) if a command was available to easily replace the parameters.

With the base glossaries package, one simple solution that works for this example is to save

just the function symbol in the symbol field, for example:

424

18. Sample Documents

�

\newglossaryentry{Gamma}{name={\ensuremath
{\Gamma(z)}},
symbol={\ensuremath{\Gamma}},
description={gamma function},sort={Gamma}}

and then use:

�

\glssymbol{Gamma}[(\Gamma(x+1))]

(which includes the function parameter inside the link text) or just:

�

\glssymbol{Gamma}(\Gamma(x+1))

(which has the function parameter after the link text). This is a convenient approach where the

extra material can simply follow the symbol, and it can also be used with glossaries-extra.
The glossaries-extra package provides another possibility. It requires a command that takes

a single argument, for example:

�

\newcommand{\Gammafunction}[1]{\Gamma(#1)}

The control sequence name (the command name without the leading backslash) is stored in the

field identified by the command \GlsXtrFmtField (this should be the internal field name

not the key name, see Table 4.1 on page 156). The default is useri which corresponds to

the user1 key. This means that the “Gamma” entry would need to be defined with user1=
{Gammafunction}. With this approach, each function entry would need a separate asso-

ciated command.

Another approach is to store the parameterless function in the symbol key (as earlier) and

have a more generic command that uses this symbol. This requires the entry label, which can be

obtained with \glslabel within the link text:

�

\newcommand{\entryfunc}[1]{\glsentrysymbol{\gls-
label}(#1)}

(Obviously, this command can’t be used outside of the link text or post-link hooks since it uses

\glslabel.)
So the entry now needs the parameterless function insymbol and the control sequence name

of this generic command in user1. For example:

425

18. Sample Documents

�

\newglossaryentry{Gamma}{name={\ensuremath
{\Gamma(z)}},
symbol={\ensuremath{\Gamma}},user1={entryfunc},
description={gamma function},sort={Gamma}}

(This doesn’t need to be done for the “C” and “G” entries since they’re constants not functions.)

You may want to consider providing helper commands to make the functions easier to define.

For example:

�

\newcommand{\func}[2]{#1(#2)}
\newcommand{\entryfunc}[1]{\func{\glsentrysymbol
{\glslabel}}{#1}}
\newcommand{\newfunc}[5][]{%
\newglossaryentry{#2}{name={\ensuremath{\func{#3}
{#4}}},

symbol={#3},
user1={entryfunc},
description={#5},
sort={#2},#1

}%
}

The entries can now be defined using this custom \newfunc command. For example:

�

\newfunc{Gamma}{\Gamma}{z}{gamma function}
\newfunc[sort={gamma1}]{gamma}{\gamma}{\alpha,x}
{lower
incomplete gamma function}

\newfunc[sort={Gamma2}]{iGamma}{\Gamma}{\alpha,x}
{upper
incomplete gamma function}

Note that in \newfunc the symbol key doesn’t have its value encapsulated with \en-
suremath so \glssymbol will need to explicitly be placed in math mode. If you switch

to a glossary style that displays the symbol, you will either need to adjust the definition of

\newfunc to use \ensuremath in the symbol field or you can add the encapsulation

with the glosssymbolfont category attribute.

Now \glslink{Znu}{Z_\nu} can simply be replaced with \glssymbol{Znu}
(no parameter is required in this case). For the other cases, where the parameter is different from

that given in the text field (which is obtained from the name), you can use \glsxtrfmt.

426

18. Sample Documents

For example, \glslink{Gamma}{\Gamma(x+1)} can now be replaced with:

�

\glsxtrfmt{Gamma}{x+1}

This effectively works like \glslink but omits the post-link hook. (See the glossaries-extra
user manual for further details.)

�

Don’t use \glsxtrfmt within the argument of another \glsxtrfmt command

(or inside any other link text).

Similarly \glslink{Gamma}{\Gamma(\alpha)} can now be replaced with:

�

\glsxtrfmt{Gamma}{\alpha}

Note that it’s still possible to use:

�

\glssymbol{Gamma}[(\alpha)]

Youmay prefer to define a helper command that makes it easier to switch between your preferred

method. For example:

�

\newcommand*{\Fn}[3][]{\glssymbol[#1]{#2}[(#3)]}

or:

�

\newcommand*{\Fn}[3][]{\glsxtrfmt[#1]{#2}{#3}}

If you want to convert this example so that it works with bib2gls, first convert it to use bib2gls

glossaries-extra (as described above), and then follow the instructions fromsampleEq.tex.
The convertgls2bib application recognises \newcommand so it will be able to parse

the custom \newfunc commands.

Note that bib2gls allows you to separate the locations in the number list into differ-

ent groups according to the counter used for the location. This can be done with the loc
-counters resource option. It’s also possible to identify primary formats (such as hyper-
bf used in this example) using theprimary-location-formats option. The primary

locations can then be given a more prominent position in the number list. See the bib2gls
user manual for further details.

�� sampleSec.tex

427

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleSec.tex

18. Sample Documents

This document also illustrates how to change the location to something other than the page

number. In this case, the section counter is used. This example adds the glossary to the table of

contents, so an extra LATEX run is required:

�

pdflatex sampleSec
makeglossaries sampleSec
pdflatex sampleSec
pdflatex sampleSec

Note that there are conflicting location formats, which trigger a warning from makeindex:

�

Warning (input = sampleSec.glo, line = 6; output
= sampleSec.gls, line = 9):
-- Conflicting entries: multiple encaps for the same
page under same key.

Warning (input = sampleSec.glo, line = 2; output
= sampleSec.gls, line = 10):
-- Conflicting entries: multiple encaps for the same
page under same key.

This is the result of indexing an entry multiple times for the same location with different values

of the format key (encaps). (makeindex assumes that the location is a page number)

In this case, it’s caused by three references to the “ident” entry in section 2.1:

�

\gls[format=hyperit]{ident}
\glspl{ident} % default format=glsnumberformat
\gls*[format=hyperbf]{ident}

If you use the makeglossaries Perl script it will detect the warnings in the make-
index transcript file and attempt to fix the conflict by removing entries from the glo file:

Multiple encaps detected. Attempting to remedy.
Reading sampleSec.glo...
Writing sampleSec.glo...
Retrying

(Range formats have highest precedence. The default glsnumberformat has the lowest

precedence.)

If you use makeglossaries-lite or call makeindex directly then the problem

won’t be fixed and the glossary will end up with the rather odd number list for the identity matrix

428

18. Sample Documents

entry consisting of three references to section 2.1: the first in the default font, followed by bold

(hyperbf) and then italic (hyperit), which results in 2.1, 2.1, 2.1. If you use make-
glossaries then only the bold entry (2.1) will be present. However, if you don’t want the

problem corrected, call makeglossaries with the -e switch.

If you switch to xindy:

�

\usepackage[xindy,style=altlist,toc,counter=section]
{glossaries}

then the conflict will be resolved using the number format attribute list order of priority. In this

case, glsnumberformat has the highest priority. This means that only the upright medium

weight entry (2.1) will be present. The simplest way of altering this is to provide your own custom

format. For example:

�

\newcommand*{\primary}[1]{\hyperit{#1}}
\GlsAddXdyAttribute{primary}

and change\gls[format=hyperit] to\gls[format=primary] etc. This will

give format=primary the highest priority. (It’s also better practice to provide this kind of

semantic command.)

With bib2gls, you can supply rules to deal with location format conflicts, as illustrated

below.

In order to switch to bib2gls, first replace glossaries with glossaries-extra, and add the bib2gls

record package option. Remember that glossaries-extra has a different set of defaults and

you may also want to patch the predefined base styles. For example:

�

\usepackage[style=altlist,postdot,stylemods,counter=
section]
{glossaries-extra}

The entry definitions now need to be converted into bib2gls format and saved in a bib
file (say, entries.bib). You can use convertgls2bib:

�

convertgls2bib --preamble-only sampleSec.tex
entries.bib

Next replace \makeglossaries with:

429

18. Sample Documents

�

\GlsXtrLoadResources[src={entries}]

and remove all the \newglossaryentry commands.

Finally, replace\printglossarieswith\printunsrtglossaries. The doc-
ument build is now:

�

pdflatex sampleSec
bib2gls sampleSec
pdflatex sampleSec

As with the original example, there’s still a location format conflict, which bib2gls warns

about:

Warning: Entry location conflict for formats:
hyperbf and hyperit
Discarding: {ident}{}{section}{hyperbf}{2.1}
Conflicts with: {ident}{}{section}{hyperit}{2.1}

This means that it has discarded the bold location and kept the italic one. (As with make-
glossaries, range formats have the highest priority and glsnumberformat has the

lowest.)

It would be better if the conflict could be merged into a single location that was both bold and

italic. To achieve this, it’s first necessary to define a command that produces this effect:

�

\newcommand*{\hyperbfit}[1]{\textbf{\hyperit{#1}}}

Nowbib2gls needs to be invoked with the appropriate mapping with the--map-format
or -m switch:

�

bib2gls -m "hyperbf:hyperbfit,hyperit:hyperbfit"
sampleSec

If you are using arara the directive should be:

�

% arara:
bib2gls: { mapformats: [[hyperbf, hyperbfit],
% arara: --> [hyperit, hyperbfit]] }

430

18. Sample Documents

If you try out this example, notice the difference between record=only and record
=nameref. If you use the latter, the locations will now be the section titles rather than the

section numbers. If you use the record=nameref setting you can customize the location

by defining the command:

�

\glsxtr〈counter〉locfmt{〈location〉}{〈title〉}

In this case the counter is section, so the command should be \glsxtrsectionloc-
fmt. It takes two arguments: the first is the location and the second is the title. For example:

�

\newcommand*{\glsxtrsectionlocfmt}[2]{\S#1 #2}

(The only command of this type that is defined by default is the one for the equation counter,

\glsxtrequationlocfmt.) Make sure that you have at least version 1.42 of glossaries

-extra.

18.4. Multiple Glossaries

See also sampleSort.tex in §18.5, which has three glossaries.

�� sampleNtn.tex

This document illustrates how to create an additional glossary type. This example adds the

glossary to the table of contents, so an extra LATEX run is required:

�

pdflatex sampleNtn
makeglossaries sampleNtn
pdflatex sampleNtn
pdflatex sampleNtn

Note that if youwant to callmakeindex explicitly instead of using themakeglossaries
or makeglossaries-lite scripts then you need to call makeindex twice:

1. Create the main glossary (all on one line):

�

makeindex -s sampleNtn.ist -t sampleNtn.glg -o
sampleNtn.gls sampleNtn.glo

2. Create the secondary glossary (all on one line):

431

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleNtn.tex

18. Sample Documents

�

makeindex -s sampleNtn.ist -t sampleNtn.nlg -o
sampleNtn.not sampleNtn.ntn

This document creates a new glossary using:

�

\newglossary[nlg]{notation}{not}{ntn}{Notation}

This defines a glossary that can be identified with the label “notation” with the default title “No-

tation”. The other arguments are the file extensions required with Options 2 and 3. For those

two options, the glossaries package needs to know the input and output files required by make-
index or xindy.
(The optional argument is the file extension of the indexing transcript file, which glossaries

doesn’t need to know about (unless automake is used), but it writes the information to the

aux file for the benefit of makeglossaries and makeglossaries-lite.)
If you switch to a different indexing option then these file extensions aren’t required, in which

case it’s simpler to use the starred form:

�

\newglossary*{notation}{Notation}

This example uses a label prefixing system to differentiate between the different types of en-

tries. (If you use babel with a language that makes : (colon) active you will need to change the

prefix.) For example, the term “set” is defined as:

�

\newglossaryentry{gls:set}{name={set},
description={A collection of distinct objects}}

and the set notation is defined as:

�

\newglossaryentry{not:set}{type={notation},
name={\ensuremath{\mathcal{S}}},
description={A \gls{gls:set}},sort={S}}

Notice that the latter description contains \gls. This means you shouldn’t use \glsdesc
with this entry otherwise you will end up with nested links.

The glossaries-extra package provides a command for use in within field values to prevent glossaries

-extranested link text:

432

18. Sample Documents

�

\glsxtrp{〈field〉}{〈label〉}

There are convenient shortcuts for common fields: \glsps{〈label〉} (for the short field)

and \glspt{〈label〉} (for the text field). So the set notation definition can be modified:

�

\newglossaryentry{not:set}{type={notation},
name={\ensuremath{\mathcal{S}}},
description={A \glspt{gls:set}},sort={S}}

This will stop the inner reference from causing interference if you use \glsdesc. It will also
suppress indexing within the glossary but will have a hyperlink (if hyperref is used).

The glossaries-extra package provides a way of defining commands like \gls that automat-

ically insert a prefix. For example:

�

\glsxtrnewgls{not:}{\sym}
\glsxtrnewglslike{gls:}{\term}{\termpl}{\Term}
{\Termpl}

(there’s no point providing commands for plural or case-changing with symbols). Now \gls
{not:set} can be replaced with \sym{set} and \gls{gls:set} can be replaced

with \term{set}.
These two commands are primarily provided for the benefit of bib2gls as the information bib2gls

is written to theaux file. This allowsbib2gls to recognise the custom commands if they have

been used in the bib files. When combined with label-prefix and ext-prefixes
(see below) this makes it much simpler to change the prefixes if necessary.

If youwant to convert this document to usebib2gls, remember that you need therecord
or record=nameref option. For example:

�

\usepackage[record,postdot,stylemods]{glossaries-
extra}

As with earlier examples, convertgls2bib can be used to convert the entry definitions

into the required bib format. You may prefer to split the entries into separate files according

to type. (Requires at least bib2gls v2.0.) This is useful if you want to reuse a large database

of entries across multiple documents as it doesn’t lock you into using a specific glossary. For

example:

433

18. Sample Documents

�

convertgls2bib --split-on-type --preamble-only
sampleNtn.tex entries.bib

This will create a file called entries.bib that contains the entries that didn’t have a type
assigned in the original file, such as:

�

@entry{gls:set,
name={set},
description={A collection of distinct objects}

}

It will also create a file called notation.bib that contains the entries that had the type
set to “notation” in the original file, such as:

�

@entry{not:set,
name={\ensuremath{\mathcal{S}}},
description={A \glspt{gls:set}}

}

Note that the type field has been removed. The above entry in the notation.bib file

references a term in the entries.bib file. It’s possible to strip all the prefixes from the

bib files and get bib2gls to automatically insert them. In which case, this cross-reference

needs adjusting to indicate that it’s referring to an entry in another file. This can be done with

one of the special ext〈n〉. prefixes:

�

@entry{set,
name={\ensuremath{\mathcal{S}}},
description={A \glspt{ext1.set}}

}

The corresponding term in the entries.bib file is now:

�

@entry{set,
name={set},
description={A collection of distinct objects}

}

Now you can replace \makeglossaries with:

434

18. Sample Documents

�

\GlsXtrLoadResources[src={entries},label-prefix=
{gls:}]
\GlsXtrLoadResources[src={notation},type=notation,
label-prefix={not:},ext-prefixes={gls:}]

Remove all the \newglossaryentry definitions and replace \printglossaries
with \printunsrtglossaries.
Regardless of how many resource sets the document contains, only one bib2gls call is

required:

�

pdflatex sampleNtn
bib2gls sampleNtn
pdflatex sampleNtn

You may notice that the ordering in the notations list has changed from the original. This is

because thesort field was automatically removed byconvertgls2bib, so the entries are
now sorted according to thename field (since they are definedwith@entry). You can use your
text editor’s search and replace function to replace all instances of @entry with @symbol
in the notations.bib file so that, for example, the “set” definition becomes:

�

@symbol{set,
name={\ensuremath{\mathcal{S}}},
description={A \glspt{ext1.set}}

}

Now these @symbol entries will be sorted according to their label. (The original label in the

bib file, not the prefixed label.) This will put them in the same order as the original document.

(See the “Examples” chapter of the bib2gls user manual for examples of varying the sorting

and also bib2gls gallery: sorting.6)

�� sample-dual.tex

This document illustrates how to define an entry that both appears in the list of acronyms and

in the main glossary. To create the document do:

�

pdflatex sample-dual
makeglossaries sample-dual
pdflatex sample-dual

6dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

435

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-dual.tex
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

18. Sample Documents

This defines a custom command \newdualentry that defines two entries at once (a nor-

mal entry and an acronym). It uses \glsadd to ensure that if one is used then the other is

automatically indexed:

�

\newcommand*{\newdualentry}[5][]{%
% main entry:
\newglossaryentry{main-#2}{name={#4},%
text={#3\glsadd{#2}},%
description={#5},%
#1% additional options for main entry
}%
% acronym:
\newacronym{#2}{#3\glsadd{main-#2}}{#4}%

}

A sample dual entry is defined with this command:

�

\newdualentry{svm}% label
{SVM}% short form
{support vector machine}% long form
{Statistical pattern recognition technique}

% description

This defines an acronym with the label “svm” that can be referenced with \gls{svm} but it

also defines an entry with the label “main-svm”. This isn’t used in the document with \gls but

it’s automatically added from the \glsadd{main-svm} code in the short form of “svm”.

For this trivial document, this kind of dual entry is redundant and unnecessarily leads the

reader down a trail, first to the list of acronyms and from there the reader then has to go to the

main glossary to look up the description. It’s better to simply include the description in the list

of acronyms.

There are, however, uses for repeating entries across multiple lists. For example, this user

manual defines all described commands (such as \gls) as glossary entries. They appear in the
command summary (where the syntax is given with a brief description and the principle location

in the document where the command is described) and they also appear in the index (where just

the name and location list is shown).

If you want to switch over to bib2gls, first change to glossaries-extra: bib2gls

�

\usepackage[record,postdot,stylemods,acronym]
{glossaries-extra}

Next, the definition needs to be converted to the bib format required by bib2gls. If you

436

18. Sample Documents

do:

�

convertgls2bib --preamble-only sample-dual.tex
entries.bib

then convertgls2bib will report the following:

Overriding default definition of \newdualentry with
custom
definition. (Change \newcommand to \providecommand
if you want
\newdualentry[options]{label}{short}{long}
{description}
converted to @dualabbreviationentry.)

This is because convertgls2bib has its own internal definition of \newdualentry,
but if it encounters a new definition that will override its default. If youwant to retainconvert-
gls2bib’s definition (recommended) then just replace\newcommandwith\providecommand
in the document source and rerun convertgls2bib.
With\providecommand, the newentries.bib file created byconvertgls2bib

contains:

�

@dualabbreviationentry{svm,
short={SVM},
description=

{Statistical pattern recognition technique},
long={support vector machine}

}

If \newcommand is retained, it will instead contain:

�

@entry{main-svm,
name={support vector machine},
description=

{Statistical pattern recognition technique},
text={SVM\glsadd{svm}}

}

@acronym{svm,
short={SVM\glsadd{main-svm}},

437

18. Sample Documents

long={support vector machine}
}

In the first case, bib2gls creates two linked entries using its primary-dual mechanism. In the

second case, bib2gls creates two entries that simply reference each other.

Assuming that yourentries.bib file just contains@dualabbreviationentry,
now replace \makeglossaries with:

�

\GlsXtrLoadResources[src={entries},% entries.bib
type=acronym,dual-type=main,dual-prefix={main-}]

Then remove the definition of \newdualentry and the entry definition. Finally, replace

\printglossaries with \printunsrtglossaries. The document build is:

�

pdflatex sample-dual
bib2gls sample-dual
pdflatex sample-dual

If, instead, your entries.bib file contains separate @entry and @acronym, then
you need:

�

\setabbreviationstyle[acronym]{long-short}
\GlsXtrLoadResources[src={entries}]

If you need number lists, the document build is now

�

pdflatex sample-dual
bib2gls sample-dual
pdflatex sample-dual
bib2gls sample-dual
pdflatex sample-dual

and this timebib2gls complains about the use of\glsaddwithin theshort andtext
fields as this can be problematic. (The extra bib2gls and LATEX calls are to ensure the number

list is up to date for the “main-svm” entry, which can only be indexedwith\glsadd after “svm”

has been defined.)

Dual entries make much more sense when one entry is for a glossary with the description dis-

played but no number list (or just a primary location), and the other is for the indexwithout the de-

scription but with a number list. This can be created by replacing@dualabbreviationentry
with @dualindexabbreviation:

438

18. Sample Documents

�

@dualindexabbreviation{svm,
description=

{Statistical pattern recognition technique},
short={SVM},
long={support vector machine}

}

This can be mixed with @index terms for example:

�

@index{machlearn,
name={machine learning}

}

The document needs modifying:

�

\documentclass{article}

\usepackage[record,postdot,
nostyles,stylemods=
bookindex,list,% only want bookindex and list styles
acronym]{glossaries-extra}

\setabbreviationstyle{long-short-desc}
\GlsXtrLoadResources[src={entries},% entries.bib
dual-type=acronym,
label-prefix={idx.},dual-prefix={},
combine-dual-locations={primary}]

\glsxtrnewglslike{idx.}{\idx}{\idxpl}{\Idx}{\Idxpl}

\begin{document}
\gls{svm} and \idx{machlearn}.

\printunsrtglossary[type=\acronymtype,style=altlist]
\printunsrtglossary[style=bookindex,title={Index}]
\end{document}

See the bib2gls manual for further details.

�� sample-langdict.tex

This document illustrates how to use the glossaries package to create English to French and

439

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-langdict.tex

18. Sample Documents

French to English dictionaries. To create the document do:

�

pdflatex sample-langdict
makeglossaries sample-langdict
pdflatex sample-langdict

This example uses the nomain package option to prevent the creation of the main glossary.

This means that the document must provide its own glossaries:

�

\newglossary[glg]{english}{gls}{glo}
{English to French}
\newglossary[flg]{french}{flx}{flo}
{French to English}

Thismeans that if youwant to callmakeindex explicitly you need to take these new extensions

into account:

�

makeindex -s sample-langdict.ist -t
sample-langdict.glg -o sample-langdict.gls
sample-langdict.glo
makeindex -s sample-langdict.ist -t
sample-langdict.flg -o sample-langdict.flx
sample-langdict.flo

As with the previous example, this document provides a custom command that defines two

related entries:

�

\newcommand*{\newword}[4]{%
\newglossaryentry{en-#1}{type={english},name={#2}

,description={#3 #4}}%
\newglossaryentry{fr-#1}{type={french},name=

{#3 #4},text={#4},sort={#4},
description={#2}}%

}

This has the syntax:

�

\newword{〈label〉}{〈english〉}{〈determiner〉}{〈french〉}

440

18. Sample Documents

(Note that this trivial example doesn’t take plurals into account.) This custom command will

define two terms with labels en-〈label〉 (for the English term) and fr-〈label〉 (for the French
term). So

�

\newword{cat}{cat}{le}{chat}

is equivalent to:

�

\newglossaryentry{en-cat}{type={english},name={cat}
,description={le chat}}
\newglossaryentry{fr-cat}{type={french},name={le
chat},sort={chat},
description={cat}}

Unlike the previous example (sample-dual.tex), there’s no link between these two

entries. If the document only uses \gls{en-cat}, then the “en-cat” entry will appear in

the english glossary but the “fr-cat” entry won’t appear in the french one.

If you want to switch to bib2gls then you first need to convert the document so that it bib2gls

uses glossaries-extra, but include the prefix option to ensure that glossaries-prefix is also
loaded:

�

\usepackage[record,prefix,postdot,stylemods,nomain]
{glossaries-extra}

You don’t need to worry about file extensions now, so it’s simpler to use the starred\newglos-
sary*:

�

\newglossary*{english}{English to French}
\newglossary*{french}{French to English}

Next the entries need to be converted to the bib format required by bib2gls:

�

convertgls2bib --preamble-only --ignore-type
sample-langdict.tex entries.bib

This creates the file entries.bib that contains entries defined like:

441

18. Sample Documents

�

@entry{en-cat,
name={cat},
description={le chat}

}

@entry{fr-cat,
name={le chat},
description={cat},
text={chat}

}

(Note that the sort and type fields have been omitted.)

This would bemore flexible, andmuch briefer, if these entries were defined usingbib2gls’s
dual entry system combined with the glossaries-prefix package:

�

@dualentry{cat,
name={chat},
description={cat},
prefix={le},
prefixplural={les}

}

Similarly for the “chair” entry:

�

@dualentry{chair,
name={chaise},
description={chair},
prefix={la},
prefixplural={les}

}

With@dualentry, the English and French terms are now automatically linked frombib2gls’s
point of view. If only one is referenced in the document, the other will also be added by default.

Now that the determiner has been moved out of the description, it won’t show in the glossary.

However, it’s possible to include it by providing a command to encapsulate the description (which

can also apply the language change as well).

442

18. Sample Documents

�

\GlsXtrLoadResources[src={entries},% entries.bib
append-prefix-field={space},
category={same as type},dual-category=
{same as type},
label-prefix={en-},dual-prefix={fr-},
type=english,dual-type=french,
sort=en,dual-sort=fr]

\newcommand{\FrEncap}[1]{%
\foreignlanguage{french}{\glsentryprefix{\gls-
currententrylabel}#1}}
\newcommand{\EnEncap}[1]{\foreignlanguage{english}
{#1}}

\glssetcategoryattribute{english}{glossnamefont}
{EnEncap}
\glssetcategoryattribute{english}{glossdescfont}
{FrEncap}
\glssetcategoryattribute{french}{glossnamefont}
{FrEncap}
\glssetcategoryattribute{french}{glossdescfont}
{EnEncap}

Remember to remove \makeglossaries, the definition of \newword and the entry

definitions from the document preamble, and replace \printglossary with:

�

\printunsrtglossary

Other refinements that you might like to make include using \glsxtrnewglslike so

you don’t have to worry about the label prefix (“en-” and “fr-”). See the glossaries-extramanual
for further details.

�� sample-index.tex

This document uses the glossaries package to create both a glossary and an index. This re-

quires two makeglossaries (or makeglossaries-lite) calls to ensure the doc-
ument is up to date:

443

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-index.tex

18. Sample Documents

�

pdflatex sample-index
makeglossaries sample-index
pdflatex sample-index
makeglossaries sample-index
pdflatex sample-index

18.5. Sorting

�� samplePeople.tex

This document illustrates how you can hook into the standard sort mechanism to adjust the way

the sort key is set. This requires an additional run to ensure the table of contents is up-to-date:

�

pdflatex samplePeople
makeglossaries samplePeople
pdflatex samplePeople
pdflatex samplePeople

This provides two commands for typesetting a name:

�

\newcommand{\sortname}[2]{#2, #1}
\newcommand{\textname}[2]{#1 #2}

where the first argument contains the forenames and the second is the surname. The first com-

mand is the one required for sorting the name and the second is the one required for displaying

the name in the document. A synonym is then defined:

�

\let\name\textname

This command defaults to the display name command (\textname) but is temporarily rede-
fined to the sort name command (\sortname) within the sort field assignment hook:

�

\renewcommand{\glsprestandardsort}[3]{%
\let\name\sortname
\edef#1{\expandafter\expandonce\expandafter{#1}}%
\let\name\textname
\glsdosanitizesort

444

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/samplePeople.tex

18. Sample Documents

}

The people are defined using the custom \name command:

�

\newglossaryentry{joebloggs}{name={\name{Joe}
{Bloggs}},
description={\nopostdesc}}

Since \name is temporarily changed while the sort key is being assigned, the sort value for

this entry ends up as “Bloggs, Joe”, but the name appears in the document as “Joe Bloggs”.

If you want to use bib2gls, you first need to convert the document to use glossaries-extra bib2gls

but make sure you include the record option:

�

\usepackage[record,stylemods,style=listgroup]
{glossaries-extra}

Next it’s necessary to convert the entry definitions to the bib format required by bib2gls.
You can simply do:

�

convertgls2bib --preamble-only samplePeople
people.bib

which will create a file called people.bib that contains definitions like:

�

@entry{joebloggs,
name={\name{Joe}{Bloggs}},
description={\nopostdesc}

}

However, you may prefer to use the --index-conversion (-i) switch:

�

convertgls2bib -i --preamble-only samplePeople
people.bib

This will discard the description field and use @index instead of @entry if the

description is either empty or simply set to \nopostdesc or \glsxtrnopost-
punc. The people.bib file now contains definitions like:

445

18. Sample Documents

�

@index{joebloggs,
name={\name{Joe}{Bloggs}}

}

Regardless of which approach you used to create the bib file, you now need to edit it to provide

a definition of the custom \name command for bib2gls’s use:

�

@preamble{"\providecommand{\name}[2]{#2, #1}"}

Note the use of \providecommand instead of \newcommand.
In the document (samplePeople.tex) you now need to delete\makeglossaries,

the definitions of \sortname, \textname, \name, \glsprestandardsort,
and all the entry definitions. Then add the following to the document preamble:

�

\newcommand{\name}[2]{#1 #2}
\GlsXtrLoadResources[src={people}]

Next, use your text editor’s search and replace function to substitute all instances of \gls-
entrytext in the chapter headings with \glsfmttext. For example:

�

\chapter{\glsfmttext{joebloggs}}

Finally, replace \printglossaries with:

�

\printunsrtglossaries

The document build is now:

�

pdflatex samplePeople
bib2gls samplePeople
pdflatex samplePeople
pdflatex samplePeople

The third LATEX call is required to ensure that the PDF bookmarks are up to date, as the entries

aren’t defined until after the bib2gls run (which is why you have to use \glsfmttext
instead of \glsentrytext).
This again leads to a list sorted by surname. The reason this works is because bib2gls only

sees the definition of \name provided in @preamble, but the document uses the definition

446

18. Sample Documents

of \name provided before \GlsXtrLoadResources. The use of \providecom-
mand in @preamble prevents \name from being redefined within the document.

See also the “Examples” chapter of thebib2gls user manual, which provides another “peo-

ple” example and Aliases.7

�� sampleSort.tex

This is another document that illustrates how to hook into the standard sort mechanism. An

additional run is required to ensure the table of contents is up-to-date:

�

pdflatex sampleSort
makeglossaries sampleSort
pdflatex sampleSort
pdflatex sampleSort

This document has three glossaries (main, acronym and a custom notation), so if you
want to use makeindex explicitly you will need to have three makeindex calls with the

appropriate file extensions:

�

pdflatex sampleSort
makeindex -s sampleSort.ist -t sampleSort.alg -o
sampleSort.acr sampleSort.acn
makeindex -s sampleSort.ist -t sampleSort.glg -o
sampleSort.gls sampleSort.glo
makeindex -s sampleSort.ist -t sampleSort.nlg -o
sampleSort.not sampleSort.ntn
pdflatex sampleSort
pdflatex sampleSort

It’s much simpler to just use makeglossaries or makeglossaries-lite.
In this example, the sort hook is adjusted to ensure the list of notation is sorted according to

the order of definition. A new counter is defined to keep track of the entry number:

�

\newcounter{sortcount}

The sort hook is then redefined to increment this counter and assign the sort key to that numerical

value, but only for the notation glossary. The other two glossaries have their sort keys

assigned as normal:

7dickimaw-books.com/gallery/index.php?label=aliases

447

https://www.dickimaw-books.com/gallery/index.php?label=aliases
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleSort.tex
https://www.dickimaw-books.com/gallery/index.php?label=aliases

18. Sample Documents

�

\renewcommand{\glsprestandardsort}[3]%
\ifdefstring{#2}{notation}%
{%

\stepcounter{sortcount}%
\edef#1{\glssortnumberfmt{\arabic{sortcount}}}

%
}%
{%

\glsdosanitizesort
}%

This means that makeindex will sort the notation in numerical order.

If you want to convert this document to use glossaries-extra, a much simpler approach is glossaries

-extraavailable with its hybrid method. First change the package loading line to:

�

\usepackage[postdot,stylemods,acronym]{glossaries-
extra}

Either remove \setacronymstyle and replace all instances of \newacronym with

\newabbreviation or replace:

�

\setacronymstyle{long-short}

with:

�

\setabbreviationstyle[acronym]{long-short}

The custom counter and redefinition of \glsprestandardsort can now be removed.

The file extensions for the custom notation glossary are no longer relevant so the glossary defini-

tion can be changed to:

�

\newglossary*{notation}{Notation}

The \makeglossaries command now needs to be adjusted to indicate which glossaries

need to be processed by makeindex:

�

\makeglossaries[main,acronym]

448

18. Sample Documents

Finally, \printglossaries needs to be replaced with:

�

\printglossary
\printacronyms
\printnoidxglossary[type=notation,sort=def]

Note that the notation glossary, which hasn’t been listed in the optional argument of \make-
glossaries, must be displayed with \printnoidxglossary.
This means that makeindex only needs to process the main and acronym glossaries.

No actual sorting is performed for the notation glossary because, when used with sort
=def, \printnoidxglossary simply iterates over the list of entries that have been

indexed.

The document build doesn’t need the third LATEX call now (since none of the glossaries extend

beyond a page break):

�

pdflatex sampleSort
makeglossaries sampleSort
pdflatex sampleSort

This time makeglossaries will include the message:

only processing subset 'main,acronym'

This means that although makeglossaries has noticed the notation glossary, it will

be skipped.

If you are explicitly calling makeindex then you need to drop the call for the notation
glossary:

�

pdflatex sampleSort
makeindex -s sampleSort.ist -t sampleSort.alg -o
sampleSort.acr sampleSort.acn
makeindex -s sampleSort.ist -t sampleSort.glg -o
sampleSort.gls sampleSort.glo
pdflatex sampleSort

If you prefer to use bib2gls, the package loading line needs to be changed to: bib2gls

�

\usepackage[record,postdot,stylemods,acronym]
{glossaries-extra}

449

18. Sample Documents

Next the entry definitions need to be convert to the bib format required by bib2gls.
For this example, it’s simpler to split the entries into different files according to the glossary

type. This can be done with the --split-on-type or -t switch:

�

convertgls2bib -t --preamble-only sampleSort.tex
entries.bib

This will create three files:

entries.bib

This contains the entries that were defined with \newglossaryentry. For exam-
ple:

�

@entry{gls:set,
name={set},
description={A collection of distinct objects}

}

abbreviations.bib

This contains the entries that were defined with \newacronym. For example:

�

@acronym{zfc,
short={ZFC},
long={Zermelo-Fraenkel set theory}

}

If you changed\newacronym to\newabbreviation then@abbreviation
will be used instead:

�

@abbreviation{zfc,
short={ZFC},
long={Zermelo-Fraenkel set theory}

}

notation.bib

This contains the entries that were defined with type={notation}. For example:

450

18. Sample Documents

�

@entry{not:set,
name={\mathcal{S}},
description={A set},
text={\mathcal{S}}

}

You may prefer to replace @entry with @symbol in this file.

After the definition of the notation glossary (\newglossary), add:

�

% abbreviation style must be set first:
\setabbreviationstyle[acronym]{long-short}
\GlsXtrLoadResources[src={entries,abbreviations}]
\GlsXtrLoadResources[src={notation},% notation.bib
type=notation,sort=unsrt]

Delete the remainder of the document preamble (\makeglossaries and entry definitions).

Finally, replace the lines that display the glossaries with:

�

\printunsrtglossaries

The build process is now:

�

pdflatex sampleSort
bib2gls sampleSort
pdflatex sampleSort

In this case, I have one resource command that processes two glossaries (main andacronym)
at the same time. The entries in these glossaries are ordered alphabetically. The second resource

command processes the notation glossary but the entries in this glossary aren’t sorted (and

so will appear in the order of definition within the bib file).

See also sampleNtn.tex, bib2gls gallery: sorting8 and the bib2gls user manual

for more examples.

18.6. Child Entries

�� sample.tex

8dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

451

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample.tex
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

18. Sample Documents

This document illustrates some of the basics, including how to create child entries that use the

same name as the parent entry. This example adds the glossary to the table of contents and it

also uses \glsrefentry, so an extra LATEX run is required:

�

pdflatex sample
makeglossaries sample
pdflatex sample
pdflatex sample

You can see the difference between word and letter ordering if you add the package option

order=letter. (Note that this will only have an effect if you use makeglossaries
or makeglossaries-lite. If you use makeindex explicitly, you will need to use

the -l switch to indicate letter ordering.)

One of the entries has its name encapsulated with a semantic command:

�

\newcommand{\scriptlang}[1]{\textsf{#1}}

\newglossaryentry{Perl}{name={\scriptlang{Perl}}
,sort={Perl},
description={A scripting language}}

This means that this entry needs to have the sort key set otherwise makeindex will assign

it to the “symbol” group, since it starts with a backslash (which makeindex simply treats as

punctuation).

The homograph entries “glossary” and “bravo” are defined as sub-entries that inherit the name

from the parent entry. The parent entry doesn’t have a description, but with the defaultnopostdot
=false setting this will lead to a spurious dot. This can be removed by adding \nopost-
desc to the description, which suppresses the post-description hook for that entry.

Since the child entries have the same name as the parent, this means that the child entries will

have duplicate sort values unless the default is changed with the sort key:

�

\newglossaryentry{glossary}{name={glossary},
description={\nopostdesc},plural={glossaries}}

\newglossaryentry{glossarycol}{
description={collection of glosses},
sort={2},
parent={glossary}% parent label
}

452

18. Sample Documents

\newglossaryentry{glossarylist}{
description={list of technical words},
sort={1},
parent={glossary}% parent label
}

(Remember that the entries are sorted hierarchically.) This will place “glossarylist” before “glos-

sarycol”, but both will come immediately after their parent “glossary” entry.

If you switch to using glossaries-extra, remember that the default package options are differ- glossaries

-extraent:

�

\usepackage[postdot,stylemods,style=treenoname-
group,order=word,
subentrycounter]{glossaries-extra}

You may now want to consider replacing \nopostdesc in the descriptions with \gls-
xtrnopostpunc (using your text editor’s search and replace function). This suppresses the

post-description punctuation but not the category post-description hook.

You may have noticed that some of the descriptions include the plural form, but it’s not done

very consistently. For example:

�

\newglossaryentry{cow}{name={cow},
plural={cows}

,% not required as this is the default
user1={kine},
description={(\emph{pl.}\cows, \emph{archaic}

kine) an adult
female of any bovine animal}
}

which has the parenthetical material at the start of the description with emphasis,

�

\newglossaryentry{bravocry}{
description={cry of approval (pl.\bravos)},
sort={1},
parent={bravo}

}

which has the parenthetical material at the end of the description without emphasis even though

it’s a regular plural,

453

18. Sample Documents

�

\newglossaryentry{bravoruffian}{
description=

{hired ruffian or killer (pl.\bravoes)},
sort={2},
plural={bravoes},
parent={bravo}}

which has the parenthetical material at the end of the description without emphasis, and

�

\newglossaryentry{glossary}{name={glossary},
description={\nopostdesc},
plural={glossaries}}

which doesn’t show the plural in the description.

With glossaries-extra, you can remove this parenthetical material and implement it using the
category post-description hook instead. For example, the above definitions become:

�

\newglossaryentry{cow}{name={cow},
user1={kine},
description={an adult female of any bovine animal}

}

\newglossaryentry{bravocry}{
description={cry of approval},
sort={1},
parent={bravo}

}

\newglossaryentry{bravoruffian}{
description={hired ruffian or killer},
sort={2},
plural={bravoes},
parent={bravo}}

\newglossaryentry{glossary}{name={glossary},
description={\glsxtrnopostpunc},
plural={glossaries}}

The post-description hook for the general category can now be set:

454

18. Sample Documents

�

\glsdefpostdesc{general}{%
% Has the user1 key been set?
\glsxtrifhasfield{useri}{\glscurrententrylabel}%
{\space(\emph{pl.}\\glsentryplural{\glscurrent-

entrylabel},
\emph{archaic} \glscurrentfieldvalue)%

}%
{%

% The user1 key hasn't been set. Is the plural the same as the
% singular form with the plural suffix appended?

\GlsXtrIfXpFieldEqXpStr{plural}{\glscurrent-
entrylabel}%

{\glsentrytext{\glscurrententrylabel}\glsplural-
suffix}%

{%
% Sibling check with bib2gls (see below)

}%
{%

% The plural isn't the default. Does this entry have a parent?
\ifglshasparent{\glscurrententrylabel}

{%
% This entry has a parent.
% Are the plurals for the child and parent the same?

\GlsXtrIfXpFieldEqXpStr{plural}{\glscurrent-
entrylabel}%

{\glsentryplural{\glsentryparent{\gls-
currententrylabel}}}%

{}% child and parent plurals the same
{%

\space(\emph{pl.}\\glsentryplural{\gls-
currententrylabel})%

}%
} {\space(\emph{pl.}\\glsentryplural

{\glscurrententrylabel})}%
}%

}%
}

(If you try this example out, notice the difference for the “glossary” entry if you use \nopost-
desc and then replace it with \glsxtrnopostpunc.) See the glossaries-extra user

manual for further details and also glossaries-extra and bib2gls: An Introductory Guide.9

9mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf

455

http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf

18. Sample Documents

The “bravo” homographs are an oddity where the singular form is identical but the plural is

different (“bravos” and “bravoes”). In the original, both descriptions included the plural term.

The above modifications drop the display of the regular “bravos” plural (for the “bravocry” term)

and only show the “bravoes” plural (for the “bravoruffian” term). In this particular case it might

be useful to show the regular plural in order to highlight the difference.

While it’s straightforward to access an entry’s parent label (with \glsentryparent) it’s
much harder to access entry’s children or siblings. The \ifglshaschildren command

has to iterate over all entries to determine if any have a parent that matches the given label. This

is obviously very time-consuming if you have a large database of entries. It also doesn’t provide

a way of determining whether or not the child entries have been indexed.

With bib2gls, it’s possible to save this information with the save-child-count
and save-sibling-count, which not only save the total but also save the child or sibling
labels in an etoolbox internal list. This makes the information much faster to access and also only

includes the labels of those entries that have actually been indexed.

In the above, the comment line:

�

% Sibling check with bib2gls (see below)

indicates where to put the extra code. If you switch to bib2gls and make sure to use save
-sibling-count then you can insert the following code in the block above where that

comment is:

�

\GlsXtrIfFieldNonZero{siblingcount}{\glscurrent-
entrylabel}%
{% siblingcount field value non-zero
\glsxtrfieldforlist-
loop % iterate over internal list
{\glscurrententrylabel} % entry label
{siblinglist} % label of field containing list
{\siblinghandler} % loop handler
}%
{}% siblingcount field value 0 or empty or missing

This uses a custom handler that’s defined as follows:

�

\newcommand{\siblinghandler}[1]{%
\GlsXtrIfXpFieldEqXpStr*{plural}{\glscurrententry-

label}%
{\glsentryplural{#1}}%
{}

456

18. Sample Documents

% current entry's plural same as sibling's plural
{%
\space(\emph{pl.}\\glsentryplural{\glscurrent-

entrylabel})%
\listbreak

}%
}

The \listbreak command is provided by etoolbox and is used for prematurely exiting a

loop. The handler tests if the sibling’s plural field is identical to the current entry’s plural
field. If they are the same, it does nothing. If they are different, it displays the current entry’s

plural and breaks the loop.

Note that this assumes that the parent entry hasn’t had the plural form explicitly set to “bravoes”

instead of the default “bravos”. In that case, the parent entry would show the plural but the

“bravoruffian” child entry wouldn’t show the plural (since this case would led to the empty code

block identified with the comment “child and parent plurals the same”). The “bravoes” plural

form would instead be shown for the parent, which wouldn’t look right.

If you don’t usebib2gls or if you use it without thesave-sibling-count resource

option then the sibling information won’t be available.

In order to switch to using bib2gls, it’s first necessary to switch to using glossaries-extra bib2gls

(as above). Remember that the record option is required:

�

\usepackage[record,postdot,stylemods,style=treeno-
namegroup,
subentrycounter]{glossaries-extra}

Next the entry definitions need to be converted to the bib format required by bib2gls. This
can be done with convertgls2bib:

�

convertgls2bib --preamble-only sample.tex entries.

The semantic command may be moved to the bib file’s preamble to ensure it’s defined:

�

@preamble{"\providecommand{\scriptlang}[1]{\textsf
{#1}}"}

The sort field typically shouldn’t be set when using bib2gls, so convertgls2bib
strips it. If the sort field is missing, bib2gls will obtain it from the sort fallback for that

entry type. In this case, @entry has the name field as the sort fallback. If this is also missing

457

18. Sample Documents

then its value is obtained from the parent’s name field (see bib2gls gallery: sorting10 for

other examples).

Therefore the “Perl” entry is simply defined as:

�

@entry{Perl,
name={\scriptlang{Perl}},
description={A scripting language}

}

This isn’t a problem for bib2gls. In this case, the command has been provided in the

@preamble, but bib2gls strips font information so the sort value becomes “Perl”. If

the definition isn’t placed in @preamble then bib2gls will simply ignore the command

(as xindy does) so the sort value will still end up as “Perl”.

The homograph entries have also had their sort fields omitted:

�

@entry{glossarycol,
parent={glossary},
description={collection of glosses}

}

@entry{glossarylist,
parent={glossary},
description={list of technical words}

}

This means that the sort value for both these child entries is “glossary”. When bib2gls en-

counters identical sort values it acts according to its identical-sort-action setting.

The default action is to sort by the label using a simple string comparison. In this case, it would

put “glossarycol” before “glossarylist”. In the original document, the sort value was manually

chosen to ensure that the entries are ordered according to first use. This ordering can easily be

obtained by changing bib2gls’s identical sort action (requires at least bib2gls v2.0):

�

\GlsXtrLoadResources[src={entries},identical-sort
-action=use]

This command should replace\makeglossaries. If you want the sibling information (see
earlier), then you need to remember to add save-sibling-count to the list of options.

Note that this is a better solution than in the original example. If I edit the document so that

“glossarycol” is used first, then the ordering will be updated accordingly, but with the original

example, the sort keys would need to be manually changed.

10dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

458

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

18. Sample Documents

The remainder of the document preamble (that is, the definition of \scriptlang and all

the entry definitions) should now be removed.

Finally, replace\printglossarieswith\printunsrtglossaries. The doc-
ument build is now:

�

pdflatex sample
bib2gls --group sample
pdflatex sample
pdflatex sample

Note use of the --group (or -g) switch, which is needed to support the treenonamegroup

style. The third LATEX call is needed because the document contains \glsrefentry.
Note that you can’t use the order=letter package option with bib2gls. Instead use

the break-at=none resource option:

�

\GlsXtrLoadResources[src={entries},identical-sort
-action=use,
break-at=none

]

�� sample-inline.tex

This document is like sample.tex, above, but uses the inline glossary style to put the

glossary in a footnote. The document build is:

�

pdflatex sample-inline
makeglossaries sample-inline
pdflatex sample-inline
pdflatex sample-inline

If you want to convert this document to glossaries-extra, follow the same procedure as above.

If you want to use bib2gls then you don’t need the --group switch since no letter groups

are required.

�� sampletree.tex

This document illustrates a hierarchical glossary structure where child entries have different

names to their corresponding parent entry. To create the document do:

�

pdflatex sampletree
makeglossaries sampletree
pdflatex sampletree

459

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-inline.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampletree.tex

18. Sample Documents

The document uses the alttreehypergroup glossary style, which needs to know the widest name

for each hierarchical level. This has been assigned manually in the document preamble with

\glssetwidest:

�

\glssetwidest{Roman letters} % level 0 widest name
\glssetwidest[1]{Sigma} % level 1 widest name

(Level 0 is the top-most level. That is, entries that don’t have a parent.) It’s possible to get

glossaries to compute thewidest top-level entry with\glsfindwidesttoplevelname
but this will iterate over all top-level entries, regardless of whether or not they appear in the

glossary. If you have a large database of entries, this will firstly take time and secondly the width

may be too large due to an unindexed entry with a big name.

This sample document doesn’t require any of the tabular styles so I’ve prevented those packages

from being loaded with nolong and nosuper. The reduces the overall package loading and
reduces the potential of package conflict.

�

\usepackage[style=alttreehypergroup,nolong,nosuper]
{glossaries}

(This example glossary is actually better suited for one of the topic styles provided with glossary

-topic, see below.)
This is obviously a contrived example since it’s strange to have the symbol names (such as

“Sigma”) in the glossary. The purpose is to demonstrate the alttreehypergroup with an entry

that’s noticeably wider than the others in the same hierarchical level. A more sensible document

would have the symbol in the name key.

If youwant to switch to glossaries-extra, then you can instead use a combination ofnostylesglossaries

-extraand stylemods:

�

\usepackage[style=alttreehyper-
group,postdot,nostyles,
stylemods=tree]{glossaries-extra}

The stylemods package not only patches the original styles provided by the base glossaries

package (such as glossary-tree used in this example) but also provides extra helper commands.
In this case, it provides additional commands to calculate the widest name. For example, instead

of manually setting the widest entry with \glssetwidest, you could add the following

before the glossary:

460

18. Sample Documents

�

\glsFindWidestUsedTopLevelName
\glsFindWidestUsedLevelTwo

This will only take into account the entries that have actually been used in the document, but it

can still be time-consuming if you have a large number of entries.

�

Note that the glossary must be at the end of the document (after all required entries have

been used) with this method. The alternative is to perform the calculation at the end of

the document and save the results in the aux file for the next run.

This example document is using top-level entries for topics without descriptions. This means

that the descriptions simply contain \nopostdesc to prevent the post-description punctua-

tion from being automatically inserted. For example:

�

\newglossaryentry{greekletter}{name={Greek letters},
text={Greek letter},
description={\nopostdesc}}

With glossaries-extra, you can convert this to \glsxtrnopostpunc which will prevent

the post-description punctuation without interfering with the category post-description hook.

In order to distinguish between the child entries, which are symbols, and the parent entries,

which are topics, it’s useful to give these two different types of entries different categories. The

topics can use the default general category, but the symbol entries can be assigned to a different

category. The value of the category key must be a label. For example:

�

\newglossaryentry{C}{name={C},
description={Euler's constant},
category={symbol},
parent={romanletter}}

There is some redundancy caused by a parenthetical note after the first use in some of the

symbol entries. For example:

�

\newglossaryentry{pi}{name={pi},
text={\ensuremath{\pi}},
first={\ensuremath{\pi} (lowercase pi)},
description={Transcendental number},
parent={greekletter}}

461

18. Sample Documents

With glossaries-extra this can be dealt with through the category post-link hook:

�

\glsdefpostlink{symbol}{%
\glsxtrifwasfirstuse
{% first use
\glsxtrifhasfield{useri}{\glslabel}%
{ (\glscurrentfieldvalue)}{}%

}%
{}% not first use

}

The parenthetical material is now stored in the user1 key. For example:

�

\newglossaryentry{sigma}{name={Sigma},
text={\ensuremath\Sigma},
user1={uppercase sigma},
description={Used to indicate summation},
parent={greekletter}}

The category post-description link is also set to ensure that the symbol is displayed after the

description in the glossary:

�

\glsdefpostdesc{symbol}{\space
($\glsentrytext{\glscurrententrylabel}$)}

These modifications only affect entries with the category set to symbol.

With glossaries-extra, it’s now possible to use the topic styles provided with the glossary

-topic package:

�

\usepackage[style=topic,postdot,nostyles,stylemods=
{tree,topic}]
{glossaries-extra}

The topic style is designed for this kind of hierarchy where all the top-level entries don’t have de-

scriptions. This means that the \nopostdesc and \glsxtrnopostpunc commands

aren’t required. The top-level entries can simply be defined as:

462

18. Sample Documents

�

\newglossaryentry{greekletter}{name={Greek letters},
text={Greek letter}, description={}}

\newglossaryentry{romanletter}{name={Roman letters},
text={Roman letter}, description={}}

I’ve now loaded both the glossary-tree and glossary-topic packages (viastylemods={tree,
topic}). The glossary-topic package can be used without glossary-tree, in which case it will
behave more like the normal tree rather than alttree styles (but with different indentation and no

description in the top-level). However, if you use \glssetwidest (provided by glossary

-tree) then the topic style will behave more like alttree.
Since there’s no description for the top-level entries, the topic style ignores the widest name

setting for the top-level, so I can just have the level 1 setting:

�

\glssetwidest[1]Sigma

If you want to convert this document so that it uses bib2gls, you first need to convert it bib2gls

to using glossaries-extra, as described above, but remember that you now need the record
option.

�

\usepackage[record,style=
topic,postdot,nostyles,stylemods={tree,topic}]
{glossaries-extra}

Next convert the entries to the bib format required by bib2gls:

�

convertgls2bib --preamble-only sampletree.tex
entries.bib

Now replace \makeglossaries with:

�

\GlsXtrLoadResources[src=entries,set-widest]

I’ve used the set-widest option here to get bib2gls to compute the widest name. (Ob-

viously, it can only do this if it can correctly interpret any commands contained in the name
field.)

This means that the\glssetwidest commands can now be removed completely. All the

\newglossaryentry commands also need to be removed from the document preamble.

Finally,\printglossaries needs to be replacedwith\printunsrtglossaries.

463

18. Sample Documents

The document build is now:

�

pdflatex sampletree
bib2gls sampletree
pdflatex sampletree

This produces the same result as with just glossaries-extra andmakeglossaries. How-
ever, there are some modifications that can be made to the bib file to make it neater.

The top-level entries are defined as:

�

@entry{greekletter,
name={Greek letters},
description={},
text={Greek letter}

}

@entry{romanletter,
name={Roman letters},
description={},
text={Roman letter}

}

This is a direct translation from the \newglossaryentry commands (after switching to

the topic style). There’s a more appropriate entry type:

�

@indexplural{greekletter,
text={Greek letter}

}

@indexplural{romanletter,
text={Roman letter}

}

The@indexplural entry type doesn’t require thedescription and will set thename
field to the same as the plural field. Since the plural field hasn’t been set it’s obtained by

appending “s” to the text field.

Now let’s assume that the symbol entries are defined in a more rational manner, with the actual

symbol in the name field. For example:

464

18. Sample Documents

�

@entry{sigma,
user1={uppercase sigma},
parent={greekletter},
description={Used to indicate summation},
name={\ensuremath{\Sigma}},
category={symbol}

}

@entry{C,
parent={romanletter},
name={\ensuremath{C}},
description={Euler's constant},
category={symbol}

}

The category post-description hook (provided with \glsdefpostdesc) should now be

removed from the document.

If you make these changes and rebuild the document, you’ll find that the order has changed.

Now the “sigma” entry is before the “pi” entry. This is because bib2gls is obtaining the

sort values from the name field, which is the sort fallback for @entry. This means that the
sort values end up as Σ and π (bib2gls recognises the commands \Sigma and \pi and

converts them to the Unicode characters 0x1D6F4 and 0x1D70B).

If you change@entry to@symbol then you will once again get the order from the original

example (“pi” before “Sigma”). This is because the sort fallback for @symbol is the label not

the name. (Remember that the sort fallback is only used if the sort field isn’t set. If you

explicitly set the sort field then no fallback is required. See bib2gls gallery: sorting.11)

You can further tidy the bib file by removing the category fields. For example:

�

@symbol{sigma,
user1={uppercase sigma},
parent={greekletter},
description={Used to indicate summation},
name={\ensuremath{\Sigma}}

}

You can then assign the category in the resource set:

11dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

465

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

18. Sample Documents

�

\GlsXtrLoadResources[src=entries,set-widest,category
={same as entry}]

This means that all the entries defined with @symbol will have the category set to symbol

and all the entries defined with@indexpluralwill have thecategory set to indexplural.

(Only the symbol category is significant in this example.)

You can make the bib files even more flexible by introducing field and entry aliases with

field-aliases and entry-type-aliases. See the bib2gls manual for fur-

ther details.

18.7. Cross-Referencing

�� sample-crossref.tex

This document illustrates how to cross-reference entries in the glossary.

�

pdflatex sample-crossref
makeglossaries sample-crossref
pdflatex sample-crossref

The document provides a command \alsoname to produce some fixed text, which can be

changed as appropriate (usually within a language hook):

�

\providecommand{\alsoname}{see also}

I’ve used\providecommand as some packages define this command. This is used to create

a “see also” cross-reference with the see key:

�

\newglossaryentry{apple}{name={apple},description=
{firm, round fruit},
see={[\alsoname]{pear}}}

\newglossaryentry{marrow}{name={marrow},
description=
{long vegetable with thin green skin and white flesh}
,
see={[\alsoname]courgette}}

Note that “marrow” is included in the glossary even though it hasn’t been referenced in the

text. This is because the see key automatically triggers \glssee which indexes the term.

466

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-crossref.tex

18. Sample Documents

This behaviour is intended for documents where only the terms that are actually required in

the document are defined. It’s not suitable for a large database of terms shared across multiple

documents that may or may not be used in a particular document. In that case, you may want to

consider using glossaries-extra (see below).
This example is quite simple to convert to glossaries-extra. If you want the dot after the glossaries

-extradescription, you need the nopostdot=false or postdot package option. You may

also want to consider using the stylemods option.

In order to prevent the “marrow” entry from being automatically being added to the glossary

as a result of the cross-reference, you can use autoseeindex=false to prevent the auto-

matic indexing triggered by the see key (or the seealso key provided by glossaries-extra).

�

\usepackage[autoseeindex=false,postdot,stylemods]
{glossaries-extra}

The document build is the same, but now the “marrow” and “zucchini” entries aren’t present in

the document.

Note that the “fruit” entry is still included even though it hasn’t been used in the document.

This is because it was explicitly indexed with \glssee not via the see key.

The entries that contains see[\alsoname〈xr-label〉] can be converted to use the see-
also key:

�

\newglossaryentry{apple}{name={apple},description=
{firm, round fruit},
seealso={pear}}

\newglossaryentry{marrow}{name={marrow},
description=
{long vegetable with thin green skin and white flesh}
,
seealso={courgette}}

(The provided \alsoname definition may be removed.)

The original example redefines the cross-referencing format to use small caps:

�

\renewcommand{\glsseeitemformat}[1]{\textsc{\gls-
entryname{#1}}}

This will still produce the desired effect with glossaries-extra for this simple example but, as

with sampleAcrDesc.tex, this redefinition isn’t necessary if you have at least glossaries
-extra v1.42.
If you want to switch to bib2gls then you first need to switch to glossaries-extra, as bib2gls

467

18. Sample Documents

described above, but you now need the record option but no longer need the autosee-
index=false option:

�

\usepackage[record,postdot,stylemods]{glossaries-
extra}

Next the entry definitions need to be converted to the bib format required by bib2gls.

�

convertgls2bib sample-crossref.tex entries.bib

If you have at least v2.0 then convertgls2bib will absorb the cross-referencing informa-

tion supplied by:

�

\glssee{fruit}{pear,apple,banana}

into the “fruit” definition:

�

@entry{fruit,
see={pear,apple,banana},
name={fruit},
description=

{sweet, fleshy product of plant containing seed}
}

Now remove \makeglossaries and all the entry definition commands (including \gls-
see from the document preamble) and add:

�

\GlsXtrLoadResources[src=entries]

Finally, replace \printglossaries with \printunsrtglossaries. The doc-
ument build is now:

�

pdflatex sample-crossref
bib2gls sample-crossref
pdflatex sample-crossref

The glossary now contains: apple, banana, courgette and pear. Note that it doesn’t contain fruit,

zucchini or marrow.

Now change the selection criteria:

468

18. Sample Documents

�

\GlsXtrLoadResources[src=entries,
selection={recorded and deps and see}]

The glossary now includes fruit, zucchini and marrow.

The fruit and zucchini use the see key which is a simple redirection for the reader. There’s

no number list for either of these entries. Whereas marrow uses the seealso key, which

is typically intended as a supplement to a number list but in this case there are no locations as

marrow hasn’t been used in the text.

With at least v2.0, there’s an alternative:

�

\GlsXtrLoadResources[src=entries,
selection={recorded and deps and see not also}]

In this case, the glossary includes fruit and zucchini but not marrow.

18.8. Custom Keys

�� sample-newkeys.tex

This document illustrates how add custom keys (using \glsaddkey). There are two cus-
tom keys ed, where the default value is the text field with “ed” appended, and ing, where
the default value is the text field with “ing” appended. Since the default value in both cases

references the text field, the starred version \glsaddkey* is required to ensure that the

default value is expanded on definition if no alternative has been provided.

The entries are then defined as follows:

�

\newglossaryentry{jump}{name={jump},description={}}

\newglossaryentry{run}{name={run},
ed={ran},
ing={running},
description={}}

\newglossaryentry{waddle}{name=waddle,
ed={waddled},
ing={waddling},
description={}}

Each custom key is provided a set of commands analogous to \glsentrytext, that al-
lows the key value to be accessed, and \glstext that allows the key value to be access with

469

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-newkeys.tex

18. Sample Documents

indexing and hyperlinking (where applicable).

If you find yourself wanting to create a lot of custom keys that produce minor variations of

existing keys (such as different tenses) you may find it simpler to just use \glsdisp. When

editing the document source, it’s usually simpler to read:

�

The dog \glsdisp{jump}{jumped} over the duck.

than

�

The dog \glsed{jump} over the duck.

If you want to convert this document to use bib2gls, you first need to switch to glossaries bib2gls

-extra, but remember that you need the record option:

�

\usepackage[record]{glossaries-extra}

Next convert the entry definitions to the bib format required by bib2gls:

�

convertgls2bib --index-conversion --preamble-only
sample-newkeys.tex entries.bib

The --index-conversion switch requires at least v2.0 and will convert entries without

a description (or where the description is simply \nopostdesc or \glsxtrnopost-
punc) to @index instead of @entry. This means that the new entries.bib file will

contain:

�

@index{jump,
name={jump}

}

@index{run,
ing = {running},
name={run},
ed = {ran}

}

@index{waddle,
ing = {waddling},

470

18. Sample Documents

name={waddle},
ed = {waddled}

}

Now replace \makeglossaries with

�

\GlsXtrLoadResources[src=entries]

and delete the\newglossaryentry commands. Finally replace\printglossaries
with \printunsrtglossaries.
The document build is now:

�

pdflatex sample-newkeys
bib2gls sample-newkeys
pdflatex sample-newkeys

Note that there’s no need for thenonumberlist package optionwhen you don’t usebib2gls’s
--group switch.

�� sample-storage-abbr.tex

This document illustrates how add custom storage keys (using \glsaddstoragekey).
The document build is:

�

pdflatex sample-storage-abbr
makeglossaries sample-storage-abbr
pdflatex sample-storage-abbr

The custom storage key is called abbrtype which defaults to “word” if not explicitly set.

Its value can be accessed with the provided custom command \abbrtype.

�

\glsaddstoragekey{abbrtype}{word}{\abbrtype}

A custom acronym style is then defined that checks the value of this key and makes certain

adjustments depending on whether or not its value is the default “word”.

This essentially forms a very similar function to the glossaries-extra package’s category
key, which is also defined as a storage key:

�

\glsaddstoragekey{category}{general}{\glscategory}

This document is much simpler with the glossaries-extra package: glossaries

-extra

471

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-storage-abbr.tex

18. Sample Documents

�

\documentclass{article}
\usepackage[postdot]{glossaries-extra}
\makeglossaries
\setabbreviationstyle[acronym]{short-long}
\newacronym{radar}{radar}
{radio detecting and ranging}
\newacronym{laser}{laser}
{light amplification by stimulated
emission of radiation}
\newacronym{scuba}{scuba}{self-
contained underwater breathing
apparatus}

\newabbreviation{dsp}{DSP}
{digital signal processing}
\newabbreviation{atm}{ATM}{automated teller machine}

\begin{document}
First use: \gls{radar}, \gls{laser}, \gls{scuba}
, \gls{dsp},
\gls{atm}.

Next use: \gls{radar}, \gls{laser}, \gls{scuba}
, \gls{dsp},
\gls{atm}.

\printglossaries
\end{document}

�� sample-storage-abbr-desc.tex

An extension of the previous example where the user needs to provide a description.

�� sample-chap-hyperfirst.tex

This document illustrates how to add a custom key using \glsaddstoragekey and

hook into the \gls-like and \glstext-like mechanism used to determine whether or not

to hyperlink an entry. The document build is:

�

pdflatex sample-chap-hyperfirst
makeglossaries sample-chap-hyperfirst
pdflatex sample-chap-hyperfirst

472

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-storage-abbr-desc.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-chap-hyperfirst.tex

18. Sample Documents

This example creates a storage key called “chapter” used to store the chapter number.

�

\glsaddstoragekey{chapter}{0}{\glschapnum}

It’s initialised to 0 and the \glslinkpostsetkeys hook is used to check this value

against the current chapter number. If the values are the same then the hyperlink is switched

off, otherwise the key value is updated unless the hyperlink has been switched off (through the

optional argument of commands like \gls and \glstext).

�

\renewcommand*{\glslinkpostsetkeys}{%
\edef\currentchap{\arabic{chapter}}%
\ifnum\currentchap=\glschapnum{\glslabel}\relax
\setkeys{glslink}{hyper=false}%

\else
\glsifhyperon{\glsfieldxdef{\glslabel}{chapter}

{\currentchap}}{}%
\fi
}

Since this key isn’t intended for use when the entry is being defined, it would be more appropriate

to simply use an internal field that doesn’t have an associated key or helper command, but\gls-
fieldxdef requires the existence of the field. The glossaries-extra package provides utility
commands designed to work on internal fields that don’t have an associated key and may not have

had a value assigned.

If you want to switch to glossaries-extra you need to change the package loading line: glossaries

-extra

�

\usepackage[postdot]{glossaries-extra}

The custom storage key (provided with \glsaddstoragekey) can be removed, and the
\glslinkpostsetkeys hook can be changed to:

�

\renewcommand*{\glslinkpostsetkeys}{%
\edef\currentchap{\arabic{chapter}}%
\GlsXtrIfFieldEqNum*{chapter}{\glslabel}
{\currentchap}
{%
\setkeys{glslink}{hyper=false}%

}%
{%

473

18. Sample Documents

\glsifhyperon{\xGlsXtrSetField{\glslabel}
{chapter}{\currentchap}}{}%
}%
}

The field name is still called “chapter” but there’s no longer an associated key or command.

18.9. Xindy (Option 3)

Most of the earlier makeindex sample files can be adapted to use xindy instead by adding

the xindy package option. Situations that you need to be careful about are when the sort value

(obtained from the name if the sort key is omitted) contains commands (such as name=
{\pi}) or is identical to another value (or is identical after xindy has stripped all commands

and braces). This section describes sample documents that use features which are unavailable

with makeindex.

�� samplexdy.tex

The document uses UTF-8 encoding (with the inputenc package). This is information that

needs to be passed to xindy, so the encoding is picked up by makeglossaries from the

aux file.

This document has an exotic numbering system which requires the package option esc-
locations=true. Before glossaries v4.50, this was the default setting, but the default

is now esclocations=false, so this package option now needs to be set explicitly.

By default, this document will create a xindy style file called samplexdy.xdy, but if
you uncomment the lines

�

\setStyleFile{samplexdy-mc}
\noist
\GlsSetXdyLanguage{}

it will set the style file to samplexdy-mc.xdy instead. This provides an additional letter

group for entries starting with “Mc” or “Mac”. If you use makeglossaries or make-
glossaries-lite, you don’t need to supply any additional information. If you don’t use
makeglossaries, you will need to specify the required information. Note that if you

set the style file to samplexdy-mc.xdy you must also specify \noist, otherwise the
glossaries package will overwrite samplexdy-mc.xdy and you will lose the “Mc” letter

group.

To create the document do:

474

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/samplexdy.tex

18. Sample Documents

�

pdflatex samplexdy
makeglossaries samplexdy
pdflatex samplexdy

If you don’t have Perl installed then you can’t use makeglossaries, but you also can’t

use xindy! However, if for some reason you want to call xindy explicitly instead of using

makeglossaries (or makeglossaries-lite):

• if you are using the default style file samplexdy.xdy, then do (no line breaks):

�

xindy -L english -C utf8 -I xindy -M samplexdy
-t samplexdy.glg -o samplexdy.gls samplexdy.glo

• if you are using samplexdy-mc.xdy, then do (no line breaks):

�

xindy -I xindy -M samplexdy-mc -t samplexdy.glg
-o samplexdy.gls samplexdy.glo

This document creates a new command to use with theformat key in the optional argument

of commands like \gls to format the location in the number list. The usual type of definition

when a hyperlinked location is required should use one of the \hyper〈xx〉 commands listed in
Table 12.1 on page 274:

�

\newcommand*{\hyperbfit}[1]{\textit{\hyperbf{#1}}}

Unfortunately, this definition doesn’t work for this particular document and some adjustments

are needed (see below). As a result of the adjustments, this command doesn’t actually get used

by TEX, even though hyperbfit is used in the format key. It does, however, need to be

identified as an attribute so that xindy can recognise it:

�

\GlsAddXdyAttribute{hyperbfit}

This will add information to the xdy file when it’s created by \makeglossaries. If you
prevent the creation of this file with \noist then you will need to add the attribute to your

custom xdy file (see the provided samplexdy-mc.xdy file).

In order to illustrate unusual location formats, this sample document provides a command

called \tallynum{〈n〉} that represents its numerical argument with a die or dice where the
dots add up to 〈n〉:

475

18. Sample Documents

�

\newrobustcmd*{\tallynum}[1]{%
\ifnum\number#1<7
$\csname dice\romannumeral#1\endcsname$%

\else
\dicevi%
\expandafter\tallynum\expandafter{\numexpr#1-6}%

\fi
}

This command needs to be robust to prevent it from being expanded when it’s written to any of

the auxiliary files. The \dicei, …, \dicevi commands are provided by the stix package,

so that needs to be loaded.

An associated command \tally{〈counter〉} is defined that formats the value of the named
〈counter〉 according to \tallynum:

�

\newcommand*{\tally}[1]{\tallynum{\arabic{#1}}}

(This shouldn’t be robust as it needs the counter value to expand.) The page numbers are altered

to use this format (by redefining \thepage).
This custom location format also needs to be identified in the xdy file so that xindy can

recognise it and determine how to form ranges if required.

�

\GlsAddXdyLocation{tally}{% tally location format
:sep "\string\tallynum\space\glsopenbrace"
"arabic-numbers"
:sep "\glsclosebrace"
}

Again this information is written to the xdy file by \makeglossaries so if you use \no-
ist then you need to manually add it to your custom xdy file.

When xindy creates the associated indexing files, the locations will be written using:

�

\glsX〈counter〉X〈format〉{〈hyper-prefix〉}{〈location〉}

In this case:

�

\glsXpageXglsnumberformat{}{\tallynum{〈number〉}}

476

18. Sample Documents

or

�

\glsXpageXhyperbfit{}{\tallynum{〈number〉}}

This means that although \hyperbf is designed to create hyperlinked locations, the presence

of \tallynum interferes with it. In order to make the hyperlinks work correctly, the defini-

tions of \glsXpageXhyperbfit need to be redefined in order to grab the number part

in order to work out the location’s numeric value. If the value of \tally is changed so that it

expands differently then these modifications won’t work.

Remember that in both cases, the second argument #2 is in the form \tally{〈n〉}:

�

\renewcommand{\glsXpageXglsnumberformat}[2]{%
\linkpagenumber#2%
}
\renewcommand{\glsXpageXhyperbfit}[2]{%
\textbf{\em\linkpagenumber#2}%
}

These need a command that can grab the actual number and correctly encapsulate it:

�

\newcommand{\linkpagenumber}[2]{\hyperlink{page.#2}
{#1{#2}}}

If you want to try out the samplexdy-mc.xdy file, the entries starting with “Mac” or

“Mc” will be placed in their own “Mc” letter group. Ideally it should be possible to do this simply

with \GlsAddLetterGroup (and not require a custom xdy file) but unfortunately the

“M” letter group will have already been defined and take precedence over “Mc”, which is why a

custom file is required and the normal language module must be suppressed:

�

\setStyleFile{samplexdy-mc}
\noist
\GlsSetXdyLanguage{}

This “Mc” group is suitable for names like “Maclaurin” but not for “Mach”. To prevent this,

the sort key for that value is set to lower case:

�

\newglossaryentry{mach}{name={Mach, Ernst},
first={Ernst Mach},text={Mach},

477

18. Sample Documents

sort={mach, Ernst},
description=
{Czech/Austrian physicist and philosopher}}

If you want to convert this document so that it uses bib2gls, you first need to switch to bib2gls

glossaries-extra and use the record package option:

�

\usepackage[record,postdot]{glossaries-extra}

Thexindy-only commands can now all be removed (attribute\GlsAddXdyAttribute,
location\GlsAddXdyLocation, language\GlsSetXdyLanguage, location encaps
\glsX〈counter〉X〈format〉 and the custom helper \linkpagenumber). Also \noist
and \setStyleFile aren’t relevant with bib2gls and so should be removed.

The definitions of \hyperbfit should be retained (as well as \tallynum, \tally
and the redefinition of \thepage).
The entries all need to be converted to the bib format required by bib2gls.

�

convertgls2bib --preamble-only samplexdy.tex
entries.bib

Next replace \makeglossaries with:

�

\GlsXtrLoadResources[src=entries]

and remove all the entry definitions from the document preamble. Use the search and replace

function on your text editor to replace all instances of \glsentryfirst with \glsfmt-
first, and all instances of \glsentryname with \glsfmtname.
Finally, replace\printglossarieswith\printunsrtglossaries. The doc-

ument build is now:

�

pdflatex samplexdy
bib2gls --group samplexdy
pdflatex samplexdy

This results in a slightly different ordering from the original document (without the “Mc”

letter group). In the original example, “Mach number” was listed before “Mach, Ernest”. The

modified document now has “Mach, Ernest” before “Mach number”. This difference is due

to bib2gls’s default break-at=word setting, which marks word boundaries with the |
(pipe) character, so the sort values forbib2gls areMach|Earnest| andMach|number|.
See the bib2gls manual for further details of this option, and also see the examples chapter

478

18. Sample Documents

of that manual for alternative approaches when creating entries that contain people’s names.

If you want the “Mc” letter group, it can be obtained by providing a custom sort rule:

�

\GlsXtrLoadResources[src=entries,
sort=custom,
sort-rule={}\glsxtrGeneralInitRules
<\glsxtrGeneralLatinAtoGrules
<h,H<i,I<j,J<k,K<l,L<Mc=Mac<m,M
<\glsxtrGeneralLatinNtoZrules

]

Unfortunately, as with xindy, this puts “Mach” into the “Mc” letter group. (See the glossaries

-extra manual for details about the sort rule commands.)
One way to get around this problem is to define a custom command to help identify genuine

“Mc”/“Mac” prefixes with names that happen to start with “Mac”. For example:

�

@entry{mcadam,
name={\Mac{Mc}Adam, John Loudon},
description={Scottish engineer},
text={McAdam},
first={John Loudon McAdam}

}

@entry{maclaurin,
name={\Mac{Mac}laurin, Colin},
description=

{Scottish mathematician best known for the
\gls{maclaurinseries}},
text={Maclaurin},
first={Colin Maclaurin}

}

but not for “Mach”:

�

@entry{mach,
name={Mach, Ernst},
description=

{Czech/Austrian physicist and philosopher},
text={Mach},

479

18. Sample Documents

first={Ernst Mach}
}

With LATEX, this command should simply do its argument:

�

\newcommand{\Mac}[1]{#1}

However, when bib2gls works out the sort value, it needs to be defined with something

unique that won’t happen to occur at the start of another term. For example:

�

\providecommand{\Mac}[1]{MC}

(Remember that break-at=word will strip spaces and punctuation so don’t include them

unless you switch to break-at=none.)
So add the first definition of \Mac to the tex file and modify entries.bib so that it

includes the second definition:

�

@preamble{"\providecommand{\Mac}[1]{MC}"}

Then modify the “Mc”/“Mac” entries as appropriate (see the above “McAdam” and “Maclaurin”

examples).

The custom sort rule needs to be modified:

�

\GlsXtrLoadResources[src=entries,
write-preamble=false,
sort=custom,
sort-rule=\glsxtrGeneralInitRules
<\glsxtrGeneralLatinAtoGrules
<h,H<i,I<j,J<k,K<l,L<MC<m,M
<\glsxtrGeneralLatinNtoZrules

]

This will create a “Mc” letter group that only includes the names that start with the custom\Mac
command.

Other alternatives include moving @preamble into a separate bib file, so that you can

choose whether or not to include it. See the “Examples” chapter of the bib2gls user manual

for further examples.

�� samplexdy2.tex

480

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/samplexdy2.tex

18. Sample Documents

This document illustrates how to use the glossaries package where the location numbers don’t

follow a standard syntax. This example won’t work with makeindex, which only accepts a

limited set of location syntax. To create the document do:

�

pdflatex samplexdy2
makeglossaries samplexdy2
pdflatex samplexdy2

The explicit xindy call is:

�

xindy -L english -C utf8 -I xindy -M samplexdy2 -t
samplexdy2.glg -o samplexdy2.gls samplexdy2.glo

This example uses the section counter with xindy:

�

\usepackage[xindy,counter=section]{glossaries}

The document employs an eccentric section numbering system for illustrative purposes. The

section numbers are prefixed by the chapter number in square brackets:

�

\renewcommand*{\thesection}{[\thechapter]\arabic
{section}}

Parts use Roman numerals:

�

\renewcommand*{\thepart}{\Roman{part}}

The section hyperlink name includes the part:

�

\renewcommand*{\theHsection}{\thepart.\thesection}

This custom numbering scheme needs to be identified in the xdy file:

�

\GlsAddXdyLocation["roman-numbers-uppercase"]
{section}{:sep "["
"arabic-numbers" :sep "]" "arabic-numbers"

}

481

18. Sample Documents

If the part is 0 then \thepart will be empty (there isn’t a zero Roman numeral). An extra

case is needed to catch this:

�

\GlsAddXdyLocation{zero.section}{:sep "["
"arabic-numbers" :sep "]" "arabic-numbers"

}

Note that this will stop xindy giving a warning, but the location hyperlinks will be invalid if

no \part is used.

If you want to switch tobib2gls, you first need to switch to glossaries-extra but remember bib2gls

to use record instead of xindy:

�

\usepackage[record,counter=section]{glossaries-
extra}

Next remove the \GlsAddXdyLocation commands and convert the entry definitions to

the bib format required by bib2gls:

�

convertgls2bib --preamble-only samplexdy2.tex
entries.bib

Now replace \makeglossaries with:

�

\GlsXtrLoadResources[src=entries]

and remove the\newglossaryentry commands. Finally, replace\printglossaries
with \printunsrtglossaries.
The document build is:

�

pdflatex samplexdy2
bib2gls samplexdy2
pdflatex samplexdy2

With unusual numbering systems, it’s sometimes better to use record=nameref:

�

\usepackage[record=nameref,counter=section]
{glossaries-extra}

482

18. Sample Documents

In this case, the locations will be the actual section headings, rather than the section number. In

order to make the number appear instead you need to define:

�

\newcommand*{\glsxtrsectionlocfmt}[2]{#1}

(Make sure you have at least v1.42 of glossaries-extra.) See also the earliersampleSec.tex.

�� samplexdy3.tex

This document is very similar to samplexdy.tex but uses the command \Number-
string from the fmtcount package to format the page numbers instead of the \tally com-

mand from the earlier example.

�� sampleutf8.tex

This is another example that uses xindy. Unlike makeindex, xindy recognises non-

Latin characters (provided the correct encoding is passed to xindy via the -C switch). This

document uses UTF-8 encoding. To create the document do:

�

pdflatex sampleutf8
makeglossaries sampleutf8
pdflatex sampleutf8

The explicit xindy call is (no line breaks):

�

xindy -L english -C utf8 -I xindy -M sampleutf8 -t
sampleutf8.glg -o sampleutf8.gls sampleutf8.glo

If you remove the xindy option from sampleutf8.tex and do:

�

pdflatex sampleutf8
makeglossaries sampleutf8
pdflatex sampleutf8

or

�

pdflatex sampleutf8
makeglossaries-lite sampleutf8
pdflatex sampleutf8

you will see that the entries that start with an extended Latin character now appear in the symbols

group, and the word “manœuvre” is now after “manor” instead of before it. If you want to

explicitly call makeindex (no line breaks):

483

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/samplexdy3.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleutf8.tex

18. Sample Documents

�

makeindex -s sampleutf8.ist -t sampleutf8.glg -o
sampleutf8.gls sampleutf8.glo

If you want to switch to bib2gls, you first need to switch to glossaries-extra but replace bib2gls

xindy with record:

�

\usepackage[record,postdot,stylemods,style=list-
group]{glossaries-extra}

Note that you don’t need the nonumberlist option with bib2gls. You can instruct

bib2gls to simply not save the number lists, but in this case there won’t be any locations as

there’s no actual indexing.

The entries need to be converted to the bib format required by bib2gls:

�

convertgls2bib --preamble-only --texenc UTF-8
--bibenc UTF-8 sampleutf8.tex entries.bib

Note the first line of the entries.bib file:

�

% Encoding: UTF-8

This is the encoding of thebib file. It doesn’t have tomatch the encoding of thetex file, but it’s

generally better to be consistent. When bib2gls parses this file, it will look for this encoding

line. (If the --texenc and --bibenc switches aren’t used, convertgls2bib will

assume your Java default encoding. See the bib2gls manual for further details.)

Next replace \makeglossaries with:

�

\GlsXtrLoadResources[src=entries,selection=all]

and remove all the \newglossaryentry commands.

Iterative commands like\glsaddall don’t work withbib2gls. Instead, you can select
all entries using the selection=all option. This is actually better than \glsaddall,
which enforces the selection of all entries by indexing each entry. As a result, withmakeindex
and xindy (and Option 1), every entry will have the same location (which is the location of the

\glsaddall command, in this case page 1). With selection=all, bib2gls will

automatically selection all entries even if they don’t have any records (indexing information) so

in this case there are no number lists.

Finally, replace\printglossarieswith\printunsrtglossaries. The build
process is now:

484

18. Sample Documents

�

pdflatex sampleutf8
bib2gls --group sampleutf8
pdflatex sampleutf8

bib2gls picks up the encoding of the tex file from the aux file:

�

\glsxtr@texencoding{utf8}

If you experience any encoding issues, check the aux file for this command and check the bib
file for the encoding comment line. Also check bib2gls’s glg transcript file for encoding

messages, which should look like:

TeX character encoding: UTF-8

The document language, if it has been set, is also added to the aux file when the record
option is used. In this case, no language package has been used, so bib2gls will fallback

on the system’s default locale. If no sort method is set, the entries will be sorted according to

the document language, if set, or the default locale. You can specify a specific locale using the

sort key with a locale tag identifier. For example:

�

\GlsXtrLoadResources[src=entries,selection=all,sort=
de-CH-1996]

(Swiss German new orthography) or:

�

\GlsXtrLoadResources[src=entries,selection=all,sort=
is]

(Icelandic).

18.10. No Indexing Application (Option 1)

�� sample-noidxapp.tex

This document illustrates how to use the glossaries package without an external indexing ap-

plication (Option 1). To create the complete document, you need to do:

485

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-noidxapp.tex

18. Sample Documents

�

pdflatex sample-noidxapp
pdflatex sample-noidxapp

With old LATEX kernels and old versions of mfirstuc, it was necessary to group the accent com-

mand that occurs at the start of the name:

�

\newglossaryentry{elite}{%
name={{\'e}lite},% mfirstuc v2.07
description={select group of people}

}

This used to be necessary to allow the term to work with \Gls. With a new kernel and latest

versions of glossaries and mfirstuc, this should no longer be necessary.

�

\newglossaryentry{elite}{%
name={\'elite},% mfirstuc v2.08
description={select group of people}

}

Notice also how the number lists can’t be compacted into ranges. For example, the list “1,

2, 3” would be converted to “1–3” with a proper indexing application (Options 2 or 3 or, with

glossaries-extra, Option 4).
The larger the list of entries, the longer the document build time. This method is very ineffi-

cient for large glossaries. See Gallery: glossaries performance12 for a comparison.

�� sample-noidxapp-utf8.tex

As the previous example, except that it uses the inputenc package. In this case, the sort key

is used for the entries with UTF-8 characters in the names. To create the complete document,

you need to do:

�

pdflatex sample-noidxapp-utf8
pdflatex sample-noidxapp-utf8

This method is unsuitable for sorting languages with extended Latin alphabets or non-Latin

alphabets. Use Options 3 or 4 instead.

12dickimaw-books.com/gallery/glossaries-performance.shtml

486

https://www.dickimaw-books.com/gallery/glossaries-performance.shtml
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-noidxapp-utf8.tex
https://www.dickimaw-books.com/gallery/glossaries-performance.shtml

18. Sample Documents

18.11. Other

�� sample4col.tex

This document illustrates a four column glossary where the entries have a symbol in addition

to the name and description. To create the complete document, you need to do:

�

pdflatex sample4col
makeglossaries sample4col
pdflatex sample4col

or

�

pdflatex sample4col
makeglossaries-lite sample4col
pdflatex sample4col

The vertical gap between entries is the gap created at the start of each letter group. This can be

suppressed using the nogroupskip package option. (If you switch to bib2gls, simply
omit the --group command line option.)

This example uses the long4colheaderborder. This style doesn’t allow multi-line descriptions.

You may prefer to use altlong4colheaderborder with long descriptions. However, in either case

a style that uses booktabs is preferable. For example, long4col-booktabs or altlongragged4col
-booktabs. Note that this requires glossary-longbooktabs, which needs to be explicitly loaded.
The style can only be set once this package has been loaded:

�

\usepackage{glossaries}
\usepackage{glossary-longbooktabs}
\setglossarystyle{altlongragged4col-booktabs}

The glossaries-extra package provides amore compact way of doing this with thestylemodsglossaries
-extraoption:

�

\usepackage[style=altlongragged4col
-booktabs,stylemods=longbooktabs]
{glossaries-extra}

The glossaries-extra package provides additional styles, including more “long” styles with the

glossary-longextra package. For example, the long-name-desc-sym-loc style:

487

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample4col.tex

18. Sample Documents

�

\usepackage[style=long-name-desc-sym-loc,stylemods=
longextra]
{glossaries-extra}

If you use thestylemods optionwith an argument, youmay prefer to use it withnostyles
to prevent unwanted styles from being automatically loaded. For example:

�

\usepackage[style=long-name-desc-sym
-loc,nostyles,stylemods=longextra]
{glossaries-extra}

See also the gallery of predefined styles.13

�� sample-numberlist.tex

This document illustrates how to reference the number list in the document text. This requires

an additional LATEX run:

�

pdflatex sample-numberlist
makeglossaries sample-numberlist
pdflatex sample-numberlist
pdflatex sample-numberlist

This uses the savenumberlist package option, which enables \glsentrynumber-
list and \glsdisplaynumberlist (with limitations). The location counter is set to

chapter, so the number list refers to the chapter numbers.

�

\usepackage[savenumberlist,counter=chapter]
{glossaries}

The number list can’t be obtained until makeindex (or xindy) has created the indexing

file. The number list is picked up when this file is input by \printglossary and is then

saved in the aux file so that it’s available on the next LATEX run.

This document contains both commands:

�

This is a \gls{sample} document. \Glspl{sample}
are discussed in chapters \glsdisplaynumberlist
{sample}

13dickimaw-books.com/gallery/glossaries-styles/

488

https://www.dickimaw-books.com/gallery/glossaries-styles/
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-numberlist.tex
https://www.dickimaw-books.com/gallery/glossaries-styles/

18. Sample Documents

(or \glsentrynumberlist{sample}).

Without hyperref, the first list shows as “1–3, 5 & 6” and the second list shows as “1–3, 5, 6”.

Note that you can’t use \glsdisplaynumberlist with hyperref and Options 2 or 3.

If you do, you will get the warning:

Package glossaries Warning: \glsdisplaynumberlist
doesn't work with hyperref.
Using \glsentrynumberlist instead

Now both lists show as “1–3, 5, 6”.

If you switch toOption 1 (replace\makeglossarieswith\makenoidxglossaries
and replace \printglossaries with \printnoidxglossaries), then the doc-
ument build is simply:

�

pdflatex sample-numberlist
pdflatex sample-numberlist

Now \glsdisplaynumberlist works with hyperref, however there are no ranges, so

the first list shows as “1, 2, 3, 5, & 6” and the second list shows as “1, 2, 3, 4, 5, 6”.

If you want to switch to bib2gls, you first need to switch to glossaries-extra (at least bib2gls

v1.42) but remember to include the record option:

�

\usepackage[record,counter=chapter]{glossaries-
extra}

Note that the savenumberlist option is no longer required. Next convert the entry to the

bib format required by bib2gls:

�

convertgls2bib sample-numberlist.tex entries.bib

Replace \makeglossaries with:

�

\GlsXtrLoadResources[src=entries]

and remove the \newglossaryentry command from the document preamble. Finally,

replace \printglossaries with \printunsrtglossaries. The build process
is now:

489

18. Sample Documents

�

pdflatex sample-numberlist
bib2gls sample-numberlist
pdflatex sample-numberlist

Now both ranges and hyperlinks work. The first list shows “1–3, 5, & 6” and the second list

shows “1–3, 5, 6”. You can also use:

�

\glsxtrfieldformatlist{sample}{loclist}

which will show the complete list without ranges “1, 2, 3, 5 & 6”.

Thismethodworksmuch better than using thesavenumberlist option becausebib2gls
saves the formatted number list in the location field (which is provided by glossaries-extra
for the benefit of bib2gls) and the unformatted number list in the loclist internal field

(which is also used by Option 1).

With Options 2 and 3, both makeindex and xindy simply create a file containing the

commands to typeset the glossary, which is input by \printglossary. This means that
it’s quite hard to gather information obtained by the indexing application.

bib2gls, on the other hand, doesn’t write a file containing the glossary. It writes a file

containing the entry definitions and uses internal fields to save the indexing information. The

glossary is then displayed with \printunsrtglossary, which simply iterates over all

defined entries and fetches the required information from those internal fields.

The \glsdisplaynumberlist and \glsentrynumberlist commands are

redefined by glossaries-extra-bib2gls to simply access the location field. However, if you

want a complete list without ranges you can use:

�

\glsxtrfieldformatlist{sample}{loclist}

In this example, this produces “1, 2, 3, 5 & 6”.

Note the difference if you use the record=nameref package option instead of just

record.

�� sample-nomathhyper.tex

This document illustrates how to selectively enable and disable entry hyperlinks in \gls-
entryfmt. The document build is:

�

pdflatex sample-nomathhyper
makeglossaries sample-nomathhyper
pdflatex sample-nomathhyper

This disables the hyperlinks for the main glossary with:

490

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-nomathhyper.tex

18. Sample Documents

�

\GlsDeclareNoHyperList{main}

and then redefines \glsentryfmt so that it adds a hyperlink if not in maths mode and the

hyperlinks haven’t been forced off (with the hyper=false key).

If you want to switch to glossaries-extra, then you can instead use the hook that comes before glossaries

-extrathe keys are set. The preamble is much simpler:

�

\usepackage{glossaries-extra}

\makeglossaries

\renewcommand{\glslinkpresetkeys}{%
\ifmmode \setkeys{glslink}{hyper=false}\fi
}

% entry definition

�� sample-entryfmt.tex

This document illustrates how to change the way an entry is displayed in the text. (This is just

a test document. For a real document, I recommend you use the siunitx package to typeset units.)

The document build is:

�

pdflatex sample-entryfmt
makeglossaries sample-entryfmt
pdflatex sample-entryfmt

This redefines \glsentryfmt to add the symbol on first use:

�

\renewcommand*{\glsentryfmt}{%
\glsgenentryfmt
\ifglsused{\glslabel}{}{\space (\glsentrysymbol

{\glslabel})}%
}

Note the use of\glsentrysymbol not \glssymbol (which would result in nested link

text).

If you want to switch to the glossaries-extra package, you can make use of the category glossaries

-extrapost-link hook instead:

491

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-entryfmt.tex

18. Sample Documents

�

\usepackage[stylemods,style=tree]{glossaries-extra}

\makeglossaries

\glsdefpostlink{unit}{\glsxtrpostlinkAddSymbolOn-
FirstUse}

\newglossaryentry{distance}{
category={unit},
name={distance},
description={The length between two points},
symbol={km}}

Note that in this case the symbol is now outside of the hyperlink.

�� sample-prefix.tex

This document illustrates the use of the glossaries-prefix package. An additional run is re-
quired to ensure the table of contents is up-to-date:

�

pdflatex sample-prefix
makeglossaries sample-prefix
pdflatex sample-prefix
pdflatex sample-prefix

Remember that the default separator between the prefix and \gls (or one of its variants) is

empty, so if a space is required it must be inserted at the end of the prefix. However, the xkeyval

package (which is used to parse the 〈key〉=〈value〉 lists) trims leading and trailing space from

the values, so an ordinary space character will be lost.

�

\newglossaryentry{sample}{name={sample},
description={an example},
prefix={a~},
prefixplural={the\space}}

\newglossaryentry{oeil}{name={oeil},
plural={yeux},
description={eye},
prefix={l'},
prefixplural={les\space}}

If you want to convert this example to use glossaries-extra, then (as from v1.42) you can use glossaries

-extra

492

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-prefix.tex

18. Sample Documents

the prefix option:

�

\usepackage[prefix,postdot,acronym]{glossaries-
extra}

(Alternatively load glossaries-prefix after glossaries-extra.) The rest of the document is the

same as for the base glossaries package, unless you want to switch to using bib2gls.
If you want to switch to bib2gls, first switch to glossaries-extra (as above) but make sure bib2gls

you include the record package option:

�

\usepackage[record,prefix,postdot,acronym]
{glossaries-extra}

Next convert the entries into the bib format required by bib2gls:

�

convertgls2bib --preamble-only sample-prefix.tex
entries.bib

Replace \makeglossaries with

�

\setabbreviationstyle[acronym]{long-short}
\GlsXtrLoadResources[src=entries]

remove the entry definitions from the document preamble, and replace

�

\printglossary[style=plist]
\printacronyms

with

�

\printunsrtglossary[style=plist]
\printunsrtacronyms

The document build is now:

493

18. Sample Documents

�

pdflatex sample-prefix
bib2gls sample-prefix
pdflatex sample-prefix

Withbib2gls v2.0+, you don’t need to manually insert the spaces at the end of the prefixes.

Instead you can instructbib2gls to insert them. To try this out, remove the trailing\space
and non-breaking space (~) from the entries.bib file:

�

@entry{sample,
prefix={a},
name={sample},
description={an example},
prefixplural={the}

}

@entry{oeil,
plural={yeux},
prefix={l'},
name={oeil},
description={eye},
prefixplural={les}

}

@acronym{svm,
prefixfirst={a},
prefix={an},
short={SVM},
long={support vector machine}

}

Now add the append-prefix-field={space or nbsp} resource option:

�

\GlsXtrLoadResources[src=entries,append-prefix-field
={space or nbsp}]

See the bib2gls manual for further details.

�� sampleaccsupp.tex

This document uses the glossaries-accsupp package (see §17). That package automatically
loads glossaries and passes all options to the base package. So you can load both packages at

once with just:

494

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleaccsupp.tex

18. Sample Documents

�

\usepackage[acronym]{glossaries-accsupp}

This provides additional keys that aren’t available with just the base package, which may be used

to provide replacement text. The replacement text is inserted using accsupp’s \BeginAcc-
Supp and \EndAccSupp commands. See the accsupp package for further details of those

commands.

Note that this example document is provided to demonstrate glossaries-accsupp as succinctly
as possible. The resulting document isn’t fully accessible as it’s not tagged. See the accessibility

and tagpdf packages for further information about tagging documents.

It’s not essential to use glossaries-accsupp. You can simply insert the replacement text di-
rectly into the field values. For example:

�

\newglossaryentry{Drive}{
name={\BeginAccSupp{Actual=Drive}Dr.\EndAccSupp{}},
description={Drive}
}
\newglossaryentry{image}{name={sample image},
description={an example image},
user1={\protect\BeginAccSupp{Alt=
{a boilerplate image used in
examples}}\protect\includegraphics
[height=20pt]{example-image}\protect\EndAccSupp{}}

}

However, this can cause interference (especially with case-changing). With glossaries-accsupp
it’s possible to obtain the field values without the accessibility information if required. (If in

the future \includegraphics is given extra options to provide replacement text then the

image example here won’t be necessary. However, the example can be adapted for images created

with TEX code.)

The acronym style is set using:

�

\setacronymstyle{long-short}

The first acronym is straightforward:

�

\newacronym{eg}{e.g.}{for example}

The shortaccess replacement text is automatically set to the long form. The next acronym

is awkward as the long form contains formatting commands which can’t be included in the re-

495

18. Sample Documents

placement text. This means that the shortaccess key must be supplied:

�

\newacronym[shortaccess=
{TiKZ ist kein Zeichenprogramm}]
{tikz}{Ti\emph{k}Z}{Ti\emph{k}Z ist \emph{kein}
Zeichenprogramm}

In the above two cases, the short form obtained in \gls will use the “E” PDF element.

By way of comparison, there are some entries that are technically abbreviations but are de-

fined using \newglossaryentry instead of \newacronym. The replacement text is
provided in the access key:

�

\newglossaryentry{Doctor}{name={Dr},description=
{Doctor},access={Doctor}}
\newglossaryentry{Drive}{name={Dr.},plural={Drvs}
,description={Drive},
access={Drive}}

These will use the “ActualText” PDF element (not “E”).

The next entry is a symbol (the integration symbol
∫
). This could be defined simply as:

�

\newglossaryentry{int}{name={int},description=
{integral},
symbol={\ensuremath{\int}}}

and then referenced in the text like this:

�

Symbol: \gls{int} (\glssymbol{int}).

This results in the text “Symbol: integral (
∫
).” However if you copy and paste this from the

PDF you will find the resulting text is “Symbol: int (R).” This is what’s actually read out by the

text-to-speech system.

It would be better if the actual text was the Unicode character 0x222B. This would not only

assist the text-to-speech system but also make it easier to copy and paste the text. The simplest

method is to identify the character by its hexadecimal code, but in order to do this the \Begin-
AccSupp command needs to have the options adjusted.

In order to determine whether to use “E”, “ActualText” or “Alt” for a particular field, glossaries

-accsupp will check if the command \gls〈field-label〉accsupp exists (where 〈field-label〉
is the internal field label, see Table 4.1 on page 156). Only two of these commands are prede-

fined: \glsshortaccsupp and\glsshortplaccsupp, which is why theshort-

496

18. Sample Documents

access field uses “E”. If the given command doesn’t exist then the generic \glsaccsupp
command is used instead.

This means that in order to simply set symbolaccess to the hexadecimal character code,

I need to provide a command called \glssymbolaccsupp:

�

\newcommand{\glssymbolaccsupp}[2]{%
\glsaccessibility[method=hex,unicode]{ActualText}
{#1}{#2}%
}

Now I can adjust the definition of the “int” entry:

�

\newglossaryentry{int}{name={int},description=
{integral},
symbol={\ensuremath{\int}},symbolaccess={222B}

}

The final entry has an image stored in the user1 key. (The image file is provided with the

mwe package.) This should use “Alt” instead of “ActualText” so I need to define \glsuseri-
accsupp:

�

\newcommand{\glsuseriaccsupp}[2]{%
\glsaccessibility{Alt}{#1}{#2}%

}

The image description is provided in the user1access key:

�

\newglossaryentry{sampleimage}{name={sample image},
description={an example image},
user1={\protect\includegraphics[height=20pt]
{example-image}},
user1access={a boilerplate image used in examples}
}

(Note the need to protect the fragile\includegraphics. The alternative is to use\gls-
noexpandfields before defining the command. See §4.4.)

The PDF can be inspected either by uncompressing the file and viewing it in a text editor or

you can use a tool such as the PDFDebugger provided with PDFBox. If you do this you will find

content like:

/Span << /ActualText (Doctor) >> BDC

497

https://pdfbox.apache.org/

18. Sample Documents

BT
/F8 9.9626 Tf
73.102 697.123 Td
[(Dr)] TJ

ET
EMC

This shows that “ActualText” was used for \gls{Doctor}. The integral symbol (
∫
) created

with \glssymbol{int} is:

/Span << /ActualText (\376\377"+) >> BDC
BT
/F1 9.9626 Tf
97.732 650.382 Td
[(R)] TJ

ET
EMC

Again, “ActualText” has been used, but the character code has been supplied. The image created

with \glsuseri{sampleimage} is:

/Span << /Alt (a boilerplate image used in examples) >> BDC
1 0 0 1 106.588 618.391 cm
q
0.08301 0 0 0.08301 0 0 cm
q
1 0 0 1 0 0 cm
/Im1 Do

Q
Q

EMC

This shows that “Alt” has been used.

The first use of \gls{eg} produces the long form (not reproduced here) followed by the

short form:

/Span << /E (for example) >> BDC
BT
/F8 9.9626 Tf
161.687 563.624 Td
[(e.g.)] TJ

ET
EMC

The subsequent use also has the “E” element:

498

18. Sample Documents

/Span << /E (for example) >> BDC
BT
/F8 9.9626 Tf
118.543 551.669 Td
[(e.g.)] TJ

ET
EMC

Similarly for \acrshort{eg}. You can also use the debug=showaccsupp package

option. This will show the replacement text in the document, but note that this is the content

before it’s processed by \BeginAccSupp.
If the \setacronymstyle command is removed (or commented out) then the result

would be different. The first use of \gls uses “E” for the short form but the subsequent use has

“ActualText” instead. This is because without \setacronymstyle the original acronym

mechanism is used, which is less sophisticated than the newer acronym mechanism that’s trig-

gered with \setacronymstyle.

�

If you want to convert this example so that it uses glossaries-extra, make sure you have
at least version 1.42 of the extension package.

If you want to convert this example so that it uses glossaries-extra, you need to replace the glossaries

-extraexplicit loading of glossaries-accsupp with an implicit load through the accsupp package

option:

�

\usepackage[abbreviations,accsupp]{glossaries-extra}

I’m switching from \newacronym to \newabbreviation, which means that the de-
fault category is abbreviation and also the file extensions are different. If you are using make-
glossaries or makeglossaries-lite you don’t need to worry about it. However,

if you’re not using those helper scripts then you will need to adjust the file extensions in your

document build process.

The style command\setacronymstyle{long-short} needs to be replaced with:

�

\setabbreviationstyle{long-short}

This is actually the default so you can simply delete the \setacronymstyle line. Substi-

tute the two instances of \newacronym with \newabbreviation. For example:

�

\newabbreviation{eg}{e.g.}{for example}

499

18. Sample Documents

Note that for the “tikz” entry you can now remove the explicit assignment of shortaccess
with glossaries-extra v1.42 as it will strip formatting commands like \emph:

�

\newabbreviation
{tikz}{Ti\emph{k}Z}{Ti\emph{k}Z ist \emph{kein}
Zeichenprogramm}

It’s also necessary to replace \acrshort, \acrlong and \acrfull with \glsxtr-
short, \glsxtrlong and \glsxtrfull.
You may notice a slight difference from the original example if you use a version of glossaries

-extra between 1.42 and 1.48. Theshortaccess field shows 〈long〉 (〈short〉) instead of just
〈long〉. This is because glossaries-extra v1.42 redefined \glsdefaultshortaccess
to include the short form. The original definition was restored in glossaries v1.49.

Now that the extension package is being used, there are some other modifications that would

tidy up the code and fix a few issues.

The “Doctor” and “Drive” entries should really be defined as abbreviations but they shouldn’t

be expanded on first use. The short-nolong style can achieve this and it happens to be the default
style for the acronym category. This means that you can simply replace the “Doctor” definition

with:

�

\newacronym{Doctor}{Dr}{Doctor}

The first use of \gls{Doctor} is just “Dr”. This means that the “E” PDF element will be

used instead of “ActualText”. Now I don’t need to supply the accessibility text as its obtained

from the long form.

The “Drive” entry can be similarly defined but it has the awkward terminating full stop. This

means that I had to omit the end of sentence terminator in:

�

\gls{Doctor} Smith lives at 2, Blueberry \gls{Drive}

This looks odd when reading the document source and it’s easy to forgot. This is very similar to

the situation in the sample-dot-abbr.tex example. I can again use the discard-
period category attribute, but I need to assign a different category so that it doesn’t interfere

with the “Doctor” entry.

The category is simply a label that’s used in the construction of some internal command names.

This means that it must be fully expandable, but I can choose whatever label I like (general,

abbreviation, acronym, index, symbol and number are used by various commands provided by

glossaries-extra).
In this case, I’ve decided to have a category called shortdotted to indicate an abbreviation that

ends with a dot but only the short form is shown on first use:

500

18. Sample Documents

�

\setabbreviationstyle[shortdotted]{short-nolong
-noreg}
\glssetcategoryattribute{shortdotted}{discardperiod}
{true}
\newabbreviation[category={shortdotted}]{Drive}
{Dr.\@}{Drive}

In the sample-dot-abbr.tex example, I also used the insertdots attribute to

automatically insert the dots and add the space factor (which is adjusted if discardperiod
discards a period). In this case I’m inserting the dot manually so I’ve also added the space factor

with \@ in case the abbreviation is used mid-sentence. For example:

�

\gls{Doctor} Smith lives at 2, Blueberry \gls{Drive}
. Next sentence.

\gls{Doctor} Smith lives at 2, Blueberry \gls{Drive}
end of sentence.

(The spacing is more noticeable if you first switch to a monospaced font with \ttfamily.)
The “e.g.” abbreviation similarly ends with a dot. It’s not usual to write “for example (e.g.)” in

a document, so it really ought to have the same shortdotted category, but it has a long-short form

for illustrative purposes in this test document. In this case I need to choose another category so

that I can apply a different style. For example:

�

\setabbreviationstyle[longshortdotted]{long-short}
\glssetcategoryattribute{longshortdotted}{discard-
period}{true}
\newabbreviation[category={longshortdotted}]{e.g.}
{e.g.\@}{for example}

To further illustrate categories, let’s suppose the symbol and image should be in thename field

instead of the symbol and user1 fields. Now the \glssymbolaccsupp and \gls-
useriaccsupp commands won’t be used. I can’t deal with both cases if I just provide

\glsnameaccsupp.
I could provide category+field versions, such as \glsxtrsymbolnameaccsupp, but

remember that this only covers accessing the name field, which is typically only done in the

glossary. I would also need similar commands for the first, firstplural, text and

plural keys. This is quite complicated, but since I don’t need to worry about any of the other

fields it’s simpler to just provide the \glsxtr〈category〉accsupp version:

501

18. Sample Documents

�

\newcommand{\glsxtrsymbolaccsupp}[2]{%
\glsaccessibility[method=hex,unicode]{ActualText}
{#1}{#2}%
}
\newcommand{\glsxtrimageaccsupp}[2]{%
\glsaccessibility{Alt}{#1}{#2}%

}

\newglossaryentry{int}{category={symbol},
name={\ensuremath{\int}},access={222B},
description={integral}

}

\newglossaryentry{sampleimage}{category={image},
description={an example image},
name={\protect\includegraphics[height=20pt]
{example-image}},
access={a boilerplate image used in examples}
}

If it’s necessary to provide support for additional fields, then the category+field command\gls-
xtr〈category〉〈field〉accsupp could be used to override the more general category command

\glsxtr〈category〉accsupp.

�� sample-ignored.tex

This document defines an ignored glossary for common terms that don’t need a definition. The

document build is:

�

pdflatex sample-ignored
makeglossaries sample-ignored
pdflatex sample-ignored

A new ignored glossary is defined with:

�

\newignoredglossary{common}

There are no associated files with an ignored glossary. An entry is defined with this as its glossary

type:

502

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-ignored.tex

18. Sample Documents

�

\newglossaryentry{commonex}{type={common},name=
{common term}}

Note that the description key isn’t required. This term may be referenced with \gls
(which is useful for consistent formatting) but it won’t be indexed.

�� sample-entrycount.tex

This document uses\glsenableentrycount and\cgls (described in §7.1) so that

acronyms only used once don’t appear in the list of acronyms. The document build is:

�

pdflatex sample-entrycount
pdflatex sample-entrycount
makeglossaries sample-entrycount
pdflatex sample-entrycount

Note the need to call LATEX twice before makeglossaries, and then a final LATEX call is

required at the end.

glossaries-extra

The glossaries-extra package has additions that extend this mechanism and comes with

some other sample files related to entry counting.

bib2gls

If you switch to bib2gls you can use record counting instead. See the bib2gls
manual for further details.

503

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-entrycount.tex

19. Troubleshooting

In addition to the sample files listed in §18, the glossaries package comes with some minimal

example files, minimalgls.tex, mwe-gls.tex, mwe-acr.tex and mwe-acr
-desc.tex, which can be used for testing. These should be located in the samples subdi-

rectory (folder) of the glossaries documentation directory. The location varies according to your

operating system and TEX installation. For example, on Linux itmay be in/usr/local/texlive/2022/texmf-
dist/doc/latex/glossaries/. The makeglossariesgui application can

also be used to test for various problems. Further information on debugging LATEX code is avail-

able at http://www.dickimaw-books.com/latex/minexample/.
If you have any problems, please first consult the glossaries FAQ.1 If that doesn’t help, try

posting your query to somewhere like the comp.text.tex newsgroup, the LATEX Commu-

nity Forum2 or TEX on StackExchange.3 Bug reports can be submitted via my package bug report

form.4

1dickimaw-books.com/faq.php?category=glossaries
2https://latex.org/forum/
3https://tex.stackexchange.com/
4https://www.dickimaw-books.com/bug-report.html

504

http://www.dickimaw-books.com/latex/minexample/
https://www.dickimaw-books.com/faq.php?category=glossaries
https://latex.org/forum/
https://latex.org/forum/
https://tex.stackexchange.com/
https://www.dickimaw-books.com/bug-report.html
https://www.dickimaw-books.com/bug-report.html
https://www.dickimaw-books.com/faq.php?category=glossaries
https://latex.org/forum/
https://tex.stackexchange.com/
https://www.dickimaw-books.com/bug-report.html

Part II.

Summaries and Index

505

Symbols

Symbol Description

№ A counter is being described.

� The syntax and usage of a command, environment or option etc.

� A command, environment or option that is now deprecated.

� An important message.

� Prominent information.

� LATEX code to insert into your document.

� The definition of an option value.

� How the example code should appear in the PDF.

� An option that takes a value.

� A command-line application invocation that needs to be entered into a terminal or

command prompt. See also “Incorporating makeglossaries or makeglossaries-lite

or bib2gls into the document build1”.

� A boolean option that is initially false.

� A boolean option that is initially true.

Text in a transcript or log file or written to STDOUT or STDERR.

� An option that doesn’t take a value.

� A warning.

1dickimaw-books.com/latex/buildglossaries

506

https://www.dickimaw-books.com/latex/novices/html/terminal.html
https://www.dickimaw-books.com/latex/novices/html/terminal.html
https://www.dickimaw-books.com/latex/buildglossaries
https://www.dickimaw-books.com/latex/buildglossaries
https://www.dickimaw-books.com/latex/buildglossaries

Terms

American Standard Code for Information Interchange (ASCII)

A single-byte character encoding. Related blog article: Binary Files, Text Files and File Encod-

ings.1

Case change

There are four types of case-changing commands provided by the glossaries package:

all caps

For example, \GLS and \GLStext. All letters in the given text are converted to

uppercase (capitals). The actual case-conversion is performed by \glsuppercase.

sentence case

For example, \Gls and \Glstext. Only the first letter is converted to uppercase.

The case-conversion for the \gls-like and \glstext-like commands is performed
via\glssentencecase, which is simply defined to use the robust\makefirst-
uc. Commands such as \Glsentrytext also use \glssentencecase in the

document but use the expandable \MFUsentencecase in PDF bookmarks.

title case

For example, \glsentrytitlecase. The first letter of each word is converted

to uppercase. The case-conversion is performed using \glscapitalisewords in

the document text, but commands designed for use in section headings, use the expandable

\MFUsentencecase in PDF bookmarks.

lowercase

The command \glslowercase is provided to allow for the conversion of the short

form of acronyms or abbreviations to lowercase for small caps styles. Note that \gls-
lowercase isn’t actually in the default definition any of the commands provided by

glossaries but is provided in the event that any of those commands need redefining with

an expandable definition. Alternatives are to use the robust \MakeLowercase or

switch to LATEX3 syntax.

Ensure that you have at leastmfirstuc v2.08 for improved case-changing performed by newLATEX3

commands. See the mfirstuc manual for further details.

1dickimaw-books.com/blog/binary-files-text-files-and-file-encodings/

507

https://www.dickimaw-books.com/blog/binary-files-text-files-and-file-encodings/
https://www.dickimaw-books.com/blog/binary-files-text-files-and-file-encodings/
https://www.dickimaw-books.com/blog/binary-files-text-files-and-file-encodings/

Terms

Common Locale Data Repository (CLDR)

A project of the Unicode Consortium that provides locale-specific information which an operat-

ing system will typically provide to applications.

Command-line interface (CLI)

An application that doesn’t have a graphical user interface. That is, an application that doesn’t

have any windows, buttons or menus and can be run in a command prompt or terminal.2

Entry line

The line in the glossary where the entry is shown. This may be a single row in a tabular-style

or the start of a paragraph for list or index styles or mid-paragraph for the inline style. The

exact formatting depends on the glossary style, but usually includes the name and description. If

hyperlinks are enabled, the \gls-like and \glstext-like commands will create a hyperlink
to this line.

Entry location

The location of the entry in the document (obtained from the location counter or from the the-
value option). This defaults to the page number on which the entry has been referenced with

any of the\gls-like,\glstext-like or\glsadd commands. An entry may havemultiple

locations that form a list. See also §12.3.

Extended Latin alphabet

An alphabet consisting of Latin characters and extended Latin characters.

Extended Latin character

A character that’s created by combining Latin characters to form ligatures (e.g. æ) or by applying

diacritical marks to a Latin character or characters (e.g. á).

Field

Entry data is stored in fields. These may have a corresponding key used to set the value, such as

name or description.

First use

The first time an entry is used by a command that unsets the first use flag (or the first time since

the flag was reset).

First use flag

A conditional that keeps track of whether or not an entry has been referenced by any of the

\gls-like commands (which can adjust their behaviour according to whether or not this flag is
true). The conditional is true if the entry hasn’t been used by one of these commands (or if the

flag has been reset) and false if it has been used (or if the flag has been unset).

First use text

The link text that is displayed on first use of the \gls-like commands.

2dickimaw-books.com/latex/novices/html/terminal.html

508

https://www.dickimaw-books.com/latex/novices/html/terminal.html
https://www.dickimaw-books.com/latex/novices/html/terminal.html

Terms

Group (letters, numbers, symbols)

A logical division within a glossary that is typically a by-product of the indexing application’s

sorting algorithm. Glossary styles may or may not start each group with a title (such as “Symbols”

or “A”) or a vertical space. See also Gallery: Logical Glossary Divisions (type vs group vs

parent).3

Graphical user interface (GUI)

An application that has windows, buttons or menus.

Glossary

Technically a glossary is an alphabetical list of words relating to a particular topic. For the

purposes of describing the glossaries and glossaries-extra packages, a glossary is either the list
produced by commands like \printglossary or \printunsrtglossary (which

may or may not be ordered alphabetically) or a glossary is a set of entry labels where the set is

identified by the glossary label or type.

\gls-like
Commands like \gls and \glsdisp that change the first use flag. These commands index

the entry (if indexing is enabled), create a hyperlink to the entry’s glossary listing (if enabled)

and unset the first use flag. These commands end with the post-link hook.

\glstext-like
Commands like \glstext and \glslink that don’t change the first use flag. These com-

mands index the entry (if indexing is enabled) and create a hyperlink to the entry’s glossary listing

(if enabled). These commands end with the post-link hook.

Hierarchical level

A number that indicates how many ancestors an entry has. An entry with no parent has hierar-

chical level 0. If an entry has a parent then the hierarchical level for the entry is one more than

the hierarchical level of the parent. Most styles will format an entry according to its hierarchical

level, giving prominence to level 0 entries, although some may have a maximum supported limit.

The level is stored in the level internal field. It can be accessed using commands like \gls-
fieldfetch or \glsxtrusefield, but neither the level nor the parent values

should be altered as it will cause inconsistencies in the sorting and glossary formatting. See also

§4.5.

Homograph

Each of a set of words that have the same spelling but have different meanings and origins. They

may or may not have different pronunciations.

Ignored glossary

A glossary that has been defined using a command like \newignoredglossary. These
glossaries are omitted by iterative commands, such as\printglossaries and\print-
unsrtglossaries. An ignored glossary can only be displayed with \printunsrt-
glossary.

3dickimaw-books.com/gallery/index.php?label=logicaldivisions

509

https://www.dickimaw-books.com/gallery/index.php?label=logicaldivisions
https://www.dickimaw-books.com/gallery/index.php?label=logicaldivisions
https://www.dickimaw-books.com/gallery/index.php?label=logicaldivisions

Terms

Ignored location (or record)

A location that uses glsignore as the encap. With bib2gls, this indicates that the entry
needs to be selected but the location isn’t added to the location list. With other methods, this will

simply create an invisible location, which can result in unwanted commas if the location list has

other items. With bib2gls v3.0+, empty locations will be converted to ignored locations.

Indexing application

An application (piece of software) separate from TEX/LATEX that collates and sorts information

that has an associated page reference. Generally the information is an index entry but in this case

the information is a glossary entry.

The original indexing application used with TEX ismakeindex (which can be also be used

with other non-TEX text formatters). This was then followed by xindy, which provided more
flexible support for different languages and encodings. The original release of glossaries only

supportedmakeindex, since it was readily available in all TEX distributions, and a later release

added support for xindy. There is now also a newer indexing application called xindex,
which isn’t supported by glossaries or glossaries-extra (unless a way can be found of converting
makeindex’s ist file to an equivalent xindex configuration file).

General purpose indexing applications that are developed independently are harder to fully

integrate with the glossaries package, which has more complex requirements than a simple index.

The glossaries-extra package additionally supports bib2gls, which is designed specifically
for, and developed alongside, the glossaries-extra package. These are all CLI applications.

Indexing file

A file that’s input (read) by an indexing application, such as the style file (ist or xdy) or the
files containing the indexing data (the sort value, hierarchical information, location encap and

entry location). These files are output files from the point of view of the glossaries package as

it’s TEX that creates and writes to those files. An indexing file may also refer to the files that are

created by the indexing application. These are output files from the indexing application’s point

of view, but they are input files from TEX’s point of view as they are input by commands used in

the document.

Indexing (or recording)

The process of saving the entry location and any associated information that is required in the

glossary. In the case of makeindex and xindy, the entry location, encap, entry item and

sort value are written to a supplementary file associated with the glossary that is subsequently

read by makeindex/xindy. In the case of bib2gls and the “noidx” method, the entry

location, encap and label is written to the aux file.

Internal field

An internal field may refer to a key that shouldn’t be used in the bib file, such as the group
field, or an internal field may refer to the label used to internally represent the field (which may or

may not match the key used to set the field or may not have an associated key), such as useri
which corresponds to the user1 key, or it may refer to a field that is only ever used internally

that should not be explicitly modified, such as the field used to store the entry’s hierarchical level

.

510

Terms

Internal field (bib2gls)
A field that is used or assigned by bib2gls that should typically not be used in the bib file.

Internal field label

The field label that forms part of the internal control sequence used to store the field value. This

may or may not match the key used to assign the value when defining the entry. See Table 4.1

on page 156.

Latin alphabet

The alphabet consisting of Latin characters.

Latin character

One of the letters “a”, …, “z”, “A”, …, “Z”.

Link text

The text produced by \gls-like and \glstext-like commands that have the potential to be
a hyperlink.

Location counter

The counter used to obtain the entry location.

Location encap (format)

A command used to encapsulate an entry location. The control sequence name (without the

leading backslash) is identified by the format key. The default encap is \glsnumber-
format. See §12.1 for further details.

Location list

A list of entry locations (also called a number list). May be suppressed for all glossaries with the

package option nonumberlist or for individual glossaries with nonumberlist. With

bib2gls, the list may also be suppressed with save-locations=false.

Non-Latin alphabet

An alphabet consisting of non-Latin characters.

Non-Latin character

An extended Latin character or a character that isn’t a Latin character.

Post-description hook

A hook (\glspostdescription) included in some glossary styles that is used after the
description is displayed. The glossaries-extra package modifies this command to provide addi-
tional hooks.

Post-link hook

A hook (command) that is used after link text to allow code to be automatically added. The base

glossaries package provides a general purpose hook \glspostlinkhook. The glossaries
-extra package modifies this command to provide additional hooks.

511

Terms

Print “unsrt” glossary commands

The set of commands used for displaying a glossary or partial glossary that have “unsrt” in the

name, such as \printunsrtglossary. See the glossaries-extra manual for further

details.

Resource file

The glstex file created by bib2gls and loaded by \GlsXtrLoadResources.

Resource set

All the settings (resource options) and entries associated with a particular instance of \Gls-
XtrLoadResources.

Sanitize

Converts command names into character sequences. That is, a command called, say, \foo, is
converted into the sequence of characters: \, f, o, o. Depending on the font, the backslash

character may appear as a dash when used in the main document text, so \foo will appear as:

—foo.

Earlier versions of glossaries used this technique to write information to the files used by the

indexing applications to prevent problems caused by fragile commands. Now, this is only used

for the sort key.

Shell escape

Most LATEX formats have the ability to run CLI applications while it’s typesetting a document.

Whilst this is a convenient way of using tools to help build the document, it’s a security risk.

To help protect users from arbitrary—and potentially dangerous—code from being executed,

TEX has a restricted mode, where only trusted applications are allowed to run. This is usually

the default mode, but your TEX installation may be set up so that the shell escape is disabled by

default. The unrestricted mode allows you to run any application from the shell escape. Take

care about enabling this option. If you receive a document or package from an untrusted source,

first run LATEX with the shell escape disabled or in restricted mode and search the log file for

“runsystem” before using the unrestricted mode.

Small capitals (small caps)

The LATEX kernel provides \textsc{〈text〉} to produce small capitals. This uses a font where

lowercase letters have a small capital design. Uppercase letters have the standard height and

there’s no noticeable difference with uppercase characters in corresponding non-small caps fonts.

This means that for a small caps appearance, you need to use lowercase letters in the 〈text〉 argu-
ment. The relsize package provides \textsmaller{〈text〉} which simulates small caps by

reducing the size of the font, so in this case the contents of 〈text〉 should be uppercase (otherwise
the effect is simply smaller lowercase letters). Some fonts don’t support small caps combined

with bold or slanted properties. In this case, there will be a font substitution warning and one of

the properties (such as small caps or slanted) will be dropped.

Standard LATEX extended Latin character

An extended Latin character that can be created by a core LATEX command, such as \o (ø) or

\'e (é). That is, the character can be produced without the need to load a particular package.

512

Terms

Subsequent use

Using an entry that unsets the first use flag when it has already been unset.

Unicode Transformation Format (8-bit) (UTF-8)

A variable-width encoding that uses 8-bit code units. This means that some characters are rep-

resented by more that one byte. XƎLATEX and LuaLATEX treat the multi-byte sequence as a single

token, but the older LATEX formats have single-byte tokens, which can cause complications, al-

though these have mostly been addressed with the newer kernels introduced over the past few

years. Related blog article: Binary Files, Text Files and File Encodings.4

Whatsit

A command whose execution is delayed or an OS-specific special command. This includes writ-

ing to external files (which is what indexing does).

4dickimaw-books.com/blog/binary-files-text-files-and-file-encodings/

513

https://www.dickimaw-books.com/blog/binary-files-text-files-and-file-encodings/
https://www.dickimaw-books.com/blog/binary-files-text-files-and-file-encodings/

Glossary Entry Keys Summary

These are options that can be passed to commands that define entries, such as\newglossary-
entry or \newacronym.

§17.1;

384
access={〈text〉} � glossaries-accsupp

Accessibility text corresponding to the name field.

§4; 143alias={〈xr-label〉} � glossaries-extra v1.12

Behaves in a similar manner tosee={[\seealsoname]〈xr-label〉} but also sets up alias-

ing which makes the link text hyperlink to 〈xr-label〉 instead.

§4; 143category=〈category-label〉 initial: general� glossaries-extra

The entry’s category (must be a simple label).

§4; 143counter={〈counter-name〉} � glossaries v3.0+

If set, the value indicates the location counter to use by default when indexing this entry (overrides

the counter associated with the glossary or the counter package option).

§4; 136description={〈text〉} � glossaries

The entry’s description, as displayed in the glossary. If required in the text, use \glsdesc
(if indexing and hyperlinks are required) or \glsentrydesc. Glossary styles should use

\glossentrydesc and\glspostdescription to incorporate the post-description

hook.

§17.1;

385
descriptionaccess={〈text〉} � glossaries-accsupp

Accessibility text corresponding to the description field.

514

Glossary Entry Keys Summary

§4; 137descriptionplural={〈text〉} � glossaries v1.12+

The plural form of the entry’s description, if applicable. If omitted, this is set to the same value

as the description, since descriptions tend not to be a singular entity.

§17.1;

385
descriptionpluralaccess={〈text〉} � glossaries-accsupp

Accessibility text corresponding to the descriptionplural field.

§4; 137first={〈first〉} � glossaries

The entry’s text, as displayed on first use of \gls-like commands. Note that using an acronym
style or post-link hooks is a more flexible approach. If omitted, this value is assumed to be the

same as the text key.

§17.1;

385
firstaccess={〈text〉} � glossaries-accsupp

Accessibility text corresponding to the first field.

§4; 138firstplural={〈text〉} � glossaries

The entry’s plural form, as displayed on first use of plural\gls-like commands, such as\glspl.
If this key is omitted, then the value will either be the same as the plural field, if the first
key wasn’t used, or the value will be taken from the first key with \glspluralsuffix
appended.

§17.1;

385
firstpluralaccess={〈text〉} � glossaries-accsupp

Accessibility text corresponding to the firstplural field.

group={〈group-label〉} � glossaries-extra v1.11+

The group label that identifies which letter group the entry belongs to. This key is only available

with the record=only and record=nameref options, and is set by bib2gls, if
invoked with --group or -g. Although this has a key, this is considered an internal key

515

Glossary Entry Keys Summary

assigned by bib2gls as a by-product of sorting. Explicit use without reference to the order

of entries can result in fragmented groups. The corresponding title can be set with \glsxtr-
setgrouptitle, although this is more commonly done implicitly within the glstex file.

See also Gallery: Logical Glossary Divisions (type vs group vs parent).1

location={〈location-list〉} � glossaries-extra

(requires record)

The formatted location list used by the “unsrt” family of commands. This key is only available

with the record option and is set by bib2gls unless save-locationsfalse is set.
Although it has an associated key, it’s usually considered an internal field.

§4; 143long={〈long-form〉} � glossaries v3.0+

A field that is set by \newacronym (and \newabbreviation) to the entry’s long (un-
abbreviated) form. It typically shouldn’t be used explicitly with \newglossaryentry
as \newacronym (and \newabbreviation) makes other modifications to ensure that
when the entry is referenced with the\gls-like commands, it will obey the appropriate acronym
style (or abbreviation style). If you are using bib2gls then this field should be used in the

bib file when defining abbreviations.

§17.1;

385
longaccess={〈text〉} � glossaries-accsupp

Accessibility text corresponding to the long field.

§4; 143longplural={〈long-form〉} � glossaries v3.0+

As long but the plural form.

§17.1;

386
longpluralaccess={〈text〉} � glossaries-accsupp

Accessibility text corresponding to the longplural field.

§4; 136name={〈text〉} � glossaries

The entry’s name, as displayed in the glossary. This typically isn’t used outside of the glossary

1dickimaw-books.com/gallery/index.php?label=logicaldivisions

516

https://www.dickimaw-books.com/gallery/index.php?label=logicaldivisions
https://www.dickimaw-books.com/gallery/index.php?label=logicaldivisions

Glossary Entry Keys Summary

(the text and plural keys are used instead). However, if there is a need to specifically

display the entry name, use \glsname (if indexing and hyperlinks are required) or \gls-
entryname. Glossary styles should use \glossentryname rather than explicitly using

\glsentryname.

§4; 140nonumberlist={〈boolean〉} default: true; initial: false� glossaries v1.17+

If set, suppress the location list for this entry. This is done by adding \glsnonextpages or

\glsnextpages to the indexing information for Options 2 and 3 or to the prenumber-
list field for Option 1.

§4; 136parent=〈parent-label〉 � glossaries v1.17+

The label of the entry’s parent (from which the entry’s hierarchical level is obtained).

§4; 137plural={〈text〉} � glossaries

The entry’s plural form, as displayed on subsequent use of plural \gls-like commands, such as
\glspl. This should be the appropriate plural form of the value provided by thetext key. If

omitted, this value is assumed to be the value of the text key with \glspluralsuffix
appended.

§17.1;

385
pluralaccess={〈text〉} � glossaries-accsupp

Accessibility text corresponding to the plural field.

§16; 376prefix={〈text〉} � glossaries-prefix v3.14a+

The subsequent use singular prefix.

§16; 376prefixfirst={〈text〉} � glossaries-prefix v3.14a+

The first use singular prefix.

517

Glossary Entry Keys Summary

§16; 376prefixfirstplural={〈text〉} � glossaries-prefix v3.14a+

The first use plural prefix.

§16; 376prefixplural={〈text〉} � glossaries-prefix v3.14a+

The subsequent use plural prefix.

§4; 141see={[〈tag〉]〈xr-list〉} � glossaries v1.17+

With the base glossaries package this simply triggers an automatic cross-reference with \gls-
see. The glossaries-extra package additionally saves the value. Use autoseeindex=
false to prevent the automatic cross-reference. The 〈tag〉 defaults to \seename and 〈xr-
list〉 should be a comma-separated list of entries that have already been defined.

§4; 142seealso={〈xr-list〉} � glossaries-extra v1.16+

Behaves in a similar manner to see={[\seealsoname]〈xr-list〉}.

§4; 143short={〈short-form〉} � glossaries v3.0+

A field that is set by \newacronym to the entry’s short (abbreviated) form. It typically

shouldn’t be used explicitly with\newglossaryentry as\newacronym (and\new-
abbreviation) makes other modifications to ensure that when the entry is referenced

with the \gls-like commands, it will obey the appropriate acronym style (or abbreviation

style). If you are using bib2gls then this field should be used in the bib file when defining

abbreviations.

§17.1;

386
shortaccess={〈text〉} � glossaries-accsupp

Accessibility text corresponding to the short field.

§4; 143shortplural={〈short-form〉} � glossaries v3.0+

Asshort but the plural form. The default is obtained by appending the acronymor abbreviation

plural suffix.

518

Glossary Entry Keys Summary

§17.1;

386
shortpluralaccess={〈text〉} � glossaries-accsupp

Accessibility text corresponding to the shortplural field.

§4; 138sort=〈value〉 initial: 〈entry name〉� glossaries

Specifies the value to use for sorting (overrides the default). This key is usually required for

xindy if the name key only contains commands (for example, the entry is a symbol), but

explicitly using this key in other contexts can break certain sort methods. Don’t use the sort
field with bib2gls.2

§4; 138symbol={〈symbol〉} initial: \relax� glossaries

The entry’s associated symbol (optional), which can be displayedwith\glssymbol (if indexing

and hyperlinks are required) or with \glsentrysymbol.

§17.1;

385
symbolaccess={〈text〉} � glossaries-accsupp

Accessibility text corresponding to the symbol field.

§4; 138symbolplural={〈symbol plural〉} � glossaries v1.12+

The plural form of the symbol, if applicable, which can be displayed with \glssymbol-
plural (if indexing and hyperlinks are required) or with \glsentrysymbolplural.
If omitted, this value is set to the same as the symbol key (since symbols usually don’t have a

plural form).

§17.1;

385
symbolpluralaccess={〈text〉} � glossaries-accsupp

Accessibility text corresponding to the symbolplural field.

§4; 137text={〈text〉} � glossaries

The entry’s text, as displayed on subsequent use of \gls-like commands. If omitted, this value
is assumed to be the same as the name key.

2dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

519

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

Glossary Entry Keys Summary

§17.1;

385
textaccess={〈text〉} � glossaries-accsupp

Accessibility text corresponding to the text field.

§4; 140type=〈glossary-label〉 initial: \glsdefaulttype� glossaries

Assigns the entry to the glossary identified by 〈glossary-label〉.

§4; 140user1={〈text〉} � glossaries v2.04+

A generic field, which can be displayed with \glsuseri (if indexing and hyperlinks are

required) or with \glsentryuseri.

§17.1;

386
user1access={〈text〉} � glossaries-accsupp v4.45+

Accessibility text corresponding to the user1 field.

§4; 140user2={〈text〉} � glossaries v2.04+

A generic field, which can be displayed with \glsuserii (if indexing and hyperlinks are

required) or with \glsentryuserii.

§17.1;

386
user2access={〈text〉} � glossaries-accsupp v4.45+

Accessibility text corresponding to the user2 field.

§4; 140user3={〈text〉} � glossaries v2.04+

A generic field, which can be displayed with \glsuseriii (if indexing and hyperlinks are

required) or with \glsentryuseriii.

§17.1;

386
user3access={〈text〉} � glossaries-accsupp v4.45+

Accessibility text corresponding to the user3 field.

520

Glossary Entry Keys Summary

§4; 140user4={〈text〉} � glossaries v2.04+

A generic field, which can be displayed with \glsuseriv (if indexing and hyperlinks are

required) or with \glsentryuseriv.

§17.1;

386
user4access={〈text〉} � glossaries-accsupp v4.45+

Accessibility text corresponding to the user4 field.

§4; 140user5={〈text〉} � glossaries v2.04+

A generic field, which can be displayed with \glsuserv (if indexing and hyperlinks are

required) or with \glsentryuserv.

§17.1;

387
user5access={〈text〉} � glossaries-accsupp v4.45+

Accessibility text corresponding to the user5 field.

§4; 140user6={〈text〉} � glossaries v2.04+

A generic field, which can be displayed with \glsuservi (if indexing and hyperlinks are

required) or with \glsentryuservi.

§17.1;

387
user6access={〈text〉} � glossaries-accsupp v4.45+

Accessibility text corresponding to the user6 field.

521

\gls-Like and \glstext-Like Options
Summary

Most (but not all) of these options can be used in the optional argument of all the \gls-like,
\glstext-like and \glsadd commands.

§5.1.1;

170
counter=〈counter-name〉 � glossaries

The location counter.

§5.1.1;

169
format=〈cs-name〉 � glossaries

The encap or control sequence name (without the leading backslash) that should be used to

encapsulate the entry location.

§5.1.1;

169
hyper=〈boolean〉 default: true; initial: true� glossaries

Determines whether or not the link text should have a hyperlink (provided hyperlinks are sup-

ported).

§5.1.1;

170
hyperoutside=〈boolean〉 default: true; initial: true� glossaries-extra v1.21+

Determines whether the hyperlink should be inside or outside of \glstextformat.

§5.1.1;

170
local=〈boolean〉 default: true; initial: false� glossaries v3.04+

If true use \glslocalunset to unset the first use flag, otherwise use \glsunset (only

applies to \gls-like commands).

522

\Gls-Like and \Glstext-Like Options Summary

§5.1.1;

170
noindex=〈boolean〉 default: true; initial: false� glossaries-extra

If true this option will suppress indexing. If you are using bib2gls, you may want to con-
sider using format=glsignore to prevent a location but ensure that the entry is selected.

§5.1.1;

171
postunset=〈value〉 default: global; initial: global� glossaries-extra v1.49+

Determines whether or not to unset the first use flag after the link text. The value may be one of:

global, local or none (only applies to \gls-like commands).

§5.1.1;

171
prefix=〈link-prefix〉 � glossaries-extra v1.31+

The prefix to use for the entry’s hyperlink target.

§5.1.1;

171
prereset=〈value〉 default: local; initial: none� glossaries-extra v1.49+

Determines whether or not to reset the entry before the link text. Allowed values: none (no

reset), local (localise the reset) and global.

§5.1.1;

171
preunset=〈value〉 default: local; initial: none� glossaries-extra v1.49+

Determines whether or not to unset the entry before the link text. Allowed values: none (no

unset), local (localise the unset) and global.

§5.1.1;

170
textformat=〈csname〉 � glossaries-extra v1.30+

The name of the control sequence to use instead of \glstextformat to encapsulate the

link text.

§5.1.1;

171
theHvalue=〈the-H-value〉 � glossaries-extra v1.19+

Set the hyper location to this value instead of obtaining it from \theH〈counter〉.

523

\Gls-Like and \Glstext-Like Options Summary

§5.1.1;

171
thevalue=〈location〉 � glossaries-extra v1.19+

Set the location to this value instead of obtaining it from the location counter.

§10; 262types={〈glossary list〉} � glossaries

Only available with \glsaddall, the value is the list of glossaries to iterate over.

§5.1.1;

170
wrgloss=〈position〉 initial: before� glossaries-extra v1.14+

Determines whether to do the indexing before or after the link text. Allowed values: before
and after.

524

\print〈…〉glossary Options

Summary

Most (but not all) of these options can be used in the optional argument of all the \print-
〈…〉glossary commands.

§8.1; 248entrycounter=〈boolean〉 default: true; initial: false� glossaries v4.08+

If true, enable the entry counter.

§8.1; 251flatten=〈boolean〉 default: true; initial: false� glossaries-extra v1.49+

If true, treats all entries as though they have the same hierarchical level (the value of level-
offset). This option is only available for the “unsrt” commands.

§8.1; 251groups=〈boolean〉 default: true; initial: true� glossaries-extra v1.44+

Enables letter group formation. This option is only available for the “unsrt” commands. Note

that no groups will be formed when invoking bib2gls with the default --no-group,
regardless of this setting.

§8.1; 250label=〈label〉 � glossaries-extra v1.39+

Adds \label{〈label〉} to the start of the glossary (after the title).

§8.1; 251leveloffset=〈offset〉 initial: 0� glossaries-extra v1.44+

Set or increment the hierarchical level offset. If 〈offset〉 starts with ++ then the current offset

is incremented by the given amount otherwise the current offset is set to 〈offset〉. For example,
an entry with a normal hierarchical level of 1 will be treated as though it has hierarchical level

1 + 〈offset〉. This option is only available for the “unsrt” commands.

525

\print〈…〉glossary Options Summary

§8.1; 248nogroupskip=〈boolean〉 default: true; initial: false� glossaries v3.08a+

If true, suppress the gap implemented by some glossary styles between groups.

§8.1; 248nonumberlist=〈boolean〉 default: true; initial: false� glossaries v1.14+

Suppress the location list. Note that nonumberlist=true will have no effect with the

save-locationsfalse resource option as there won’t be any location lists to display. Like-
wise if \printunsrtglossary is used without bib2gls.

§8.1; 248nopostdot=〈boolean〉 default: true; initial: false� glossaries v4.08+

If true, suppress the post-description punctuation.

§8.1; 248numberedsection=〈value〉 default: nolabel; initial: false�
glossaries v1.14+

Indicates whether or not glossary section headers will be numbered and also if they should au-

tomatically be labelled. The numberedsection package option will change the default

setting to match.

§8.1; 251prefix=〈prefix〉 � glossaries-extra v1.31+

Redefines \glolinkprefix to 〈prefix〉.

§8.1; 249sort=〈method〉 � glossaries v4.04+

Only available with \printnoidxglossary, this indicates how the glossary should be

ordered.

sort=case 250
Case-sensitive sort.

sort=def 249
Order of definition.

sort=letter 250

526

\print〈…〉glossary Options Summary

Letter order.

sort=nocase 250
Case-insensitive sort.

sort=standard 250
Word or letter order according to the order package option.

sort=use 249
Order of use.

sort=word 250
Word order.

§8.1; 248style=〈style-name〉 �

Use the 〈style-name〉 glossary style.

§8.1; 249subentrycounter=〈boolean〉 default: true; initial: false� glossaries v4.08+

If true, enable the sub-entry counter.

§8.1; 250target=〈boolean〉 default: true; initial: true� glossaries-extra v1.12+

If true, each entry in the glossary should have a hypertarget created, if supported by the glossary

style and if hyperlinks are enabled.

§8.1; 251targetnameprefix=〈prefix〉 � glossaries-extra v1.20+

Inserts 〈prefix〉 at the start of the hypertarget names.

§8.1; 247title=〈text〉 �

Sets the glossary title (overriding the default).

§8.1; 248toctitle=〈text〉 � glossaries v3.03+

Sets the glossary toc title (overriding the default).

527

\print〈…〉glossary Options Summary

§8.1; 247type=〈glossary-label〉 default: \glsdefaulttype�

Identifies the glossary to display.

528

Acronym Style Summary

The style should be set with\setacronymstyle before the first instance of\newacronym.

§6.2.1.5;

215
dua-desc glossaries v4.02+

Both the first use and subsequent use only show the long form and the description must be sup-

plied.

§6.2.1.5;

215
dua glossaries v4.02+

Both the first use and subsequent use only show the long form.

§6.2.1.6;

215
footnote-desc glossaries v4.02+

First use shows 〈short〉 followed by the long form in a footnote and the description must be

supplied.

§6.2.1.6;

216
footnote-sc-desc glossaries v4.02+

First use shows 〈short〉 in smallcaps followed by the long form in a footnote and the description

must be supplied.

§6.2.1.6;

215
footnote-sc glossaries v4.02+

First use shows 〈short〉 in smallcaps followed by the long form in a footnote.

§6.2.1.6;

216
footnote-sm-desc glossaries v4.02+

First use shows 〈short〉 in a smaller font followed by the long form in a footnote and the descrip-

tion must be supplied.

529

Acronym Style Summary

§6.2.1.6;

215
footnote-sm glossaries v4.02+

First use shows 〈short〉 in a smaller font followed by the long form in a footnote.

§6.2.1.6;

215
footnote glossaries v4.02+

First use shows 〈short〉 followed by the long form in a footnote.

§6.2.1.3;

214
long-sc-short-desc glossaries v4.02+

First use shows 〈long〉 (〈short〉) with the short form in smallcaps and the description must be

supplied.

§6.2.1.1;

211
long-sc-short glossaries v4.02+

First use shows 〈long〉 (〈short〉) with the short form in smallcaps.

§6.2.1.3;

214
long-short-desc glossaries v4.02+

First use shows 〈long〉 (〈short〉) where the description must be supplied.

§6.2.1.1;

211
long-short glossaries v4.02+

First use shows 〈long〉 (〈short〉).

§6.2.1.3;

214
long-sm-short-desc glossaries v4.02+

First use shows 〈long〉 (〈short〉) with the short form in a smaller font and the description must be

supplied.

§6.2.1.1;

212
long-sm-short glossaries v4.02+

First use shows 〈long〉 (〈short〉) with the short form in a smaller font.

530

Acronym Style Summary

§6.2.1.3;

214
long-sp-short-desc glossaries v4.16+

First use shows 〈long〉 (〈short〉) where the space may be converted to a non-breaking space and
the description must be supplied.

§6.2.1.1;

212
long-sp-short glossaries v4.16+

First use shows 〈long〉 (〈short〉) where the space may be converted to a non-breaking space.

§6.2.1.4;

214
sc-short-long-desc glossaries v4.02+

First use shows 〈short〉 (〈long〉) with the short form in smallcaps and a description must be

supplied.

§6.2.1.2;

213
sc-short-long glossaries v4.02+

First use shows 〈short〉 (〈long〉) with short form in smallcaps.

§6.2.1.4;

214
short-long-desc glossaries v4.02+

First use shows 〈short〉 (〈long〉) and a description must be supplied.

§6.2.1.2;

213
short-long glossaries v4.02+

First use shows 〈short〉 (〈long〉).

§6.2.1.4;

214
sm-short-long-desc glossaries v4.02+

First use shows 〈short〉 (〈long〉) with the short form in a smaller font and a description must be

supplied.

§6.2.1.2;

213
sm-short-long glossaries v4.02+

First use shows 〈short〉 (〈long〉) with short form in a smaller font.

531

Glossary Styles Summary

The default style may be set with \setglossarystyle or with the style package op-

tion. The default style can be overridden for individual glossaries with the style option. For

a summary of all available styles, see Gallery: Predefined Styles.1

§13.1.1;

306
altlist glossary-list

A list style using the description environment with the entry’s description starting on a new line.

§13.1.1;

306
altlistgroup glossary-list

A list style using the description environment with the entry’s description starting on a new line

with letter group headings.

§13.1.1;

306
altlisthypergroup glossary-list

A list style using the description environment with the entry’s description starting on a new line

with letter group headings and a navigation line.

§13.1.4;

315
altlong4col-booktabs glossary-longbooktabs v4.21+

A tabular style using longtable with 4 columns allowing for multi-lined descriptions, a header

row and rules.

§13.1.2;

310
altlong4col glossary-long

A tabular style using longtable with 4 columns allowing a multiline description.

§13.1.2;

310
altlong4colborder glossary-long

A tabular style using longtable with 4 columns allowing a multiline description with border lines.

1dickimaw-books.com/gallery/index.php?label=glossaries-styles

532

https://www.dickimaw-books.com/gallery/index.php?label=glossaries-styles
https://www.dickimaw-books.com/gallery/index.php?label=glossaries-styles

Glossary Styles Summary

§13.1.2;

310
altlong4colheader glossary-long

A tabular style using longtable with 4 columns allowing a multiline description with a header

row.

§13.1.2;

310
altlong4colheaderborder glossary-long

A tabular style using longtable with 4 columns allowing a multiline description with a header row

and border lines.

§13.1.4;

315
altlongragged4col-booktabs glossary-longbooktabs v4.21+

A tabular style using longtable with 4 columns, a header row and rules, and ragged right format-

ting for the description.

§13.1.3;

312
altlongragged4col glossary-longragged

A tabular style using longtable with 4 columns and ragged right formatting for the description.

§13.1.3;

313
altlongragged4colborder glossary-longragged

A tabular style using longtable with 4 columns and ragged right formatting for the description

and border lines.

§13.1.3;

313
altlongragged4colheader glossary-longragged

A tabular style using longtable with 4 columns and ragged right formatting for the description,

and a header row.

§13.1.3;

313
altlongragged4colheaderborder glossary-longragged

A tabular style using longtable with 4 columns and ragged right formatting for the description,

border lines and a header row.

§13.1.5;

318
altsuper4col glossary-super

A tabular style using supertabular with 4 columns allowing multiline descriptions.

533

Glossary Styles Summary

§13.1.5;

318
altsuper4colborder glossary-super

§13.1.5;

318
altsuper4colheader glossary-super

A tabular style using supertabular with 4 columns and a header row allowing multiline descrip-

tions.

§13.1.5;

318
altsuper4colheaderborder glossary-super

A tabular style using supertabular with 4 columns, a header row and border lines allowing mul-

tiline descriptions.

§13.1.6;

320
altsuperragged4col glossary-superragged

A tabular style using supertabularwith 4 columns and ragged right formatting for the description.

§13.1.6;

320
altsuperragged4colborder glossary-superragged

A tabular style using supertabular with 4 columns and border lines, and ragged right formatting

for the description.

§13.1.6;

320
altsuperragged4colheader glossary-superragged

A tabular style using supertabular with 4 columns and a header row, and ragged right formatting

for the description.

§13.1.6;

320
altsuperragged4colheaderborder glossary-superragged

A tabular style using supertabular with 4 columns, a header row and border lines, and ragged

right formatting for the description.

§13.1.7;

324
alttree glossary-tree

A hierarchical style that shows the name, description and, if set, the symbol. The name is set in a

box whose width is given by the widest name that has to be identified with \glssetwidest.

534

Glossary Styles Summary

§13.1.7;

325
alttreegroup glossary-tree

A hierarchical style with letter group headings that shows the name, description and, if set, the

symbol. The name is set in a box whose width is given by the widest name that has to be identified

with \glssetwidest.

§13.1.7;

325
alttreehypergroup glossary-tree

A hierarchical style with letter group headings and navigation line that shows the name, descrip-

tion and, if set, the symbol. The name is set in a box whose width is given by the widest name

that has to be identified with \glssetwidest.

bookindex glossary-bookindex v1.21+

Designed for indexes, the description isn’t shown.

§13.1.7;

322
index glossary-tree

A style similar to standard indexes but also shows the description and, if set, the symbol.

§13.1.7;

323
indexgroup glossary-tree

A style similar to standard indexes with letter group headings but also shows the description and,

if set, the symbol.

§13.1.7;

323
indexhypergroup glossary-tree

A style similar to standard indexes with letter group headings and a navigation line but also shows

the description and, if set, the symbol.

§13.1.9;

328
inline glossary-inline v3.03+

An inline homograph style.

535

Glossary Styles Summary

§13.1.1;

305
list glossary-list

A list style using the description environment.

§13.1.1;

306
listdotted glossary-list

A list style with a dotted leader between the name and description.

§13.1.1;

306
listgroup glossary-list

A list style using the description environment with letter group headings.

§13.1.1;

306
listhypergroup glossary-list

A list style using the description environment with letter group headings and a navigation line.

§13.1.4;

315
long-booktabs glossary-longbooktabs v4.21+

A tabular style using longtable with 2 columns a header row and rules.

long-name-desc-sym-loc glossary-longextra v1.21+

Tabular style with 4 columns.

long-name-desc glossary-longextra v1.37+

Tabular style with 2 columns.

§13.1.2;

308
long glossary-long

A tabular style using longtable with 2 columns.

§13.1.4;

315
long3col-booktabs glossary-longbooktabs v4.21+

A tabular style using longtable with 3 columns a header row and rules.

536

Glossary Styles Summary

§13.1.2;

309
long3col glossary-long

A tabular style using longtable with 3 columns.

§13.1.2;

309
long3colborder glossary-long

A tabular style using longtable with 3 columns and border lines.

§13.1.2;

309
long3colheader glossary-long

A tabular style using longtable with 3 columns and a header row.

§13.1.2;

309
long3colheaderborder glossary-long

A tabular style using longtable with 3 columns, a header row and border lines.

§13.1.4;

315
long4col-booktabs glossary-longbooktabs v4.21+

A tabular style using longtable with 4 columns a header row and rules.

§13.1.2;

309
long4col glossary-long

A tabular style using longtable with 4 columns.

§13.1.2;

309
long4colborder glossary-long

A tabular style using longtable with 4 columns and border lines.

§13.1.2;

309
long4colheader glossary-long

A tabular style using longtable with 4 columns and a header row.

537

Glossary Styles Summary

§13.1.2;

310
long4colheaderborder glossary-long

A tabular style using longtable with 4 columns, a header row and border lines.

§13.1.2;

308
longborder glossary-long

A tabular style using longtable with 2 columns and border lines.

§13.1.2;

308
longheader glossary-long

A tabular style using longtable with 2 columns and a header row.

§13.1.2;

308
longheaderborder glossary-long

A tabular style using longtable with 2 columns, a header row and border lines.

§13.1.4;

315
longragged-booktabs glossary-longbooktabs v4.21+

A tabular style using longtable with 2 columns, a header row and rules, and ragged right format-

ting for the description.

§13.1.3;

311
longragged glossary-longragged

A tabular style using longtable with 2 columns and ragged right formatting for the description.

§13.1.4;

315
longragged3col-booktabs glossary-longbooktabs v4.21+

A tabular style using longtable with 3 columns, a header row and rules, and ragged right format-

ting for the description.

§13.1.3;

312
longragged3col glossary-longragged

A tabular style using longtable with 3 columns and ragged right formatting for the description.

538

Glossary Styles Summary

§13.1.3;

312
longragged3colborder glossary-longragged

A tabular style using longtable with 3 columns and ragged right formatting for the description

and border lines.

§13.1.3;

312
longragged3colheader glossary-longragged

A tabular style using longtable with 3 columns and ragged right formatting for the description,

and a header row.

§13.1.3;

312
longragged3colheaderborder glossary-longragged

A tabular style using longtable with 3 columns and ragged right formatting for the description,

border lines and a header row.

§13.1.3;

311
longraggedborder glossary-longragged

A tabular style using longtable with 2 columns and ragged right formatting for the description

and border lines.

§13.1.3;

312
longraggedheader glossary-longragged

A tabular style using longtable with 2 columns and ragged right formatting for the description,

and a header row.

§13.1.3;

312
longraggedheaderborder glossary-longragged

A tabular style using longtable with 2 columns and ragged right formatting for the description,

border lines and a header row.

§13.1.8;

Table 13.2
mcolalttree glossary-mcols v3.02+

A multicolumn hierarchical style that shows the name, description and, if set, the symbol. The

name is set in a box whose width is given by the widest name that has to be identified with

\glssetwidest.

539

Glossary Styles Summary

§13.1.8;

Table 13.2
mcolalttreegroup glossary-mcols v3.02+

A multicolumn hierarchical style with letter group headings that shows the name, description

and, if set, the symbol. The name is set in a box whose width is given by the widest name that

has to be identified with \glssetwidest.

§13.1.8;

Table 13.2
mcolalttreehypergroup glossary-mcols v3.02+

A hierarchical style with letter group headings and navigation line at the start of the first column

that shows the name, description and, if set, the symbol. The name is set in a box whose width

is given by the widest name that has to be identified with \glssetwidest.

§13.1.8;

Table 13.2
mcolalttreespannav glossary-mcols v4.22+

A hierarchical style with letter group headings and navigation line spanning all columns that

shows the name, description and, if set, the symbol. The name is set in a box whose width is

given by the widest name that has to be identified with \glssetwidest.

§13.1.8;

Table 13.2
mcolindex glossary-mcols v3.02+

A multicolumn style similar to standard indexes but also shows the description and, if set, the

symbol.

§13.1.8;

Table 13.2
mcolindexgroup glossary-mcols v3.02+

A multicolumn style similar to standard indexes with letter group headings but also shows the

description and, if set, the symbol.

§13.1.8;

Table 13.2
mcolindexhypergroup glossary-mcols v3.02+

A multicolumn style similar to standard indexes with letter group headings and a navigation line

at the start of the first column but also shows the description and, if set, the symbol.

§13.1.8;

Table 13.2
mcolindexspannav glossary-mcols v4.22+

A multicolumn style similar to standard indexes with letter group headings and a navigation line

spanning all columns but also shows the description and, if set, the symbol.

540

Glossary Styles Summary

§13.1.8;

Table 13.2
mcoltree glossary-mcols v3.02+

A multicolumn hierarchical style that shows the name, description and, if set, the symbol.

§13.1.8;

Table 13.2
mcoltreegroup glossary-mcols v3.02+

A multicolumn hierarchical style with letter group headings that shows the name, description

and, if set, the symbol.

§13.1.8;

Table 13.2
mcoltreehypergroup glossary-mcols v3.02+

Amulticolumn hierarchical style with letter group headings and navigation line at the start of the

first column that shows the name, description and, if set, the symbol.

§13.1.8;

Table 13.2
mcoltreenoname glossary-mcols v3.02+

A multicolumn homograph style that shows the top-level name, description and, if set, the sym-

bol, but omits the name for sub-entries.

§13.1.8;

Table 13.2
mcoltreenonamegroup glossary-mcols v3.02+

A multicolumn homograph style with letter group headings that shows the top-level name, de-

scription and, if set, the symbol, but omits the name for sub-entries.

§13.1.8;

Table 13.2
mcoltreenonamehypergroup glossary-mcols v3.02+

A multicolumn homograph style with letter group headings and navigation line at the start of

the first column that shows the top-level name, description and, if set, the symbol, but omits the

name for sub-entries.

§13.1.8;

Table 13.2
mcoltreenonamespannav glossary-mcols v4.22+

A multicolumn homograph style with letter group headings and navigation line spanning all

columns that shows the top-level name, description and, if set, the symbol, but omits the name

for sub-entries.

541

Glossary Styles Summary

§13.1.8;

Table 13.2
mcoltreespannav glossary-mcols v4.22+

A multicolumn hierarchical style with letter group headings and navigation line spanning all

columns that shows the name, description and, if set, the symbol.

§13.1.1;

307
sublistdotted glossary-list

A list style with just the name for top-level entries and a dotted leader between the name and

description for sub-entries.

§13.1.5;

316
super glossary-super

A tabular style using supertabular with 2 columns.

§13.1.5;

317
super3col glossary-super

A tabular style using supertabular with 3 columns.

§13.1.5;

317
super3colborder glossary-super

A tabular style using supertabular with 3 columns and border lines.

§13.1.5;

317
super3colheader glossary-super

A tabular style using supertabular with 3 columns and a header row.

§13.1.5;

317
super3colheaderborder glossary-super

A tabular style using supertabular with 3 columns, a header row and border lines.

§13.1.5;

317
super4col glossary-super

A tabular style using supertabular with 4 columns.

542

Glossary Styles Summary

§13.1.5;

317
super4colborder glossary-super

A tabular style using supertabular with 4 columns and border lines.

§13.1.5;

317
super4colheader glossary-super

A tabular style using supertabular with 4 columns and a header row.

§13.1.5;

317
super4colheaderborder glossary-super

A tabular style using supertabular with 4 columns, a header row and border lines.

§13.1.5;

316
superborder glossary-super

A tabular style using supertabular with 2 columns and border lines.

§13.1.5;

316
superheader glossary-super

A tabular style using supertabular with 2 columns and a header row.

§13.1.5;

316
superheaderborder glossary-super

A tabular style using supertabular with 2 columns, a header row and border lines.

§13.1.6;

319
superragged glossary-superragged

A tabular style using supertabularwith 2 columns and ragged right formatting for the description.

§13.1.6;

320
superragged3col glossary-superragged

A tabular style using supertabularwith 3 columns and ragged right formatting for the description.

543

Glossary Styles Summary

§13.1.6;

320
superragged3colborder glossary-superragged

A tabular style using supertabular with 3 columns and border lines, and ragged right formatting

for the description.

§13.1.6;

320
superragged3colheader glossary-superragged

A tabular style using supertabular with 3 columns and a header row, and ragged right formatting

for the description.

§13.1.6;

320
superragged3colheaderborder glossary-superragged

A tabular style using supertabular with 3 columns, a header row and border lines, and ragged

right formatting for the description.

§13.1.6;

319
superraggedborder glossary-superragged

A tabular style using supertabular with 2 columns and border lines, and ragged right formatting

for the description.

§13.1.6;

319
superraggedheader glossary-superragged

A tabular style using supertabular with 2 columns and a header row, and ragged right formatting

for the description.

§13.1.6;

319
superraggedheaderborder glossary-superragged

A tabular style using supertabular with 2 columns, a header row and border lines, and ragged

right formatting for the description.

topic glossary-topic v1.40+

Designed for paragraph length top-level descriptions.

544

Glossary Styles Summary

topicmcols glossary-topic v1.40+

Designed for paragraph length top-level descriptions with sub-entries in multiple columns.

§13.1.7;

323
tree glossary-tree

A hierarchical style that shows the name, description and, if set, the symbol.

§13.1.7;

323
treegroup glossary-tree

A hierarchical style with letter group headings that shows the name, description and, if set, the

symbol.

§13.1.7;

323
treehypergroup glossary-tree

A hierarchical style with letter group headings and navigation line that shows the name, descrip-

tion and, if set, the symbol.

§13.1.7;

323
treenoname glossary-tree

A homograph style that shows the top-level name, description and, if set, the symbol, but omits

the name for sub-entries.

§13.1.7;

323
treenonamegroup glossary-tree

A homograph style with letter group headings that shows the top-level name, description and, if

set, the symbol, but omits the name for sub-entries.

§13.1.7;

324
treenonamehypergroup glossary-tree

A homograph style with letter group headings and navigation line that shows the top-level name,

description and, if set, the symbol, but omits the name for sub-entries.

545

Command Summary

Symbols

§1.7.1; 76\@gls@codepage{〈code-page〉} glossaries v1.17+

This command is written to the aux file for the benefit of makeglossaries and make-
glossaries-lite. The 〈code-page〉 indicates the xindy codepage.

§1.7.1; 77\@gls@reference{〈type〉}{〈label〉}{〈location〉} glossaries v4.04+

This command is written to the aux file to provide the information for \printnoidx-
glossary.

§1.7.1; 76\@glsorder{〈order〉}

This command is written to the aux file for the benefit of makeglossaries and make-
glossaries-lite. The 〈order〉 should be either letter or word.

§1.7.3; 78\@glsxtr@altmodifier{〈character〉} glossaries-extra v1.37+

This command is written to the aux file to provide the \GlsXtrSetAltModifier in-

formation for bib2gls.

§1.7.3; 78\@glsxtr@newglslike{〈label-prefix〉}{〈cs〉} glossaries-extra v1.37+

This command is written to the aux file to provide the \glsxtrnewglslike information

for bib2gls.

§1.7.3; 78\@glsxtr@prefixlabellist{〈list〉} glossaries-extra v1.37+

This command is written to the aux file to provide the \dgls information for bib2gls.

546

Command Summary

§1.7.1; 76\@istfilename{〈filename〉}

This command is written to the aux file for the benefit of makeglossaries and make-
glossaries-lite. The 〈filename〉 is the name of the style file.

§1.7.1; 75\@newglossary{〈glossary-label〉}{〈log〉}{〈out-ext〉}{〈in-ext〉}

This command is written to the aux file for the benefit of makeglossaries and make-
glossaries-lite. The arguments indicate the file extensions associated with the given
glossary.

§1.7.1; 76\@xdylanguage{〈glossary-label〉}{〈language〉} glossaries v1.17+

This command is written to the aux file for the benefit of makeglossaries and make-
glossaries-lite. The 〈language〉 is the language to pass to xindy for the given glos-

sary.

A

\abbreviationsname initial: Abbreviations glossaries-extra

(language-sensitive)

Expands to the title of the abbreviations glossary. The default is “Abbreviations” or

\acronymname if babel has been detected.

§6.1;

Table 6.1
\Ac{〈options〉}{〈entry-label〉}{〈insert〉} modifiers: * +

A synonym for \Gls defined by the shortcuts package option.

§6.1;

Table 6.1
\ac{〈options〉}{〈entry-label〉}{〈insert〉} modifiers: * +

A synonym for \gls defined by the shortcuts package option.

547

Command Summary

§6.1;

Table 6.1
\Acf{〈options〉}{〈entry-label〉}{〈insert〉} modifiers: * +

A synonym for \Acrfull defined by the shortcuts package option.

§6.1;

Table 6.1
\acf{〈options〉}{〈entry-label〉}{〈insert〉} modifiers: * +

A synonym for \acrfull defined by the shortcuts package option.

§6.1;

Table 6.1
\Acfp{〈options〉}{〈entry-label〉}{〈insert〉} modifiers: * +

A synonym for \Acrfullpl defined by the shortcuts package option.

§6.1;

Table 6.1
\acfp{〈options〉}{〈entry-label〉}{〈insert〉} modifiers: * +

A synonym for \acrfullpl defined by the shortcuts package option.

§6.1;

Table 6.1
\Acl{〈options〉}{〈entry-label〉}{〈insert〉} modifiers: * +

A synonym for \Acrlong defined by the shortcuts package option.

§6.1;

Table 6.1
\acl{〈options〉}{〈entry-label〉}{〈insert〉} modifiers: * +

A synonym for \acrlong defined by the shortcuts package option.

§6.1;

Table 6.1
\Aclp{〈options〉}{〈entry-label〉}{〈insert〉} modifiers: * +

A synonym for \Acrlongpl defined by the shortcuts package option.

§6.1;

Table 6.1
\aclp{〈options〉}{〈entry-label〉}{〈insert〉} modifiers: * +

A synonym for \acrlongpl defined by the shortcuts package option.

548

Command Summary

§6.1;

Table 6.1
\Acp{〈options〉}{〈entry-label〉}{〈insert〉} modifiers: * +

A synonym for \Glspl defined by the shortcuts package option.

§6.1;

Table 6.1
\acp{〈options〉}{〈entry-label〉}{〈insert〉} modifiers: * +

A synonym for \glspl defined by the shortcuts package option.

§6.1; 204\ACRfull[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As \acrfull but all caps.

§6.1; 204\Acrfull[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As \acrfull but sentence case.

§6.1; 204\acrfull[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

References the acronym identified by 〈entry-label〉. The text produced shows the full form, for-
matted according to the acronym style. With glossaries-extra, use \glsxtrfull instead.

For the first optional argument, see \glslink options.

\ACRfullfmt{〈options〉}{〈entry-label〉}{〈insert〉} glossaries v4.02+

Used by \ACRfull to format the full form. This command is redefined by acronym styles.

\Acrfullfmt{〈options〉}{〈entry-label〉}{〈insert〉} glossaries v4.02+

Used by \Acrfull to format the full form. This command is redefined by acronym styles.

\acrfullfmt{〈options〉}{〈entry-label〉}{〈insert〉} glossaries v4.02+

Used by \acrfull to format the full form. This command is redefined by acronym styles.

549

Command Summary

� \acrfullformat{〈long text〉}{〈short text〉} glossaries

Deprecated with the introduction of \setacronymstyle but used in the initial definition

of commands like \glsentryfmt before they are redefined by the acronym style. This may

be removed in a future release.

§6.1; 204\ACRfullpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As \acrfullpl but all caps.

§6.1; 204\Acrfullpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As \acrfullpl but sentence case.

§6.1; 204\acrfullpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As \acrfull but shows the full plural form of an acronym. With glossaries-extra, use
\glsxtrfullpl instead. For the first optional argument, see \glslink options.

\ACRfullplfmt{〈options〉}{〈entry-label〉}{〈insert〉} glossaries v4.02+

Used by \ACRfullpl to format the full form. This command is redefined by acronym styles.

\Acrfullplfmt{〈options〉}{〈entry-label〉}{〈insert〉} glossaries v4.02+

Used by \Acrfullpl to format the full form. This command is redefined by acronym styles.

\acrfullplfmt{〈options〉}{〈entry-label〉}{〈insert〉} glossaries v4.02+

Used by \acrfullpl to format the full form. This command is redefined by acronym styles.

� \acrlinkfullformat{〈internal long cs〉}{〈internal short
cs〉}{〈options〉}{〈entry-label〉}{〈insert〉} glossaries

Deprecated with the introduction of \setacronymstyle but used in the initial definition

550

Command Summary

of commands like \acrfullfmt before they are redefined by the acronym style. This may

be removed in a future release.

§6.1; 203\ACRlong[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As \acrlong but converts the link text to all caps.

§6.1; 203\Acrlong[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As \acrlong but converts the link text to sentence case.

§6.1; 203\acrlong[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

References the acronym identified by 〈entry-label〉. The text produced is obtained from the

long value. The 〈insert〉 argument will be inserted at the end of the link text. This command
does not alter or depend on the first use flag. With glossaries-extra, use \glsxtrlong
instead. For the first optional argument, see \glslink options.

§6.1; 204\ACRlongpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As \acrlongpl but converts the link text to all caps.

§6.1; 203\Acrlongpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As \acrlongpl but converts the link text to sentence case.

§6.1; 203\acrlongpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

References the acronym identified by 〈entry-label〉. The text produced is obtained from the

longplural value. The 〈insert〉 argument will be inserted at the end of the link text. This
command does not alter or depend on the first use flag. With glossaries-extra, use \glsxtr-
longpl instead. For the first optional argument, see \glslink options.

\acrnameformat{〈short text〉}{〈long text〉} glossaries

Used by acronym styles that require an additional description to determine what information is

displayed in the name.

551

Command Summary

§6.2; 208\acronymentry{〈entry-label〉} glossaries v4.02+

Used by acronym styles to format the acronym name.

§6.2.1;

209
\acronymfont{〈text〉} glossaries

Used to encapsulate the acronym short form on subsequent use.

§1.5.1;

Table 1.2
\acronymname initial: Acronyms glossaries

(language-sensitive)

Provided by glossaries if it hasn’t already been defined. Used as the default title for the glossary

created by the acronyms option.

§6.2; 209\acronymsort{〈short〉}{〈long〉} glossaries

Used by acronym styles in the acronym sort key.

§9; 260\acronymtype initial: \glsdefaulttype glossaries

Expands to the label of the default acronym glossary. The acronym or acronyms package

option will redefine this to acronym. The glossaries-extra package’s abbreviations
option will redefine this to \glsxtrabbrvtype if acronyms/acronym isn’t used.

§6.2.1;

210
\acrpluralsuffix initial: \glsacrpluralsuffix glossaries v4.12+

Suffix used in the default shortplural value by \newacronym.

§6.1; 203\ACRshort[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As \acrshort but converts the link text to all caps.

§6.1; 202\Acrshort[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As \acrshort but converts the link text to sentence case.

552

Command Summary

§6.1; 202\acrshort[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

References the acronym identified by 〈entry-label〉. The text produced is obtained from the

short value, formatted according to the acronym style. The 〈insert〉 argument will be in-

serted at the end of the link text. This command does not alter or depend on the first use flag.

With glossaries-extra, use \glsxtrshort instead. For the first optional argument, see

\glslink options.

§6.1; 203\ACRshortpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As \acrshortpl but converts the link text to all caps.

§6.1; 203\Acrshortpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As \acrshortpl but converts the link text to sentence case.

§6.1; 203\acrshortpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

References the acronym identified by 〈entry-label〉. The text produced is obtained from the

shortplural value, formatted according to the acronym style. The 〈insert〉 argument will
be inserted at the end of the link text. This command does not alter or depend on the first use flag.

With glossaries-extra, use \glsxtrshortpl instead. For the first optional argument, see

\glslink options.

§6.1;

Table 6.1
\Acs{〈options〉}{〈entry-label〉}{〈insert〉} modifiers: * +

A synonym for \Acrshort defined by the shortcuts package option.

§6.1;

Table 6.1
\acs{〈options〉}{〈entry-label〉}{〈insert〉} modifiers: * +

A synonym for \acrshort defined by the shortcuts package option.

§6.1;

Table 6.1
\Acsp{〈options〉}{〈entry-label〉}{〈insert〉} modifiers: * +

A synonym for \Acrshortpl defined by the shortcuts package option.

553

Command Summary

§6.1;

Table 6.1
\acsp{〈options〉}{〈entry-label〉}{〈insert〉} modifiers: * +

A synonym for \acrshortpl defined by the shortcuts package option.

\addglossarytocaptions{〈language〉} glossaries

Adds the redefinition of\glossaryname to\captions〈language〉 if translator has been
loaded (does nothing if translator hasn’t been loaded).

§9; 259\altnewglossary{〈glossary-label〉}{〈tag〉}{〈title〉}[〈counter〉]
glossaries v2.06+

A shortcut that supplies file extensions based on the 〈tag〉 argument:

\newglossary[〈tag〉-glg]{〈tag〉}{〈tag〉-gls}{〈〈tag〉-glo〉}{〈title〉}
[〈counter〉]

\andname initial: \& glossaries

Provided by glossaries if it hasn’t already been defined.

§8.2; 255\apptoglossarypreamble[〈type〉]{〈text〉} glossaries-extra v1.12+

Locally appends 〈text〉 to the preamble for the glossary identified by 〈type〉. If 〈type〉 is omitted,
\glsdefaulttype is assumed.

B

\bibglsdelimN initial: \delimN bib2gls

Delimiter used between locations in the location list, except for the last pair.

\bibglslastDelimN initial: \delimN bib2gls

Delimiter used between the last pair of locations in the location list.

554

Command Summary

C

\capitalisefmtwords{〈text〉} mfirstuc v2.03+

Converts 〈text〉 to title case, where 〈text〉 may contain text-block commands. The starred form

only permits a text-block command at the start of the argument. Limitations apply, see the

mfirstuc documentation for further details, either:

�

texdoc mfirstuc

or visit ctan.org/pkg/mfirstuc.

\capitalisewords{〈text〉} mfirstuc v1.06+

Converts 〈text〉 to title case. Limitations apply, see themfirstuc documentation for further details,

either:

�

texdoc mfirstuc

or visit ctan.org/pkg/mfirstuc.

§7.1; 241\cGls[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries v4.14+

Like \Gls but hooks into the entry counting mechanism.

§7.1; 240\cgls[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries v4.14+

Like \gls but hooks into the entry counting mechanism.

§7.1; 242\cGlsformat{〈entry-label〉}{〈insert〉} glossaries v4.14+

Format used by \cGls if the entry was only used once on the previous run.

§7.1; 241\cglsformat{〈entry-label〉}{〈insert〉} glossaries v4.14+

Format used by \cgls if the entry was only used once on the previous run.

555

https://www.tug.org/texdoc/
https://ctan.org/pkg/mfirstuc
https://www.tug.org/texdoc/
https://ctan.org/pkg/mfirstuc

Command Summary

§7.1; 241\cGlspl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries v4.14+

Like \Glspl but hooks into the entry counting mechanism.

§7.1; 240\cglspl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries v4.14+

Like \glspl but hooks into the entry counting mechanism.

§7.1; 242\cGlsplformat{〈entry-label〉}{〈insert〉} glossaries v4.14+

Format used by \cGlspl if the entry was only used once on the previous run.

§7.1; 241\cglsplformat{〈entry-label〉}{〈insert〉} glossaries v4.14+

Format used by \cglspl if the entry was only used once on the previous run.

§8; 247\currentglossary glossaries v3.0+

Defined by the \print〈…〉glossary commands to the current glossary label.

� \CustomAcronymFields glossaries v2.06

Deprecated with the introduction of \setacronymstyle. Removed in v4.50. Use roll-

back if backward-compatibility required or use\newacronymstyle and\setacronym-
style.

� \CustomNewAcronymDef glossaries v2.06

Deprecated with the introduction of \setacronymstyle. Removed in v4.50. Use roll-

back if backward-compatibility required or use\newacronymstyle and\setacronym-
style.

D

556

Command Summary

§2.7; 123\DeclareAcronymList{〈list〉} glossaries v2.04+

Identifies the list of glossaries as lists of acronyms.

� \DefaultNewAcronymDef glossaries

Deprecated with the introduction of \setacronymstyle. Removed in v4.50. Use roll-

back if backward-compatibility required or use \setacronymstyle.

� \defglsdisplay

This was originally used to define a format the way the link text was displayed on first use by the

\gls-like commands. Deprecated in v3.11a and removed in v4.50. Use rollback if backward-
compatibility required, but it’s better to switch to \defglsentryfmt.

� \defglsdisplayfirst

This was originally used to define a format the way the link text was displayed on first use by the

\gls-like commands. Deprecated in v3.11a and removed in v4.50. Use rollback if backward-
compatibility required, but it’s better to switch to \defglsentryfmt.

§5.1.4;

181
\defglsentryfmt[〈glossary-type〉]{〈definition〉} glossaries v3.11a+

Defines the display format used by the \gls-like commands for entries assigned to the glossary
identified by 〈glossary-type〉 (\glsdefaulttype if omitted).

§2.7; 124\DefineAcronymSynonyms glossaries v2.04+

Provides the shortcut commands for acronyms.

§12; 272\delimN

Used as a separator between locations.

557

Command Summary

§12.2;

278
\delimR

Used between the start and end of a location range.

� \DescriptionDUANewAcronymDef glossaries

Deprecated with the introduction of \setacronymstyle. Removed in v4.50. Use roll-

back if backward-compatibility required or use \setacronymstyle.

� \DescriptionFootnoteNewAcronymDef glossaries

Deprecated with the introduction of \setacronymstyle. Removed in v4.50. Use roll-

back if backward-compatibility required or use \setacronymstyle.

§1.5.1;

Table 1.2
\descriptionname initial: Description glossaries

(language-sensitive)

Provided by glossaries if it hasn’t already been defined. Used as a column header for some of

the tabular-like glossary styles.

� \DescriptionNewAcronymDef glossaries

Deprecated with the introduction of \setacronymstyle. Removed in v4.50. Use roll-

back if backward-compatibility required or use \setacronymstyle.

\dgls[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries-extra-bib2gls v1.37+

Does \gls[〈options〉]{〈prefix〉{entry-label}}[〈insert〉] for the first prefix in the

prefix list that matches a defined entry.

\DTLformatlist{〈csv-list〉} datatool-base v2.28+

Formats the comma-separated list 〈csv-list〉. One-level expansion is performed on 〈csv-list〉. See
the datatool documentation for further details, either:

558

Command Summary

�

texdoc datatool

or visit ctan.org/pkg/datatool.

\DTLifinlist{〈element〉}{〈csv-list〉}{〈true〉}{〈false〉} datatool-base

Does 〈true〉 if 〈element〉 is contained in the comma-separated list 〈csv-list〉, otherwise does

〈false〉. One-level expansion is performed on 〈csv-list〉, but not on 〈element〉. See the datatool

documentation for further details, either:

�

texdoc datatool

or visit ctan.org/pkg/datatool.

� \DUANewAcronymDef glossaries

Deprecated with the introduction of \setacronymstyle. Removed in v4.50. Use roll-

back if backward-compatibility required or use \setacronymstyle.

E

§1.5.1;

Table 1.2
\entryname initial: Notation glossaries

(language-sensitive)

Provided by glossaries if it hasn’t already been defined. Used as a column header for some of

the tabular-like glossary styles.

F

§6.2.1;

209
\firstacronymfont{〈text〉} glossaries v1.14+

Used to encapsulate the acronym short form on first use.

559

https://www.tug.org/texdoc/
https://ctan.org/pkg/datatool
https://www.tug.org/texdoc/
https://ctan.org/pkg/datatool

Command Summary

� \FootnoteNewAcronymDef glossaries

Deprecated with the introduction of \setacronymstyle. Removed in v4.50. Use roll-

back if backward-compatibility required or use \setacronymstyle.

\forallabbreviationlists{〈cs〉}{〈body〉} glossaries-extra v1.42+

Iterates overall all lists of abbreviations, defines the command 〈cs〉 to the current label and does
〈body〉.

§15.3;

364
\forallacronyms{〈cs〉}{〈body〉} glossaries v4.08+

(don’t use with glossaries-extra)

Iterates overall all glossaries that have been declared lists of acronyms, defines the command 〈cs〉
to the current label and does 〈body〉.

§15.3;

364
\forallglossaries[〈types〉]{〈cs〉}{〈body〉} glossaries

Iterates overall all the glossary labels given in the 〈types〉 argument, defines the command 〈cs〉 to
the current label and does 〈body〉. If the optional argument is omitted, the list of all non-ignored
glossaries is assumed.

§15.3;

364
\forallglsentries[〈types〉]{〈cs〉}{〈body〉} glossaries

Does \forglsentries for each glossary. The optional argument 〈types〉 is a comma-

separated list of glossary labels. If omitted, all non-ignored glossaries is assumed.

§15.3;

364
\forglsentries[〈type〉]{〈cs〉}{〈body〉} glossaries

Iterates over all entries in the given glossary and, at each iteration, defines the command 〈cs〉 to
the current entry label and does 〈body〉. The optional argument 〈type〉 is the glossary label and
defaults to \glsdefaulttype if omitted. This command can’t be used with bib2gls
since there are no defined entries until bib2gls has selected them and added them to the

glstex file.

560

Command Summary

G

§5.1.4;

185
\Genacrfullformat{〈label〉}{〈insert〉} glossaries v4.02+

As \genacrfullformat but sentence case.

§5.1.4;

184
\genacrfullformat{〈label〉}{〈insert〉} glossaries v4.02+

Used by \glsgenacfmt to display the acronym singular full form on first use. Redefined

by acronym styles.

§6.2.2;

217
\GenericAcronymFields glossaries

Expands to the additional keys that need to be provided to \newglossaryentry when

called by \newacronym. For example, the description key.

§5.1.4;

185
\Genplacrfullformat{〈label〉}{〈insert〉} glossaries v4.02+

As \genplacrfullformat but sentence case.

§5.1.4;

184
\genplacrfullformat{〈label〉}{〈insert〉} glossaries v4.02+

Used by \glsgenacfmt to display the acronym plural full form on first use. Redefined by

acronym styles.

Glo

§13.2.1;

333
\glolinkprefix initial: glo:

Expands to the prefix used for entry targets.

\glossariesextrasetup{〈options〉} glossaries-extra

Change allowed options that are defined or modified by the glossaries-extra package. Note that
some options can only be passed as package options.

561

Command Summary

§12.5;

286
\glossaryentry{〈data〉}{〈location〉}

This isn’t actually defined as a command but is used as a keyword for makeindex.

§8.2; 256\glossaryentrynumbers{〈locations〉} glossaries

Encapsulations the number list in the glossary and is also used to save the number list with the

savenumberlist option. This command is redefined by options such as nonumber-
list or commands like \glsnonextpages.

§13.2.3;

337
\glossaryheader glossaries

(glossary style command)

Does the header code after \begin{theglossary}.

§8.2; 252� \glossarymark〈glossary title〉 glossaries v1.0+

Only provided if it hasn’t already been defined for backward-compatibility. Use\glsglossary-
mark instead.

§1.5.1;

Table 1.2
\glossaryname initial: Glossary glossaries

(language-sensitive)

Provided by glossaries if it hasn’t already been defined. Used as the default title for glossaries

without a specified title. May already be defined by a language package.

§8.2; 255\glossarypostamble glossaries

Used at the end of the glossary.

§8.2; 254\glossarypreamble glossaries

Used at the start of the glossary. This will be locally redefined to the preamble associated with

the current glossary, if one has been set.

562

Command Summary

§8.2; 252\glossarysection[〈toc title〉]{〈title〉}

Used to display the glossary heading.

� \glossarystyle{〈style-name〉} glossaries v1.0–v4.49

Sets the default glossary style to 〈style-name〉. Deprecated in v3.08a and removed in v4.50. Now
only available with rollback. Use \setglossarystyle instead.

§8.2; 253\glossarytitle

Defined by \print〈…〉glossary to the current glossary’s title.

§8.2; 254\glossarytoctitle

Defined by \print〈…〉glossary to the current glossary’s title for the table of contents (if

toctrue).

§13.2.3;

338
\glossentry{〈entry-label〉}{〈number-list〉} glossaries v3.08a+

(glossary style command)

Redefined by the glossary styles to display top level (level 0) entries.

§13.2.1;

334
\Glossentrydesc{〈entry-label〉} glossaries v3.08a+

As \glossentrydesc but sentence case.

§13.2.1;

334
\glossentrydesc{〈entry-label〉} glossaries v3.08a+

Used within glossary styles to display the description.

§13.2.1;

334
\Glossentryname{〈entry-label〉} glossaries v3.08a+

As \glossentryname but sentence case.

563

Command Summary

§13.2.1;

333
\glossentryname{〈entry-label〉} glossaries v3.08a+

Used within glossary styles to display the name encapsulated with \glsnamefont.

\glossentrynameother{〈entry-label〉}{〈field-label〉} glossaries-extra v1.22+

Behaves like \glossentryname but uses the given field (identified by its internal label)

instead of name.

§13.2.1;

334
\Glossentrysymbol{〈entry-label〉} glossaries v3.08a+

As \glossentrysymbol but sentence case.

§13.2.1;

334
\glossentrysymbol{〈entry-label〉} glossaries v3.08a+

Used within glossary styles to display the symbol.

Gls

§5.1.2;

173
\GLS[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As \gls but converts the link text to all caps.

§5.1.2;

173
\Gls[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As \gls but converts the link text to sentence case.

§5.1.2;

172
\gls[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

References the entry identified by 〈entry-label〉. The text produced depends on whether or not
this is the first use. The 〈insert〉 argument may be inserted at the end of the link text or may be
inserted at a different point (for example, after the long form on first use for some acronym or

abbreviation styles. For the first optional argument, see \glslink options.

564

Command Summary

§17.5;

394
\gls@accessibility{〈options〉}{〈PDF element〉}{〈value〉}{〈content〉}
glossaries-accsupp v4.45+

Used by \glsaccessibility to provide the accessibility support.

§17.5;

394
\gls@accsupp@engine initial: accsupp glossaries-accsupp v4.45+

Expands to the accessibility support engine. This command may be defined before glossaries

-accsupp is loaded.

\glsabbrvfont{〈text〉} glossaries-extra

Font formatting command for the short form, initialised by the abbreviation style.

§17.2;

388
\glsaccessibility[〈options〉]{〈PDF element〉}{〈value〉}{〈content〉}
glossaries-accsupp v4.45+

Applies 〈value〉 as the accessibility attribute 〈PDF element〉 for the given 〈content〉. This inter-
nally uses the accessibility support provided by accsupp.

\Glsaccesslong{〈entry-label〉} glossaries-extra

The sentence case version of \glsaccesslong.

\glsaccesslong{〈entry-label〉} glossaries-extra

If accessibility support was enabled when glossaries-extra was loaded (accsupp) this will
display the value of the long key with the accessibility support enabled for that key (long-
access). If there is no accessibility support, this just uses \glsentrylong.

\Glsaccesslongpl{〈entry-label〉} glossaries-extra

The sentence case version of \glsaccesslongpl.

565

Command Summary

\glsaccesslongpl{〈entry-label〉} glossaries-extra

If accessibility support was enabled when glossaries-extra was loaded (accsupp) this will
display the value of the longplural key with the accessibility support enabled for that key

(longpluralaccess). If there is no accessibility support, this just uses \glsentry-
longpl.

\glsaccessname{〈entry-label〉} glossaries-extra

If accessibility support was enabled when glossaries-extra was loaded (accsupp) this will
display the value of thename key with the accessibility support enabled for that key (access).
If there is no accessibility support, this just uses \glsentryname.

\glsaccessshort{〈entry-label〉} glossaries-extra

If accessibility support was enabled when glossaries-extra was loaded (accsupp) this will
display the value of the short key with the accessibility support enabled for that key (short-
access). If there is no accessibility support, this just uses \glsentryshort.

\glsaccessshortpl{〈entry-label〉} glossaries-extra

If accessibility support was enabled when glossaries-extra was loaded (accsupp) this will
display the value of the shortplural key with the accessibility support enabled for that key

(shortpluralaccess). If there is no accessibility support, this just uses \glsentry-
shortpl.

§17.2;

387
\glsaccsupp{〈replacement〉}{〈content〉} glossaries-accsupp

Applies 〈replacement〉 as the ActualText for 〈content〉 using \glsaccessibility.

§6; 199\glsacrpluralsuffix initial: \glspluralsuffix glossaries v4.12+

Short plural suffix, this command is changed by acronym styles.

566

Command Summary

§6.2.1.1;

212
\glsacspace{〈label〉} glossaries v4.16+

Uses a non-breakable space if the short form is less than 3em. This command is redefined by

glossaries-extra to use \glsacspacemax instead of the hard-coded 3em.

\glsacspacemax glossaries-extra

Expands to the maximum width used by \glsacspace. This is a macro not a register. The
default is 3em.

§10; 261\glsadd[〈options〉]{〈entry-label〉} glossaries

Indexes the entry identified by 〈entry-label〉.

§10; 262\glsaddall[〈options〉] glossaries

Iterates over all non-ignored glossaries (or all those listed in thetypes option) and indexes each

entry in the glossary. The optional argument 〈options〉 are passed to \glsadd. This command
can’t be used with bib2gls. Use the selection=all resource option instead.

§10; 262\glsaddallunused[〈glossary types〉] glossaries v3.08a+

Iterates over all glossaries listed in 〈glossary types〉 (all all non-ignored glossaries if omitted) and
indexes each entry (with format=glsignore) that hasn’t been used. This command can’t
be used with bib2gls. Use the selection=all resource option instead.

\glsaddeach[〈options〉]{〈entry label list〉} glossaries-extra v1.31+

Does \glsadd[〈options〉]{〈entry-label〉} for each label in the supplied comma-separated

list.

§4.3.1;

147
\glsaddkey{〈key〉}{〈default value〉}{〈no link cs〉}{〈no link ucfirst cs〉}{〈link
cs〉}{〈link ucfirst cs〉}{〈link allcaps cs〉} glossaries v3.12a+

Defines a new glossary entry key with the given default value and commands that are analogous

to \glsentrytext (〈no link cs〉), \Glsentrytext (〈no link ucfirst cs〉), \glstext

567

Command Summary

(〈link cs〉), \Glstext (〈link ucfirst cs〉), \GLStext (〈link allcaps cs〉). The starred version
switches on field expansion for the given key.

\GlsAddLetterGroup{〈name〉}{〈xindy code〉} glossaries v1.17+

(xindy only)

Adds a new xindy letter group, identified by 〈name〉 and defined by 〈xindy code〉. This infor-
mation is written to the xdy file that’s created by \makeglossaries.

§4.3.2;

149
\glsaddstoragekey{〈key〉}{〈default value〉}{〈no link cs〉} glossaries v4.16+

Provides a new glossary entry key with a default value and a command for simply accessing the

value (without indexing or hyperlinks). The starred version switches on field expansion for the

given key.

§14.3;

348
\GlsAddXdyAttribute{〈name〉} glossaries v1.17+

(xindy only)

Adds the xindy attributes associated with 〈name〉 to the xdy style file.

§14.3;

348
\GlsAddXdyCounters{〈counter list〉} glossaries v3.0+

(xindy only)

Identifies all the location counters required in the document.

§14.3;

349
\GlsAddXdyLocation[〈H-prefix〉]{〈name〉}{〈definition〉} glossaries v1.17+

(xindy only)

Adds the given location syntax to the xdy style file.

§14.1;

345
\GlsAddXdyStyle{〈style-name〉} glossaries v1.17+

(xindy only)

Adds a required xindy file to the xdy style file.

568

Command Summary

§2.2; 90\glsautoprefix glossaries v1.14+

Expands to the prefix for the label used bynumberedsection=autolabel andnumbered-
section=nameref.

§14; 344\glsbackslash glossaries v4.11+

Expands to \ (a literal backslash).

§15.2;

363
\glscapitalisewords{〈content〉} glossaries v4.48+

Just does\capitalisewords butmay be redefined to use\capitalisefmtwords,
if required.

§5.1.4;

182
\glscapscase{〈no change〉}{〈sentence〉}{〈all caps〉} glossaries v3.11a+

Defined by the \gls-like commands to expand to 〈no change〉 if the calling command wasn’t
a case-changing command (\gls or \glspl), to 〈sentence〉 for sentence case commands

(\Gls or \Glspl) or to 〈all caps〉 for all caps commands (\GLS or \GLSpl).

\glscategory{〈entry-label〉} glossaries-extra

Expands to the entry’s category.

§8.2; 253\glsclearpage glossaries v1.19+

Used to clear the page at the start of a glossary.

§14; 344\glsclosebrace

Expands to (a literal closing brace).

§2.3; 99\glscounter initial: page glossaries

The default counter as specified by the counter option.

569

Command Summary

\glscurrententrylabel glossaries v3.02+

Assigned at the start of each entry item within the glossary. This command may be used by

glossary hooks, such as \glspostdescription, to reference the current entry.

§15.4;

369
\glscurrentfieldvalue glossaries v4.23+

Conditional commands such as \ifglshasfield set this to the field’s value for use within

the 〈true〉 code.

§5.1.4;

182
\glscustomtext glossaries v3.11a+

Placeholder command that expands to the text provided in \glsdisp.

§2.6; 117\GlsDeclareNoHyperList{〈list〉} glossaries v3.05+

Identifies the list of glossaries that should have hyperlinks suppressed.

§17.1;

386
\glsdefaultshortaccess{〈long〉}{〈short〉} glossaries-accsupp v4.45+

The default value for theshortaccess keywhen defining acronymswith\newacronym.

\glsdefaulttype initial: main glossaries

Expands to the label of the default glossary, which is normally main but if nomain is used,

it will be the label of the first glossary to be defined.

\glsdefpostdesc{〈category〉}{〈definition〉} glossaries-extra v1.31+

Defines post-description hook associated with the category identified by the label 〈category〉.

\glsdefpostlink{〈category〉}{〈definition〉} glossaries-extra v1.31+

Defines post-link hook associated with the category identified by the label 〈category〉.

570

Command Summary

\glsdefs@newdocentry{〈entry-label〉}{〈key=value list〉}
glossaries-extra v4.47+

This command is written to the glsdefs file to define the given entry using the definition

provided in the document environment on the previous LATEX run.

§5.1.3;

178
\GLSdesc[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As \glsdesc but converts the link text to all caps.

§5.1.3;

178
\Glsdesc[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As\glsdesc but converts the link text to sentence case. Use\Glossentrydescwithin

custom glossary styles instead of this command.

§5.1.3;

178
\glsdesc[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

References the entry identified by 〈entry-label〉. The text produced is obtained from thedescription
value. The 〈insert〉 argument will be inserted at the end of the link text. This command does not
alter or depend on the first use flag. For the first optional argument, see \glslink options.

Use \glossentrydesc within custom glossary styles instead of this command.

\GLSdescplural[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries v1.12+

As \glsdescplural but converts the link text to all caps.

\Glsdescplural[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries v1.12+

As \glsdescplural but converts the link text to sentence case.

\glsdescplural[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries v1.12+

As \glsdesc but for the descriptionplural field.

571

Command Summary

§17.3;

390
\glsdescriptionaccessdisplay{〈text〉}{〈entry-label〉}
glossaries-accsupp

Does 〈text〉 with the descriptionaccess replacement text (if set).

§17.3;

390
\glsdescriptionpluralaccessdisplay{〈text〉}{〈entry-label〉}
glossaries-accsupp

Does 〈text〉 with the descriptionpluralaccess replacement text (if set).

§13.1;

301
\glsdescwidth glossary-long & glossary-super

A length register used to set the width of the description column for tabular-like styles.

§15.1;

359
\glsdisablehyper glossaries

Disables hyperlinks (may be scoped to localise the effect).

§5.1.2;

174
\Glsdisp[〈options〉]{〈entry-label〉}{〈text〉} modifiers: * + glossaries v4.50+

As \glsdisp but converts 〈text〉 to sentence case.

§5.1.2;

174
\glsdisp[〈options〉]{〈entry-label〉}{〈text〉} modifiers: * + glossaries v1.19+

References the entry identified by 〈entry-label〉 with the given 〈text〉 as the link text. This com-
mand unsets the first use flag (use \glslink instead, if the first use flag should not be al-

tered). This command is considered a \gls-like command. For the first optional argument,
see \glslink options.

� \glsdisplay

This was originally used to format the way the link text was displayed on first use by the \gls-
like commands. Deprecated in v3.11a and removed in v4.50. Use rollback if backward-compatibility

required, but it’s better to switch to \glsentryfmt.

572

Command Summary

� \glsdisplayfirst

This was originally used to format the way the link text was displayed on first use by the \gls-
like commands. Deprecated in v3.11a and removed in v4.50. Use rollback if backward-compatibility

required, but it’s better to switch to \glsentryfmt.

§5.2; 195\glsdisplaynumberlist{〈entry-label〉} glossaries v3.02+

Formats the location list for the given entry. Redefined by glossaries-extra-bib2gls to obtain
the location list from the location field.

§15.1;

360
\glsdohyperlink{〈target〉}{〈text〉} glossaries v4.08+

Creates a hyperlink to the given target using \hyperlink, and includes the debugging infor-
mation if debug=showtargets.

§15.1;

360
\glsdohyperlinkhook{〈target〉}{〈text〉} glossaries v4.54+

Hook used by \glsdohyperlink. Does nothing by default.

§15.1;

359
\glsdohypertarget{〈target〉}{〈text〉} glossaries v4.08+

Creates a hypertarget, and includes the debugging information if debug=showtargets.
This uses \hypertarget but measures the height of 〈text〉 so that the target can be placed
at the top of 〈text〉 instead of along the baseline.

§15.1;

360
\glsdohypertargethook{〈target〉}{〈text〉} glossaries v4.54+

Hook used by \glsdohypertarget. Does nothing by default.

§15.4;

366
\glsdoifexists{〈entry-label〉}{〈code〉} glossaries

Does 〈code〉 if the entry given by 〈entry-label〉 exists. If the entry doesn’t exist, this will generate
an error.

573

Command Summary

§15.4;

366
\glsdoifexistsordo{〈entry-label〉}{〈true〉}{〈false〉} glossaries v4.19+

Similar to \ifglsentryexists, this does 〈true〉 if the entry given by 〈entry-label〉 exists.
If the entry doesn’t it exist, this does 〈false〉 and generates an error.

§15.4;

366
\glsdoifexistsorwarn{〈entry-label〉}{〈code〉} glossaries v4.03+

Like \glsdoifexists, but always warns (no error) if the entry doesn’t exist.

§15.4;

366
\glsdoifnoexists{〈entry-label〉}{〈code〉} glossaries

Does 〈code〉 if the entry given by 〈entry-label〉 does not exist. If the entry does exist, this will
generate an error.

§15.1;

359
\glsdonohyperlink{〈target〉}{〈text〉} glossaries v4.20+

Used instead of \glsdohyperlink when hyperlinks are disabled. This simply expands to

〈text〉.

§2.5; 107\glsdosanitizesort (only available with sort=standard)

Sanitizes the sort value if sanitizesort=true.

§7.1; 239\glsenableentrycount glossaries v4.14+

Enables entry counting.

§15.1;

359
\glsenablehyper glossaries

(requires hyperref)

Enables hyperlinks (may be scoped to localise the effect).

\glsendrange[〈options〉]{〈entry label list〉} glossaries-extra v1.50+

As \glsstartrange but with the end range marker).

574

Command Summary

§17.4;

392
\glsentryaccess{〈entry-label〉} glossaries-accsupp

Expands to the value of the access field.

§12.1;

276
\glsentrycounter initial: \glscounter glossaries

Defined by \setentrycounter to its 〈counter〉 argument.

§2.3; 93\glsentrycounterfalse glossaries v3.0+

Sets \ifglsentrycounter to false.

§2.3; 93\glsentrycounterlabel glossaries v3.0+

Displays the formatted value of the glossaryentry counter or does nothing if entrycounter
=false.

§2.3; 92\GlsEntryCounterLabelPrefix initial: glsentry- glossaries v4.38+

Expands to the prefix used by \glsrefentry.

§2.3; 93\glsentrycountertrue glossaries v3.0+

Sets \ifglsentrycounter to true.

§7.1; 239\glsentrycurrcount{〈entry-label〉} glossaries v4.14+

Expands to the current entry count running total or 0 if not available (needs to be enabled with

\glsenableentrycount).

§5.2; 193\Glsentrydesc{〈entry-label〉} glossaries

Partially robust command that displays the value of the description field with sentence

case applied. As from glossaries v4.50, this command can expand in PDF bookmarks. Outside

of PDF bookmarks it will expand to a robust internal command.

575

Command Summary

§5.2; 192\glsentrydesc{〈entry-label〉} glossaries

Simply expands to the value of the description field. Does nothing if the entry hasn’t been

defined. May be used in expandable contexts provided that the description field doesn’t

contain any fragile commands.

§17.4;

392
\glsentrydescaccess{〈entry-label〉} glossaries-accsupp

Expands to the value of the descaccess field.

§5.2; 193\Glsentrydescplural{〈entry-label〉} glossaries v1.12+

Partially robust command that displays the value of the descriptionplural field with

sentence case applied. As from glossaries v4.50, this command can expand in PDF bookmarks.

Outside of PDF bookmarks it will expand to a robust internal command.

§5.2; 193\glsentrydescplural{〈entry-label〉} glossaries v1.12+

Simply expands to the value of the descriptionplural field. Does nothing if the entry

hasn’t been defined. May be used in expandable contexts provided that the description-
plural field doesn’t contain any fragile commands.

§17.4;

393
\glsentrydescpluralaccess{〈entry-label〉} glossaries-accsupp

Expands to the value of the descpluralaccess field.

§5.2; 192\Glsentryfirst{〈entry-label〉} glossaries

Partially robust command that displays the value of the first field with sentence case ap-

plied. As from glossaries v4.50, this command can expand in PDF bookmarks. Outside of PDF

bookmarks it will expand to a robust internal command.

§5.2; 192\glsentryfirst{〈entry-label〉} glossaries

Simply expands to the value of the first field. Does nothing if the entry hasn’t been defined.

576

Command Summary

May be used in expandable contexts provided that the first field doesn’t contain any fragile

commands.

§17.4;

392
\glsentryfirstaccess{〈entry-label〉} glossaries-accsupp

Expands to the value of the firstaccess field.

§5.2; 192\Glsentryfirstplural{〈entry-label〉} glossaries

Partially robust command that displays the value of the firstplural field with sentence

case applied. As from glossaries v4.50, this command can expand in PDF bookmarks. Outside

of PDF bookmarks it will expand to a robust internal command.

§5.2; 192\glsentryfirstplural{〈entry-label〉} glossaries

Simply expands to the value of the firstplural field. Does nothing if the entry hasn’t been

defined. May be used in expandable contexts provided that the firstplural field doesn’t

contain any fragile commands.

§17.4;

392
\glsentryfirstpluralaccess{〈entry-label〉} glossaries-accsupp

Expands to the value of the firstpluralaccess field.

§5.1.4;

181
\glsentryfmt glossaries v3.11a+

The default display format used by the \gls-like commands. This command is redefined by

the glossaries-extra package.

\GLSentryfull{〈entry-label〉} glossaries

As \glsentryfull but all caps.

§6.1; 206\Glsentryfull{〈entry-label〉} glossaries

As \glsentryfull but sentence case.

577

Command Summary

§6.1; 206\glsentryfull{〈entry-label〉} glossaries

Displays the singular full form of the acronym identified by 〈entry-label〉, without hyperlinks or
indexing. This command is redefined by acronym styles to match the style format.

\GLSentryfullpl{〈entry-label〉} glossaries

As \glsentryfullpl but all caps.

§6.1; 206\Glsentryfullpl{〈entry-label〉} glossaries

As \glsentryfullpl but sentence case.

§6.1; 206\glsentryfullpl{〈entry-label〉} glossaries

Displays the plural full form of the acronym identified by 〈entry-label〉, without hyperlinks or
indexing. This command is redefined by acronym styles to match the style format.

§13.2.1;

332
\glsentryitem{〈label〉} glossaries v3.0+

Used for top level (level 0) entries in glossary styles to increment and display the entry counter

if entrycounter=true.

§6.1; 205\Glsentrylong{〈entry-label〉} glossaries v3.0+

Displays the value of the long field with sentence case applied. Does nothing if the entry hasn’t

been defined. As from glossaries v4.50, this command can expand in PDF bookmarks. Outside

of PDF bookmarks it will expand to a robust internal command.

§6.1; 204\glsentrylong{〈entry-label〉} glossaries v3.0+

Simply expands to the value of the long field. Does nothing if the entry hasn’t been defined.

May be used in expandable contexts provided that the long field doesn’t contain any fragile

commands.

578

Command Summary

§17.4;

393
\glsentrylongaccess{〈entry-label〉} glossaries-accsupp

Expands to the value of the longaccess field.

§6.1; 205\Glsentrylongpl{〈entry-label〉} glossaries v3.0+

Displays the value of the longplural field with sentence case applied. Does nothing if the

entry hasn’t been defined. As from glossaries v4.50, this command can expand in PDF book-

marks. Outside of PDF bookmarks it will expand to a robust internal command.

§6.1; 205\glsentrylongpl{〈entry-label〉} glossaries v3.0+

Simply expands to the value of the longplural field. Does nothing if the entry hasn’t been

defined. May be used in expandable contexts provided that the longplural field doesn’t

contain any fragile commands.

§17.4;

393
\glsentrylongpluralaccess{〈entry-label〉} glossaries-accsupp

Expands to the value of the longpluralaccess field.

§5.2; 191\Glsentryname{〈entry-label〉} glossaries

Partially robust command that displays the value of the name field with sentence case applied.

As from glossaries v4.50, this command can expand in PDF bookmarks. Outside of PDF book-

marks it will expand to a robust internal command.

§5.2; 191\glsentryname{〈entry-label〉} glossaries

Simply expands to the value of the name key. Does nothing if the entry hasn’t been defined.

May be used in expandable contexts provided that the name key doesn’t contain any fragile

commands.

§5.2; 195\glsentrynumberlist{〈entry-label〉} glossaries v3.02+

Displays the location list for the given entry. Redefined by glossaries-extra-bib2gls to obtain
the location list from the location field.

579

Command Summary

§15.6;

374
\glsentryparent{〈entry-label〉} glossaries v4.45+

Expands to the value of theparent field. Expands to nothing if theparent field hasn’t been

set and expands to \relax if the entry hasn’t been defined.

§5.2; 192\Glsentryplural{〈entry-label〉} glossaries

Partially robust command that displays the value of the plural field with sentence case ap-

plied. As from glossaries v4.50, this command can expand in PDF bookmarks. Outside of PDF

bookmarks it will expand to a robust internal command.

§5.2; 192\glsentryplural{〈entry-label〉} glossaries

Simply expands to the value of the plural field. Does nothing if the entry hasn’t been defined.

May be used in expandable contexts provided that the plural field doesn’t contain any fragile

commands.

§17.4;

392
\glsentrypluralaccess{〈entry-label〉} glossaries-accsupp

Expands to the value of the pluralaccess field.

§16; 381\Glsentryprefix{〈entry-label〉} glossaries-prefix v3.14a+

As \glsentryprefix but sentence case.

§16; 380\glsentryprefix{〈entry-label〉} glossaries-prefix v3.14a+

Expands to the value of the prefix field.

§16; 381\Glsentryprefixfirst{〈entry-label〉} glossaries-prefix v3.14a+

As \glsentryprefixfirst but sentence case.

580

Command Summary

§16; 381\glsentryprefixfirst{〈entry-label〉} glossaries-prefix v3.14a+

Expands to the value of the prefixfirst field.

§16; 381\Glsentryprefixfirstplural{〈entry-label〉} glossaries-prefix v3.14a+

As \glsentryprefixfirstplural but sentence case.

§16; 381\glsentryprefixfirstplural{〈entry-label〉} glossaries-prefix v3.14a+

Expands to the value of the prefixfirstplural field.

§16; 381\Glsentryprefixplural{〈entry-label〉} glossaries-prefix v3.14a+

As \glsentryprefixplural but sentence case.

§16; 381\glsentryprefixplural{〈entry-label〉} glossaries-prefix v3.14a+

Expands to the value of the prefixplural field.

§7.1; 239\glsentryprevcount{〈entry-label〉} glossaries v4.14+

Expands to the final entry count total from the previous LATEX run or if 0 if not available (needs

to be enabled with \glsenableentrycount).

§6.1; 206\Glsentryshort{〈entry-label〉} glossaries v3.0+

Displays the value of the short field with sentence case applied. Does nothing if the entry

hasn’t been defined. As from glossaries v4.50, this command can expand in PDF bookmarks.

Outside of PDF bookmarks it will expand to a robust internal command.

§6.1; 205\glsentryshort{〈entry-label〉} glossaries v3.0+

Simply expands to the value of the short field. Does nothing if the entry hasn’t been defined.

581

Command Summary

May be used in expandable contexts provided that the short field doesn’t contain any fragile

commands.

§17.4;

393
\glsentryshortaccess{〈entry-label〉} glossaries-accsupp

Expands to the value of the shortaccess field.

\Glsentryshortpl{〈entry-label〉} glossaries v3.0+

Displays the value of the shortplural field with sentence case applied. Does nothing if

the entry hasn’t been defined. As from glossaries v4.50, this command can expand in PDF book-

marks. Outside of PDF bookmarks it will expand to a robust internal command.

\glsentryshortpl{〈entry-label〉} glossaries v3.0+

Simply expands to the value of the shortplural field. Does nothing if the entry hasn’t been

defined. May be used in expandable contexts provided that the shortplural field doesn’t

contain any fragile commands.

§17.4;

393
\glsentryshortpluralaccess{〈entry-label〉} glossaries-accsupp

Expands to the value of the shortpluralaccess field.

§15.6;

374
\glsentrysort{〈entry-label〉} glossaries

Simply expands to the value of the sort key. Does nothing if the entry hasn’t been defined.

§5.2; 193\Glsentrysymbol{〈entry-label〉} glossaries

Partially robust command that displays the value of the symbol field with sentence case ap-

plied. As from glossaries v4.50, this command can expand in PDF bookmarks. Outside of PDF

bookmarks it will expand to a robust internal command.

§5.2; 193\glsentrysymbol{〈entry-label〉} glossaries

Simply expands to the value of the symbol field. Does nothing if the entry hasn’t been defined.

582

Command Summary

May be used in expandable contexts provided that the symbol field doesn’t contain any fragile

commands.

§17.4;

392
\glsentrysymbolaccess{〈entry-label〉} glossaries-accsupp

Expands to the value of the symbolaccess field.

§5.2; 193\Glsentrysymbolplural{〈entry-label〉} glossaries v1.12+

Partially robust command that displays the value of the symbolplural field with sentence

case applied. As from glossaries v4.50, this command can expand in PDF bookmarks. Outside

of PDF bookmarks it will expand to a robust internal command.

§5.2; 193\glsentrysymbolplural{〈entry-label〉} glossaries v1.12+

Simply expands to the value of the symbolplural field. Does nothing if the entry hasn’t

been defined. May be used in expandable contexts provided that the symbolplural field

doesn’t contain any fragile commands.

§17.4;

392
\glsentrysymbolpluralaccess{〈entry-label〉} glossaries-accsupp

Expands to the value of the symbolpluralaccess field.

§5.2; 192\Glsentrytext{〈entry-label〉} glossaries

Partially robust command that displays the value of the text field with sentence case applied.

As from glossaries v4.50, this command can expand in PDF bookmarks. Outside of PDF book-

marks it will expand to a robust internal command.

§5.2; 192\glsentrytext{〈entry-label〉} glossaries

Simply expands to the value of the text field. Does nothing if the entry hasn’t been defined.

May be used in expandable contexts provided that the text field doesn’t contain any fragile

commands.

583

Command Summary

§17.4;

392
\glsentrytextaccess{〈entry-label〉} glossaries-accsupp

Expands to the value of the textaccess field.

§5.2; 190\glsentrytitlecase{〈entry-label〉}{〈field〉} glossaries v4.22+

Applies title case to the given field using \glscapitalisewords or sentence case in PDF

bookmarks.

§15.6;

373
\glsentrytype{〈entry-label〉} glossaries

Simply expands to the value of the type key. Does nothing if the entry hasn’t been defined.

§5.2; 193\Glsentryuseri{〈entry-label〉} glossaries v2.04+

Partially robust command that displays the value of the user1 field with sentence case ap-

plied. As from glossaries v4.50, this command can expand in PDF bookmarks. Outside of PDF

bookmarks it will expand to a robust internal command.

§5.2; 193\glsentryuseri{〈entry-label〉} glossaries v2.04+

Simply expands to the value of the user1 field. Does nothing if the entry hasn’t been defined.

May be used in expandable contexts provided that the user1 field doesn’t contain any fragile

commands.

§17.4;

393
\glsentryuseriaccess{〈entry-label〉} glossaries-accsupp v4.45+

Expands to the value of the user1access field.

§5.2; 194\Glsentryuserii{〈entry-label〉} glossaries v2.04+

Partially robust command that displays the value of the user2 field with sentence case ap-

plied. As from glossaries v4.50, this command can expand in PDF bookmarks. Outside of PDF

bookmarks it will expand to a robust internal command.

584

Command Summary

§5.2; 194\glsentryuserii{〈entry-label〉} glossaries v2.04+

Simply expands to the value of the user2 field. Does nothing if the entry hasn’t been defined.

May be used in expandable contexts provided that the user2 field doesn’t contain any fragile

commands.

§17.4;

393
\glsentryuseriiaccess{〈entry-label〉} glossaries-accsupp v4.45+

Expands to the value of the user2access field.

§5.2; 194\Glsentryuseriii{〈entry-label〉} glossaries v2.04+

Partially robust command that displays the value of the user3 field with sentence case ap-

plied. As from glossaries v4.50, this command can expand in PDF bookmarks. Outside of PDF

bookmarks it will expand to a robust internal command.

§5.2; 194\glsentryuseriii{〈entry-label〉} glossaries v2.04+

Simply expands to the value of the user3 field. Does nothing if the entry hasn’t been defined.

May be used in expandable contexts provided that the user3 field doesn’t contain any fragile

commands.

§17.4;

393
\glsentryuseriiiaccess{〈entry-label〉} glossaries-accsupp v4.45+

Expands to the value of the user3access field.

§5.2; 194\Glsentryuseriv{〈entry-label〉} glossaries v2.04+

Partially robust command that displays the value of the user4 field with sentence case ap-

plied. As from glossaries v4.50, this command can expand in PDF bookmarks. Outside of PDF

bookmarks it will expand to a robust internal command.

§5.2; 194\glsentryuseriv{〈entry-label〉} glossaries v2.04+

Simply expands to the value of the user4 field. Does nothing if the entry hasn’t been defined.

585

Command Summary

May be used in expandable contexts provided that the user4 field doesn’t contain any fragile

commands.

§17.4;

394
\glsentryuserivaccess{〈entry-label〉} glossaries-accsupp v4.45+

Expands to the value of the user4access field.

§5.2; 194\Glsentryuserv{〈entry-label〉} glossaries v2.04+

Partially robust command that displays the value of the user5 field with sentence case ap-

plied. As from glossaries v4.50, this command can expand in PDF bookmarks. Outside of PDF

bookmarks it will expand to a robust internal command.

§5.2; 194\glsentryuserv{〈entry-label〉} glossaries v2.04+

Simply expands to the value of the user5 field. Does nothing if the entry hasn’t been defined.

May be used in expandable contexts provided that the user5 field doesn’t contain any fragile

commands.

§17.4;

394
\glsentryuservaccess{〈entry-label〉} glossaries-accsupp v4.45+

Expands to the value of the user5access field.

§5.2; 194\Glsentryuservi{〈entry-label〉} glossaries v2.04+

Partially robust command that displays the value of the user6 field with sentence case ap-

plied. As from glossaries v4.50, this command can expand in PDF bookmarks. Outside of PDF

bookmarks it will expand to a robust internal command.

§5.2; 194\glsentryuservi{〈entry-label〉} glossaries v2.04+

Simply expands to the value of the user6 field. Does nothing if the entry hasn’t been defined.

May be used in expandable contexts provided that the user6 field doesn’t contain any fragile

commands.

586

Command Summary

§17.4;

394
\glsentryuserviaccess{〈entry-label〉} glossaries-accsupp v4.45+

Expands to the value of the user6access field.

§4.4; 156\glsexpandfields glossaries v3.08a+

Expand values when assigning fields during entry definition (except for specific fields that are

overridden by \glssetnoexpandfield).

§17.2;

387
\gls〈field-label〉accsupp{〈replacement〉}{〈content〉}

If defined, used by \glsfieldaccsupp for the accessibility support for the internal field

label given by 〈field-label〉.

§17.2;

387
\glsfieldaccsupp{〈replacement〉}{〈content〉}{〈field-label〉}{〈entry-label〉}
glossaries-accsupp v4.45+

If glossaries-extra has been loaded, this command will first check for the existence of the com-
mand \glsxtr〈category〉〈field〉accsupp. If that command doesn’t exist or if glossaries

-extra hasn’t been loaded, it then checks for the existence of \gls〈field〉accsupp (for ex-

ample, \glsshortaccsupp). Failing that it will use \glsaccsupp. Whichever com-

mand is found first, 〈cs〉{〈replacement〉}{〈content〉} is performed.

§15.6;

375
\glsfielddef{〈entry-label〉}{〈field〉}{〈value〉} glossaries v4.16+

Locally assigns the 〈value〉 to the given field (identified by the internal field label 〈field〉) for the
entry identified by 〈entry-label〉. Produces an error (or warning withundefaction=warn)
if the entry or field doesn’t exist. Note that this doesn’t update any associated fields.

§15.6;

375
\glsfieldedef{〈entry-label〉}{〈field〉}{〈value〉} glossaries v4.16+

Locally assigns the full expansion of 〈value〉 to the given field (identified by the internal field label
〈field〉) for the entry identified by 〈entry-label〉. Produces an error (or warning with undef-
action=warn) if the entry or field doesn’t exist. Note that this doesn’t update any associated
fields.

587

Command Summary

§15.6;

374
\glsfieldfetch{〈entry-label〉}{〈field-label〉}{〈cs〉} glossaries v4.16+

Fetches the value of the given field for the given entry and stores it in the command 〈cs〉. Triggers
an error if the given field (identified by its internal field label) hasn’t been defined. Uses \gls-
doifexists.

\glsfieldgdef{〈entry-label〉}{〈field〉}{〈value〉} glossaries v4.16+

As \glsfielddef but does a global assignment.

§15.6;

375
\glsfieldxdef{〈entry-label〉}{〈field〉}{〈value〉} glossaries v4.16+

As \glsfieldedef but does a global assignment.

§13.1.7;

324
\glsfindwidesttoplevelname[〈glossary labels〉] glossary-tree v4.22+

Finds and sets the widest name for all top-level entries in the given glossaries. If the optional

argument is omitted, the list of all non-ignored glossaries is assumed.

\glsFindWidestUsedLevelTwo[〈glossary labels〉]
glossaries-extra-stylemods v1.05+

Finds and sets the widest name for all entries that have been marked as used with hierarchical

level less than or equal to 2 in the given glossaries.

\glsFindWidestUsedTopLevelName[〈glossary labels〉]
glossaries-extra-stylemods v1.05+

Finds and sets the widest name for all top-level entries that have been marked as used in the given

glossaries.

§5.1.3;

176
\GLSfirst[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As \glsfirst but converts the link text to all caps.

588

Command Summary

§5.1.3;

176
\Glsfirst[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As \glsfirst but converts link text to sentence case.

§5.1.3;

176
\glsfirst[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

References the entry identified by 〈entry-label〉. The text produced is obtained from the first
value. The 〈insert〉 argument will be inserted at the end of the link text. This command does

not alter or depend on the first use flag. If you have defined the entry with \newacronym
consider using \acrfull (or \glsxtrfull with glossaries-extra) for the full form or

\acrlong (or \glsxtrlong with glossaries-extra) for the long form instead.

\glsfirstabbrvscfont{〈text〉} glossaries-extra v1.17+

Short form font used by the small caps “sc” abbreviation styles on first use.

\glsfirstaccessdisplay{〈text〉}{〈entry-label〉} glossaries-accsupp

Does 〈text〉 with the firstaccess replacement text (if set).

\glsfirstlongfootnotefont{〈text〉} glossaries-extra v1.05+

Formatting command for the first use long form used by the footnote abbreviation styles.

§5.1.3;

177
\GLSfirstplural[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries

As \glsfirstplural but converts the link text to all caps.

§5.1.3;

177
\Glsfirstplural[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries

As \glsfirstplural but converts the link text to sentence case.

589

Command Summary

§5.1.3;

177
\glsfirstplural[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries

References the entry identified by 〈entry-label〉. The text produced is obtained from thefirst-
plural value. The 〈insert〉 argument will be inserted at the end of the link text. This command
does not alter or depend on the first use flag. If you have defined the entry with\newacronym
consider using \acrfullpl (or \glsxtrfullpl with glossaries-extra) for the full

form or \acrlongpl (or \glsxtrlongpl with glossaries-extra) for the long form

instead. For the first optional argument, see \glslink options.

§17.3;

390
\glsfirstpluralaccessdisplay{〈text〉}{〈entry-label〉}
glossaries-accsupp

Does 〈text〉 with the firstpluralaccess replacement text (if set).

\glsfmtfirst{〈entry-label〉}

For use within captions or section titles to display the formatted first.

\Glsfmtlong{〈entry-label〉} glossaries-extra

For use within captions or section titles to display the formatted sentence case long form.

\glsfmtname{〈entry-label〉}

For use within captions or section titles to display the formatted name.

\glsfmtshort{〈entry-label〉} glossaries-extra

For use within captions or section titles to display the formatted short form.

\glsfmttext{〈entry-label〉} glossaries-extra

For use within captions or section titles to display the formatted text.

590

Command Summary

§5.1.4;

184
\glsgenacfmt glossaries v4.02a+

The generic acronym display format used by the \gls-like commands.

§5.1.4;

184
\glsgenentryfmt glossaries v3.11a+

The generic display format used by the \gls-like commands.

§13.2.1;

335
\glsgetgrouptitle{〈group-label〉} glossaries

Robust command that determines the title associated with 〈group-label〉 and displays it.

§13.2.3;

338
\glsgroupheading{〈group-label〉} glossaries

(glossary style command)

Redefined by glossary styles to show, if applicable, the title associated with the letter group

identified by 〈group-label〉.

§13.2.3;

339
\glsgroupskip (glossary style command)

Redefined by glossary styles to produce a vertical gap between letter groups, if applicable.

§8.2; 252\glsglossarymark〈glossary title〉 glossaries v2.02+

Sets the header mark for the glossary.

\glshyperfirstfalse glossaries

Sets \ifglshyperfirst to false.

\glshyperfirsttrue glossaries

Sets \ifglshyperfirst to true.

591

Command Summary

§5.2; 191\glshyperlink[〈text〉]{〈entry-label〉} glossaries v1.17+

Creates a hyperlink to the given entry with the hyperlink text provided in the optional argument.

If omitted, the default is \glsentrytext{〈entry-label〉}.

§13.2.2;

336
\glshypernavsep glossary-hypernav

Used as a separator by \glsnavigation.

§12.1;

276
\glshypernumber{〈location(s)〉} glossaries

This will encapsulate each location with a hyperlink, if supported. This may be used as a

location encap. The argument may be a single location or locations delimited by \delimR
or \delimN. This command should not be used outside of location lists as it requires addi-

tional information in order to correctly form the hyperlinks.

� \glsifhyper

This was originally used in \glsgenentryfmt to test if the hyper option was set. Dep-

recated in v4.08 and removed in v4.50. Use \glsifhyperon instead.

§5.1.4;

183
\glsifhyperon{〈true〉}{〈false〉} glossaries v4.08+

Defined by the \gls-like commands to expand to 〈true〉 if the hyperlink setting is on for the

current reference. Otherwise it expands to 〈false〉.

§2.7; 123\glsIfListOfAcronyms{〈glossary-label〉}{〈true〉}{〈false〉} glossaries v2.04+

Does 〈true〉, if the 〈glossary-label〉 has been identified as a list of acronyms.

§15.5;

373
\glsifmeasuring{〈true〉}{〈false〉} glossaries v4.51+

Does 〈true〉 it it occurs inside a measuring content otherwise does 〈false〉.

592

Command Summary

§5.1.4;

182
\glsifplural{〈true〉}{〈false〉} glossaries v3.11a+

Defined by the \gls-like commands to expand to 〈true〉 if the calling command was a plural
form (for example, \glspl) and to 〈false〉 for the other commands.

\glsifusedtranslatordict{〈Lang〉}{〈true〉}{〈false〉} glossaries v4.12+

Does 〈true〉 iftranslate=true and theglossaries-dictionary-〈Lang〉.dict
file has been loaded, otherwise does 〈false〉.

§12.1;

273
\glsignore{〈text〉} glossaries v4.12+

Does nothing. When used as a location encap, this signifies to bib2gls that the entry is

required but the location shouldn’t be added to the location list. With other indexing methods,

this simply creates an invisible location.

§1.3; 9\glsindexingsetting glossaries v4.50+

Indicates what indexing option has been chosen.

§2.4; 102\glsindexonlyfirstfalse glossaries v3.02+

Sets \ifglsindexonlyfirst to false.

§2.4; 102\glsindexonlyfirsttrue glossaries v3.02+

Sets \ifglsindexonlyfirst to true.

§13.1.9;

330
\glsinlinedescformat{〈description〉}{〈symbol〉}{〈location list〉}
glossary-inline v3.03+

Formats the description, symbol and location list for top-level entries.

593

Command Summary

§13.1.9;

328
\glsinlinedopostchild glossary-inline v3.03+

Hook at the start of \glossentry that finishes off the previous child entry, if the current top

level (level 0) entry follows a child entry. This command is redefined within\glossentry to

use \glsinlinepostchild after a top level (level 0) entry if that entry has any children.

§13.1.9;

330
\glsinlineemptydescformat{〈symbol〉}{〈location list〉}
glossary-inline v3.03+

Used to format the symbol and location list when the description is suppressed.

§13.1.9;

329
\glsinlineifhaschildren{〈entry-label〉}{〈true〉}{〈false〉}
glossary-inline v4.50+

Used to test if the entry has any children.

§13.1.9;

329
\glsinlinenameformat{〈entry-label〉}{〈name〉} glossary-inline v3.03+

Creates the target for top level (level 0) entries and may be used to adjust the format of the name.

§13.1.9;

328
\glsinlineparentchildseparator initial: :\space
glossary-inline v3.03+

Separator used between a top level (level 0) parent and its first child entry.

§13.1.9;

330
\glsinlinepostchild glossary-inline v3.03+

Hook used between a top level (level 0) entry and its first sub-entry.

§13.1.9;

328
\glsinlineseparator initial: ;\space glossary-inline v3.03+

Separator used between top level (level 0) entries.

594

Command Summary

§13.1.9;

330
\glsinlinesubdescformat{〈description〉}{〈symbol〉}{〈location list〉}
glossary-inline v3.03+

Formats the description, symbol and location list for child entries.

§13.1.9;

330
\glsinlinesubnameformat{〈entry-label〉}{〈name〉} glossary-inline v3.03+

Creates the target for sub entries and may be used to adjust the format of the name.

§13.1.9;

328
\glsinlinesubseparator initial: ,\space glossary-inline v3.03+

Separator used between sub-entries.

§5.1.4;

182
\glsinsert glossaries v3.11a+

Placeholder command that expands to the 〈insert〉 final optional argument of the \gls-like
commands.

§6.2.2;

217
\glskeylisttok glossaries

A token register used by \newacronym (and \newabbreviation) to store the 〈key=
value list〉 supplied in the optional argument.

§5.1.4;

182
\glslabel glossaries v1.15+

Placeholder command that expands to the entry label.

§15.1;

360
\glslabelhypertarget{〈target〉}{〈text〉} glossaries v4.54+

May be used in the definition of \glsdohypertargethook to simulate a label corre-

sponding to the target where the label is given by\glslabelhypertargetprefix〈target〉.

§15.1;

361
\glslabelhypertargetdefs glossaries v4.54+

Hook used by \glslabelhypertarget to locally redefine problematic commands.

595

Command Summary

§15.1;

360
\glslabelhypertargetprefix initial: empty glossaries v4.54+

Expands to the prefix used for the label created by \glslabelhypertarget.

§15.1;

361
\glslabelhypertargetvalue glossaries v4.54+

Expands to the value part of the label created by \glslabelhypertarget.

§6.2.2;

217
\glslabeltok glossaries

A token register used by \newacronym (and \newabbreviation) to store the entry
label.

§15.6;

374
\glsletentryfield{〈cs〉}{〈entry-label〉}{〈field-label〉} glossaries v4.07+

Fetches the value of the given field (identified by its internal label 〈field-label〉) for the entry given
by 〈entry-label〉 and stores it in the command 〈cs〉.

§5.1.3;

175
\Glslink[〈options〉]{〈entry-label〉}{〈text〉} modifiers: * + glossaries v4.50+

As \glslink but converts 〈text〉 to sentence case.

§5.1.3;

175
\glslink[〈options〉]{〈entry-label〉}{〈text〉} modifiers: * +

References the entry identified by 〈entry-label〉 with the given 〈text〉 as the link text. This com-
mand does not alter or depend on the first use flag (use \glsdisp instead, if the first use flag

needs to be unset). This command is considered a \glstext-like command. For the first
optional argument, see \glslink options.

§2.1; 85\glslinkcheckfirsthyperhook glossaries v4.08+

Hook used when checking whether or not to switch off hyperlinks on first use.

596

Command Summary

§5.1.5;

186
\glslinkpostsetkeys glossaries v4.16+

Hook implemented after setting the options passed to the \gls-like and \glstext-like
commands.

\glslinkpresetkeys glossaries-extra v1.26+

Hook implemented before setting the options passed to the \gls-like and \glstext-like
commands.

§5.1.4;

183
\glslinkvar{〈unmodified〉}{〈star case〉}{〈plus case〉} glossaries v4.08+

Defined by the \gls-like commands test if the unmodified, starred (*) or plus (+) command
was used.

§13.1.1;

307
\glslistdottedwidth glossary-list

A length register used by listdotted.

§13.1.1;

305
\glslistexpandedname{〈entry-label〉} glossary-list v4.48+

Used by \glslistinit to provide better integration with gettitlestring.

§13.1.1;

305
\glslistgroupheaderfmt{〈title〉} glossary-list v4.22+

Used to encapsulate the group title.

§13.1.1;

304
\glslistinit glossary-list v4.48+

Used to disable problematic commands at the start the list styles to provide better integration

with gettitlestring.

§13.1.1;

305
\glslistnavigationitem{〈navigation items〉} glossary-list v4.22+

Used in styles like listhypergroup to display the navigation line.

597

Command Summary

§7; 234\glslocalreset{〈entry-label〉} glossaries

Locally resets the first use flag.

§7; 234\glslocalresetall[〈glossary labels list〉] glossaries

Locally resets the first use flag for all entries in whose labels are listed in the 〈glossary labels list〉
comma-separated list. If the optional argument is omitted, the list of all non-ignored glossaries

is assumed.

§7; 234\glslocalunset{〈entry-label〉} glossaries

Locally unsets the first use flag.

§7; 235\glslocalunsetall[〈glossary labels list〉] glossaries

Locally unsets the first use flag for all entries in whose labels are listed in the 〈glossary labels list〉
comma-separated list. If the optional argument is omitted, the list of all non-ignored glossaries

is assumed.

§12.5;

289
\glslocationcstoencap{〈encap-csname〉}{〈location-csname〉}
glossaries v4.50+

Used by makeglossaries when repairing problematic locations with makeindex.

§17.3;

391
\glslongaccessdisplay{〈text〉}{〈entry-label〉} glossaries-accsupp

Does 〈text〉 with the longaccess replacement text (if set).

\glslongfont{〈text〉} glossaries-extra

Font formatting command for the long form, initialised by the abbreviation style.

598

Command Summary

§17.3;

391
\glslongpluralaccessdisplay{〈text〉}{〈entry-label〉} glossaries-accsupp

Does 〈text〉 with the longpluralaccess replacement text (if set).

§6.2.2;

217
\glslongtok glossaries

A token register used by \newacronym (and \newabbreviation) to store the sup-

plied long form.

§15.2;

361
\glslowercase{〈text〉} glossaries v4.50+

Converts 〈text〉 to lowercase using the modern LATEX3 case-changing command, which is expand-
able.

§13.1.4;

314
\glsLTpenaltycheck glossary-longbooktabs v4.21+

Penalty check used by \glspatchLToutput.

\glsmakefirstuc{〈text〉} mfirstuc v1.05+

Used by \makefirstuc to perform the actual case-change. As from mfirstuc v2.08+ this

just uses \MFUsentencecase. Despite the “gls” prefix in the command name, this com-
mand is provided bymfirstuc, but dates back to whenmfirstucwas part of the glossaries package.

§13.1.8;

326
\glsmcols initial: 2 glossary-mcols v3.05+

Expands to the number of columns for the “mcol” styles.

§15.5;

373
\glsmeasuredepth{〈length〉}{〈text〉} glossaries v4.51+

Measures the depth of 〈text〉 using \settodepth but temporarily switches off indexing,

unset/reset and labelling.

599

Command Summary

§15.5;

372
\glsmeasureheight{〈length〉}{〈text〉} glossaries v4.51+

Measures the height of 〈text〉 using \settoheight but temporarily switches off indexing,

unset/reset and labelling.

§15.5;

373
\glsmeasurewidth{〈length〉}{〈text〉} glossaries v4.51+

Measures the width of 〈text〉 using \settowidth but temporarily switches off indexing,

unset/reset and labelling.

§15.2;

363
\glsmfuaddmap{〈cs1〉}{〈cs2〉} glossaries v4.50+ & glossaries-extra v1.49+

If mfirstuc v2.08+ is installed, this will use \MFUaddmap, otherwise it will use \glsmfu-
excl instead. See §15.2 for further details.

§15.2;

363
\glsmfublocker{〈cs〉} glossaries v4.50+ & glossaries-extra v1.49+

If mfirstuc v2.08+ is installed, this will use \MFUblocker, otherwise it will use \glsmfu-
excl instead. See §15.2 for further details.

§15.2;

363
\glsmfuexcl{〈cs〉} glossaries v4.50+ & glossaries-extra v1.49+

If mfirstuc v2.08+ is installed, this will use \MFUexcl, otherwise it will implement something
similar.

§4.7; 163\glsmoveentry{〈entry-label〉}{〈target glossary label〉} glossaries v3.02+

Moves the entry identified by 〈entry-label〉 to the glossary identified by 〈target glossary label〉.

§5.1.3;

177
\GLSname[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As \glsname but converts the link text to all caps.

600

Command Summary

§5.1.3;

177
\Glsname[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As\glsname but converts the link text to sentence case. Use\Glossentrynamewithin

custom glossary styles instead of this command.

§5.1.3;

177
\glsname[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

References the entry identified by 〈entry-label〉. The text produced is obtained from the name
value. The 〈insert〉 argument will be inserted at the end of the link text. This command does not
alter or depend on the first use flag. For the first optional argument, see \glslink options.

Use \glossentryname within custom glossary styles instead of this command.

§17.3;

390
\glsnameaccessdisplay{〈text〉}{〈entry-label〉} glossaries-accsupp

Does 〈text〉 with the access replacement text (if set).

§13; 299\glsnamefont{〈text〉} glossaries

Used by \glossentryname to apply a font change to the name.

§13.2.2;

336
\glsnavhypergroupdotarget{〈glossary-label〉}{〈group-label〉}{〈group-
title〉} glossary-hypernav v4.53+

Used by \glsnavhypertarget to create the hypertarget for the given group.

§13.2.2;

336
\glsnavhyperlink[〈glossary-label〉]{〈group-label〉}{〈group-title〉}
glossary-hypernav

Creates a hyperlink to the given group, where the target name is obtained from \glsnav-
hyperlinkname.

§13.2.2;

336
\glsnavhyperlinkname[〈glossary-label〉]{〈group-label〉}
glossary-hypernav v4.29+

Expands to the anchor for the given group.

601

Command Summary

§13.2.2;

335
\glsnavhypertarget[〈glossary-label〉]{〈group-label〉}{〈group-title〉}
glossary-hypernav

Used to create a hyper target for a group in order to support styles that have navigation links to

glossary groups. Note that if you only want to change the way that the target is created, redefine

\glsnavhypergroupdotarget instead.

§13.2.2;

336
\glsnavigation glossary-hypernav

Displays a simple glossary group navigation line with the items separated by \glshyper-
navsep.

§13.2.2;

336
\glsnavigationitem{〈group-label〉} glossary-hypernav v4.53+

Used by \glsnavigation to create the hyperlink for the given group (with the title corre-

sponding to the group label).

§8.2; 257\glsnextpages glossaries

Does nothing outside of\print〈…〉glossary. Within the glossary, this redefines\glossary-
entrynumbers to do its argument and then reset itself.

§4.4; 156\glsnoexpandfields glossaries v3.08a+

Don’t expand values when assigning fields during entry definition (except for specific fields that

are overridden by \glssetexpandfield).

§12.6;

297
\glsnoidxdisplayloc{〈prefix〉}{〈counter〉}{〈format〉}{〈location〉}
glossaries v4.04+

Used to display an individual locationwithin the number list when\printnoidxglossary
formats the number list.

§5.2; 196\glsnoidxdisplayloclisthandler{〈location〉} glossaries v4.04+

Handler macro used by \glsdisplaynumberlist with Option 1.

602

Command Summary

§12.6;

296
\glsnoidxloclist{〈list cs〉} glossaries v4.04+

(Options 1 and 4)

Displays the location list by iterating over the loclist field with the \glsnoidxloc-
listhandler handler.

§12.6;

296
\glsnoidxloclisthandler{〈location〉} glossaries v4.04+

(Option 1)

Handler macro used by \glsnoidxloclist.

§12.6;

298
\glsnoidxnumberlistloophandler{〈location item〉} glossaries v4.04+

List loop handler used by \glsnumberlistloop.

§8.2; 256\glsnoidxprenumberlist{〈entry-label〉} glossaries v4.50+

Used before the number list for Option 1. By default it expands to the value of the pre-
numberlist internal field, if set.

§8.2; 256\glsnonextpages glossaries

Does nothing outside of\print〈…〉glossary. Within the glossary, this redefines\glossary-
entrynumbers to ignore its argument and then reset itself.

§12.1;

275
\glsnumberformat{〈location(s)〉} glossaries

The default format for entry locations. If hyperlinks are defined, this will use \glshyper-
number otherwise it will simply display its argument, which may be a single location, or loca-

tions delimited by \delimR or \delimN.

§12.6;

296
\glsnumberlistloop{〈entry-label〉}{〈handler〉}{〈xr handler cs〉}
glossaries v4.04+

Iterates over the loclist internal field.

603

Command Summary

§1.5.1;

Table 1.2
\glsnumbersgroupname initial: Numbers glossaries

(language-sensitive)

Provided by glossaries if it hasn’t already been defined. The title associatedwith theglsnumbers
letter group. Also used as the title for the glossary created with the numbers package option.

§5.2; 195\glsnumlistlastsep initial: ␣\&␣ glossaries v3.02+

Separator used by \glsdisplaynumberlist between the last two locations.

§5.2; 195\glsnumlistsep initial: ,␣ glossaries v3.02+

Separator used by \glsdisplaynumberlist between all but the last two locations.

§14; 344\glsopenbrace

Expands to (a literal open brace).

§13.1;

301
\glspagelistwidth glossary-long & glossary-super

A length register used to set the width of the location list column for tabular-like styles.

§4; 136\glspar glossaries

Paragraph break (for instances where \par can’t be used directly).

\glspatchLToutput glossary-longbooktabs v4.21+

Applies a patch to longtable to check for instances of the group skip occurring at a page break.

§15.5;

373
\glspatchtabularx glossaries v4.28+

Patches tabularx (if it has been loaded) to prevent the first use flag from being unset while tabularx

is calculating the column widths.

604

Command Summary

§13.1.4;

314
\glspenaltygroupskip glossary-longbooktabs v4.21+

The definition of\glsgroupskipwithnogroupskip=false for the glossary-long-
booktabs styles.

§14; 344\glspercentchar glossaries v4.10+

Expands to (a literal percent character).

§5.1.2;

173
\GLSpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As \glspl but converts the link text to all caps.

§5.1.2;

173
\Glspl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As \glspl but converts the link text to sentence case.

§5.1.2;

173
\glspl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As \gls but uses the relevant plural form.

§5.1.3;

177
\GLSplural[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As \glsplural but converts the link text to all caps.

§5.1.3;

176
\Glsplural[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As \glsplural but converts the link text to sentence case.

§5.1.3;

176
\glsplural[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

References the entry identified by 〈entry-label〉. The text produced is obtained from theplural
value. The 〈insert〉 argument will be inserted at the end of the link text. This command does

605

Command Summary

not alter or depend on the first use flag. If you have defined the entry with \newacronym
consider using \acrshortpl (or \glsxtrshortpl with glossaries-extra) instead.

§17.3;

390
\glspluralaccessdisplay{〈text〉}{〈entry-label〉} glossaries-accsupp

Does 〈text〉 with the pluralaccess replacement text (if set).

§4.1; 145\glspluralsuffix initial: s glossaries

Suffix used to obtain default plurals.

§13.1;

303
\glspostdescription glossaries

A hook that is usually placed after the description in glossary styles. Some of the styles provided

with the glossaries package don’t use this hook. The glossaries-extra-stylemods redefines those

styles to include the hook. The default definition of this command tests for the nopostdot
option, but thepostpunc option redefines the command to implement the chosen punctuation.

§13.1.9;

329
\glspostinline glossary-inline v3.03+

Used at the end of the theglossary environment.

\glspostinlinedescformat{〈description〉}{〈symbol〉}{〈location list〉}
glossary-inline v3.03+

Formats the top-level entry’s description, symbol and location list.

\glspostinlinesubdescformat{〈description〉}{〈symbol〉}{〈location
list〉} glossary-inline v3.03+

Formats the child entry’s description, symbol and location list.

§5.1.5;

187
\glspostlinkhook glossaries v4.16

A post-link hook used after all the \gls-like and \glstext-like commands. This is rede-
fined by glossaries-extra to use \glsxtrpostlinkhook.

606

Command Summary

§16; 378\glsprefixsep initial: empty glossaries-prefix v4.45

Separator between the prefix and the term.

§2.5; 107\glsprestandardsort{〈sort cs〉}{〈type〉}{〈entry-label〉} glossaries v3.13a+

Hook usedwithsort=standard to adjust the default sort value (with\makeglossaries
or \makenoidxglossaries only).

\glsps{〈entry-label〉} glossaries-extra v1.07+

Shortcut for \glsxtrp{short}{〈entry-label〉}.

\glspt{〈entry-label〉} glossaries-extra v1.07+

Shortcut for \glsxtrp{text}{〈entry-label〉}.

§14; 345\glsquote{〈text〉} glossaries

Expands to "〈text〉", where the " is a literal character.

§2.3; 92\glsrefentry{〈label〉} glossaries v3.0+

For use with entrycounter and subentrycounter, this references the value of the
glossaryentry or glossarysubentry counter associated with the glossary entry identified by 〈la-
bel〉. If entrycounter=false and subentrycounter=false, this simply uses
\gls otherwise it uses \ref.

§7; 234\glsreset{〈entry-label〉} glossaries

Globally resets the first use flag.

607

Command Summary

§7; 234\glsresetall[〈glossary labels list〉] glossaries

Globally resets the first use flag for all entries in whose labels are listed in the 〈glossary labels list〉
comma-separated list. If the optional argument is omitted, the list of all non-ignored glossaries

is assumed.

§7.1; 239\glsresetcurrcountfalse glossaries v4.50+

Sets the \ifglsresetcurrcount conditional to \iffalse.

§7.1; 239\glsresetcurrcounttrue glossaries v4.50+

Sets the \ifglsresetcurrcount conditional to \iftrue.

§2.3; 93\glsresetentrycounter glossaries v3.02+

Resets glossaryentry back to zero if entrycounter=true.

§8.2; 256\glsresetentrylist glossaries

Resets \glossaryentrynumbers.

§2.3; 95\glsresetsubentrycounter glossaries v3.0+

Resets glossarysubentry back to zero if entrycounter=true.

§13.1.4;

314
\glsrestoreLToutput glossary-longbooktabs v4.21+

Reverses the effect of \glspatchLToutput.

§11; 266\glssee[〈tag〉]{〈entry-label〉}{〈xr-list〉} glossaries v1.17+

Indexes the entry identified by 〈entry-label〉 as a general cross-reference to the entries identified
in the comma-separated list 〈xr-list〉. The optional argument is the textual tag that’s inserted

before the cross-reference list and defaults to \seename.

608

Command Summary

§11.1;

269
\glsseeformat[〈tag〉]{〈xr-list〉}{〈location〉} glossaries v1.17+

Used to format thesee cross-reference in the location list. This requires a location argument for

makeindex even though it isn’t required. The default definition is \emph{〈tag〉} \gls-
seelist{〈xr-list〉}.

§11.1;

270
\glsseeitem{〈entry-label〉} glossaries v1.17+

Used by \glsseelist to format each entry item. This adds a hyperlink, if enabled, to the

appropriate entry line in the glossary with the text obtained with \glsseeitemformat.

§11.1;

270
\glsseeitemformat{〈entry-label〉} glossaries v3.0+

Used by \glsseeitem to produce the hyperlink text.

§11.1;

270
\glsseelastsep initial: ,␣ glossaries v1.17+

Used by \glsseelist as a separator between the final pair.

§11.1;

270
\glsseelist{〈label-list〉} glossaries v1.17+

Iterates over a comma-separated list of entry labels 〈label-list〉 and formats them. Each label

in the list is encapsulated with \glsseeitem. The separators are \glsseelastsep
(between the penultimate and last items) and \glsseesep (between all the other items).

§11.1;

270
\glsseesep initial: ,␣ glossaries v1.17+

Used by \glsseelist as a separator between each entry except the last pair.

§15.2;

362
\glssentencecase{〈text〉} glossaries v4.50+ & glossaries-extra v1.49+

Used by sentence case commands, such as \Gls, to perform the case change. This is simply

defined to use \makefirstuc.

609

Command Summary

§3.2; 133\glsSetAlphaCompositor{〈character〉} glossaries v1.17+

(xindy only)

Sets the compositor for locations that start with an uppercase alphabetical character.

\glssetcategoryattribute{〈category〉}{〈attribute〉}{〈value〉}
glossaries-extra

Locally sets the given attribute to 〈value〉 for the given category.

§3.2; 132\glsSetCompositor{〈character〉} glossaries v1.17+

Sets the location compositor for the indexing style file created by \makeglossaries.

§4.4; 156\glssetexpandfield{〈field〉} glossaries v3.13a+

Indicates that the given field should always have its value expanded when the entry is defined.

This overrides \glsnoexpandfields.

§4.4; 156\glssetnoexpandfield{〈field〉} glossaries v3.13a+

Indicates that the given field should always have its value expanded when the entry is defined.

This overrides \glsexpandfields.

§1.5; 52\GlsSetQuote{〈character〉} glossaries v4.24+

(makeindex only)

Set makeindex’s quote character (used for escaping special characters) to 〈character〉.

§12.2;

279
\glsSetSuffixF{〈suffix〉} glossaries v1.17+

The suffix for two consecutive locations.

610

Command Summary

§12.2;

279
\glsSetSuffixFF{〈suffix〉} glossaries v1.17+

The suffix for three or more consecutive locations.

§8.2; 254\glssettoctitle{〈glossary-type〉} glossaries

Used by \print〈…〉glossary to set the table of contents title for the given glossary if a

title hasn’t been supplied with toctitle or title.

§13.1.7;

324
\glssetwidest[〈level〉]{〈name〉} glossary-tree

Indicates that 〈name〉 is the widest name for the given hierarchical level.

§3.2; 131\GlsSetWriteIstHook{〈code〉} glossaries v4.24+

Adds 〈code〉 to the indexing style file.

§14.2;

347
\GlsSetXdyCodePage{〈codepage〉} glossaries v1.17+

(xindy & makeglossaries only)

Sets the xindy codepage. This information is written to the aux file for makeglos-
saries to pick up. It has no effect if xindy is called explicitly.

§14.4;

357
\GlsSetXdyFirstLetterAfterDigits{〈letter〉} modifier: *
glossaries v1.17+

(xindy only)

Identifies the first letter group to occur after the number group.

§14.2;

346
\GlsSetXdyLanguage[〈glossary-type〉]{〈language〉} glossaries v1.17+

(xindy & makeglossaries only)

Sets the xindy language for the given glossary. This information is written to the aux file for

makeglossaries to pick up. It has no effect if xindy is called explicitly.

611

Command Summary

§14.3;

356
\GlsSetXdyLocationClassOrder{〈location names〉} glossaries v1.17+

(xindy only)

May be used to change the ordering of location class names.

§14.3;

356
\GlsSetXdyMinRangeLength{〈value〉} glossaries v1.17+

(xindy only)

Sets the minimum number of consecutive locations to form an implicit range. The value may be

“none” to indicate no range formation.

§14.4;

358
\GlsSetXdyNumberGroupOrder{〈relative location〉} modifier: *
glossaries v4.33+

(xindy only)

Sets the relative location of the number group.

§14.1;

345
\GlsSetXdyStyles{〈style name list〉} glossaries v1.17+

(xindy only)

Resets the list of required xindy files.

§17.3;

390
\glsshortaccessdisplay{〈text〉}{〈entry-label〉} glossaries-accsupp

Does 〈text〉 with the shortaccess replacement text (if set).

§17.2;

388
\glsshortaccsupp{〈replacement〉}{〈content〉} glossaries-accsupp v4.45+

Applies 〈replacement〉 as the expansion (E) attribute for 〈content〉 using \glsaccessibil-
ity for the short field.

§17.2;

388
\glsshortplaccsupp{〈replacement〉}{〈content〉} glossaries-accsupp v4.45+

Applies 〈replacement〉 as the expansion (E) attribute for 〈content〉 using \glsaccessibil-
ity for the shortplural field.

612

Command Summary

§17.3;

391
\glsshortpluralaccessdisplay{〈text〉}{〈entry-label〉}
glossaries-accsupp

Does 〈text〉 with the shortpluralaccess replacement text (if set).

§6.2.2;

217
\glsshorttok glossaries

A token register used by \newacronym (and \newabbreviation) to store the sup-

plied short form.

§2.1; 81\glsshowaccsupp{〈options〉}{〈PDF element〉}{〈value〉} glossaries v4.45+

Used by \glsshowtarget in outer mode.

§2.1; 80\glsshowtarget{〈target name〉} glossaries v4.32+

Used with debug=showtargets to show the target.

§2.1; 81\glsshowtargetfont initial: \ttfamily\footnotesize
glossaries v4.45+

Used by \glsshowtargetfonttext and \glsshowtargetouter to set the

font.

§2.1; 81\glsshowtargetfonttext{〈text〉} glossaries v4.50+

Used by \glsshowtargetinner to set the font.

§2.1; 80\glsshowtargetinner{〈target name〉} glossaries v4.50+

Used by \glsshowtarget in math mode and inner mode.

§2.1; 81\glsshowtargetouter{〈target name〉} glossaries v4.45+

Used by \glsshowtarget in outer mode.

613

Command Summary

§2.1; 81\glsshowtargetsymbol{〈target name〉} glossaries v4.45+

Used by \glsshowtargetouter to mark the target.

§2.5; 107\glssortnumberfmt{〈number〉} glossaries v3.0+

Expands to the given 〈number〉 zero-padded to six digits.

\glsstartrange[〈options〉]{〈entry label list〉} glossaries-extra v1.50+

Essentially does\glsaddeach[〈options〉,format=(〈encap〉]{〈entry label list〉}where

〈encap〉 can either be provided by the format key in 〈options〉.

§2.3; 93\glsstepentry{〈label〉} glossaries v3.0+

Increments glossaryentry with \refstepcounter if entrycounter=true.

§2.3; 95\glsstepsubentry{〈label〉} glossaries v3.0+

Increments glossarysubentrywith\refstepcounter ifsubentrycounter=true.

§2.3; 96\glssubentrycounterfalse glossaries v3.0+

Sets \ifglssubentrycounter to false.

§2.3; 95\glssubentrycounterlabel glossaries v3.0+

Displays the formatted value of the glossarysubentry counter or does nothing if subentry-
counter=false.

§2.3; 96\glssubentrycountertrue glossaries v3.0+

Sets \ifglssubentrycounter to true.

614

Command Summary

§13.2.1;

332
\glssubentryitem{〈label〉} glossaries v3.0+

Used for level 1 entries in glossary styles to increment and display the sub-entry counter if sub-
entrycounter=true.

\glssubgroupheading{〈previous
level〉}{〈level〉}{〈parent-label〉}{〈group-label〉} glossaries-extra v1.49+

(glossary style command)

Used to format sub-group headings.

§5.1.3;

178
\GLSsymbol[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As \glssymbol but converts the link text to all caps.

§5.1.3;

178
\Glssymbol[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As\glssymbol but converts the link text to sentence case. Use\Glossentrysymbol
within custom glossary styles instead of this command.

§5.1.3;

178
\glssymbol[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

References the entry identified by 〈entry-label〉. The text produced is obtained from thesymbol
value. The 〈insert〉 argument will be inserted at the end of the link text. This command does not
alter or depend on the first use flag. For the first optional argument, see \glslink options.

Use \glossentrysymbol within custom glossary styles instead of this command.

§17.3;

390
\glssymbolaccessdisplay{〈text〉}{〈entry-label〉} glossaries-accsupp

Does 〈text〉 with the symbolaccess replacement text (if set).

§13.2.2;

337
\glssymbolnav glossary-hypernav

Produces a simple navigation set of links for just the symbols and number groups separated by

\glshypernavsep.

615

Command Summary

\GLSsymbolplural[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries v1.12+

As \glssymbolplural but converts the link text to all caps.

\Glssymbolplural[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries v1.12+

As \glssymbolplural but converts the link text to sentence case.

\glssymbolplural[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries v1.12+

As \glssymbol but for the symbolplural field.

§17.3;

390
\glssymbolpluralaccessdisplay{〈text〉}{〈entry-label〉}
glossaries-accsupp

Does 〈text〉 with the symbolpluralaccess replacement text (if set).

§1.5.1;

Table 1.2
\glssymbolsgroupname initial: Symbols glossaries

(language-sensitive)

Provided by glossaries if it hasn’t already been defined. The title associatedwith theglssymbols
letter group. Also used as the title for the glossary created with the symbols package option.

§13.2.1;

333
\glstarget{〈entry-label〉}{〈text〉} glossaries v1.18+

Used by glossary styles to create a hypertarget (if enabled) for the entry (identified by 〈entry-
label〉). The 〈text〉 is usually \glossentryname{〈entry-label〉}, but it can be something
else.

§15.1;

361
\glstexorpdfstring{〈TEX〉}{〈PDF〉} glossaries v4.50+

If hyperref has been loaded, this uses \texorpdfstring otherwise it just expands to

〈TEX〉.

616

Command Summary

§5.1.3;

176
\GLStext[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As \glstext but converts the link text to all caps.

§5.1.3;

175
\Glstext[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

As \glstext but converts the first character of the link text to sentence case.

§5.1.3;

175
\glstext[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * + glossaries

References the entry identified by 〈entry-label〉. The text produced is obtained from the text
value. The 〈insert〉 argument will be inserted at the end of the link text. This command does

not alter or depend on the first use flag. If you have defined the entry with \newacronym
consider using\acrshort for the short form (or\glsxtrshortwith glossaries-extra).
For the first optional argument, see \glslink options.

§17.3;

390
\glstextaccessdisplay{〈text〉}{〈entry-label〉} glossaries-accsupp

Does 〈text〉 with the textaccess replacement text (if set).

§5.1; 168\glstextformat{〈text〉} glossaries v1.04+

Used by the \gls-like and \glstext-like commands to format the link text.

§6.2.1;

211
\glstextup{〈text〉} glossaries v3.09a+

If\textulc is defined, this will use that command, otherwise it will use\textup to cancel

the effect of the small caps font command \textsc.

§14; 344\glstildechar glossaries v4.10+

Expands to ~ (a literal tilde character).

617

Command Summary

§2.2; 88\glstocfalse glossaries

Sets \ifglstoc to false.

§2.2; 87\glstoctrue glossaries

Sets \ifglstoc to true.

§13.1.7;

321
\glstreechildpredesc glossary-tree v4.26+

Space inserted before child descriptions.

§13.1.7;

321
\glstreegroupheaderfmt{〈text〉} glossary-tree v4.22+

Used to format the group title for the treegroup and indexgroup styles.

§13.1.7;

323
\glstreeindent initial: 10pt glossary-tree

Length register used by the tree style.

§13.1.7;

322
\glstreeitem glossary-tree v4.26+

Used to indent the top-level entries for the index styles.

§13.1.7;

325
\glstreenamebox{〈width〉}{〈text〉} glossary-tree v4.19+

Creates the box for the name with styles like alttree.

§13.1.7;

321
\glstreenamefmt{〈text〉} glossary-tree v4.08+

Used to format the name for the tree and index styles.

618

Command Summary

§13.1.7;

321
\glstreenavigationfmt{〈text〉} glossary-tree v4.22+

Used to format the navigation element for styles like treehypergroup.

§13.1.7;

321
\glstreepredesc glossary-tree v4.26+

Space inserted before top-level descriptions.

§13.1.7;

322
\glstreesubitem glossary-tree v4.26+

Used to indent the level 1 entries for the index styles.

§13.1.7;

322
\glstreesubsubitem glossary-tree v4.26+

Used to indent the level 2 entries for the index styles.

§5.1.4;

182
\glstype glossaries v4.08+

Placeholder command that expands to the entry’s glossary type.

\glsucmarkfalse glossaries v3.02+

Sets \ifglsucmark to false.

\glsucmarktrue glossaries v3.02+

Sets \ifglsucmark to true.

§15.6;

374
\glsunexpandedfieldvalue{〈entry-label〉}{〈field-label〉} glossaries v4.48+

For use in expandable contexts where the field value is required but the contents should not be

expanded. The field should be identified by its internal field label. Expands to nothing with no

error or warning if the entry or field aren’t defined.

619

Command Summary

§7; 234\glsunset{〈entry-label〉} glossaries

Globally unsets the first use flag.

§7; 234\glsunsetall[〈glossary labels list〉] glossaries

Globally unsets the first use flag for all entries in whose labels are listed in the 〈glossary labels list〉
comma-separated list. If the optional argument is omitted, the list of all non-ignored glossaries

is assumed.

§6.2.1;

210
\glsupacrpluralsuffix glossaries v4.12+

Suffix used to obtain the defaultshortplural value with the base small caps acronym styles.

§15.2;

361
\glsuppercase{〈text〉} glossaries v4.50+

Converts 〈text〉 to uppercase using the modern LATEX3 case-changing command, which is ex-

pandable.

§6.2.2;

217
\GlsUseAcrEntryDispStyle{〈style-name〉} glossaries v4.02+

Implements the entry format part of the given acronym style (the code supplied in the 〈format
def〉 argument of \newacronymstyle).

§6.2.2;

218
\GlsUseAcrStyleDefs{〈style-name〉} glossaries v4.02+

Implements the style definitions part of the given acronym style (the code supplied in the 〈display
defs〉 argument of \newacronymstyle).

§5.1.3;

179
\GLSuseri[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries v2.04+

As \glsuseri but converts the link text to all caps.

620

Command Summary

§5.1.3;

179
\Glsuseri[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries v2.04+

As \glsuseri but converts the link text to sentence case.

§5.1.3;

179
\glsuseri[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries v2.04+

References the entry identified by 〈entry-label〉. The text produced is obtained from the user1
value. The 〈insert〉 argument will be inserted at the end of the link text. This command does not
alter or depend on the first use flag. For the first optional argument, see \glslink options.

§17.3;

391
\glsuseriaccessdisplay{〈text〉}{〈entry-label〉} glossaries-accsupp v4.45+

Does 〈text〉 with the user1access replacement text (if set).

§5.1.3;

179
\GLSuserii[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries v2.04+

As \glsuserii but converts the link text to all caps.

§5.1.3;

179
\Glsuserii[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries v2.04+

As \glsuserii but converts the link text to sentence case.

§5.1.3;

179
\glsuserii[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries v2.04+

References the entry identified by 〈entry-label〉. The text produced is obtained from the user2
value. The 〈insert〉 argument will be inserted at the end of the link text. This command does not
alter or depend on the first use flag. For the first optional argument, see \glslink options.

§17.3;

391
\glsuseriiaccessdisplay{〈text〉}{〈entry-label〉} glossaries-accsupp v4.45+

Does 〈text〉 with the user2access replacement text (if set).

621

Command Summary

§5.1.3;

179
\GLSuseriii[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries v2.04+

As \glsuseriii but converts the link text to all caps.

§5.1.3;

179
\Glsuseriii[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries v2.04+

As \glsuseriii but converts the link text to sentence case.

§5.1.3;

179
\glsuseriii[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries v2.04+

References the entry identified by 〈entry-label〉. The text produced is obtained from the user3
value. The 〈insert〉 argument will be inserted at the end of the link text. This command does not
alter or depend on the first use flag. For the first optional argument, see \glslink options.

§17.3;

391
\glsuseriiiaccessdisplay{〈text〉}{〈entry-label〉}glossaries-accsupp v4.45+

Does 〈text〉 with the user3access replacement text (if set).

§5.1.3;

180
\GLSuseriv[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries v2.04+

As \glsuseriv but converts the link text to all caps.

§5.1.3;

180
\Glsuseriv[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries v2.04+

As \glsuseriv but converts the link text to sentence case.

§5.1.3;

180
\glsuseriv[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries v2.04+

References the entry identified by 〈entry-label〉. The text produced is obtained from the user4

622

Command Summary

value. The 〈insert〉 argument will be inserted at the end of the link text. This command does not
alter or depend on the first use flag. For the first optional argument, see \glslink options.

§17.3;

391
\glsuserivaccessdisplay{〈text〉}{〈entry-label〉} glossaries-accsupp v4.45+

Does 〈text〉 with the user4access replacement text (if set).

§5.1.3;

180
\GLSuserv[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries v2.04+

As \glsuserv but converts the link text to all caps.

§5.1.3;

180
\Glsuserv[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries v2.04+

As \glsuserv but converts the link text to sentence case.

§5.1.3;

180
\glsuserv[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries v2.04+

References the entry identified by 〈entry-label〉. The text produced is obtained from the user5
value. The 〈insert〉 argument will be inserted at the end of the link text. This command does not
alter or depend on the first use flag. For the first optional argument, see \glslink options.

§17.3;

391
\glsuservaccessdisplay{〈text〉}{〈entry-label〉} glossaries-accsupp v4.45+

Does 〈text〉 with the user5access replacement text (if set).

§5.1.3;

180
\GLSuservi[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries v2.04+

As \glsuservi but converts the link text to all caps.

§5.1.3;

180
\Glsuservi[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries v2.04+

As \glsuservi but converts the link text to sentence case.

623

Command Summary

§5.1.3;

180
\glsuservi[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries v2.04+

References the entry identified by 〈entry-label〉. The text produced is obtained from the user6
value. The 〈insert〉 argument will be inserted at the end of the link text. This command does not
alter or depend on the first use flag. For the first optional argument, see \glslink options.

§17.3;

391
\glsuserviaccessdisplay{〈text〉}{〈entry-label〉} glossaries-accsupp v4.45+

Does 〈text〉 with the user6access replacement text (if set).

§2.4; 101\glswrallowprimitivemodsfalse

Sets \ifglswrallowprimitivemods to false.

§2.4; 101\glswrallowprimitivemodstrue

Sets \ifglswrallowprimitivemods to true.

§12.1;

277
\glswrglossdisableanchorcmds glossaries v4.50+

Hook used to locally disable problematic commands whilst constructing the anchor for \gls-
hypernumber.

§12.3;

282
\glswrglossdisablelocationcmds glossaries v4.50+

Hook used to locally disable problematic commands whilst writing the location to the indexing

file with Options 2 and 3.

§12.1;

277
\glswrglosslocationtarget{〈location〉} glossaries v4.50+

Must be expandable. May be used to alter the location suffix whilst constructing the anchor for

\glshypernumber.

624

Command Summary

§12.1;

276
\glswrglosslocationtextfmt{〈location〉} glossaries v4.50+

Used to encapsulate the location in the hyperlink text for \glshypernumber.

§3.2; 131\glswrite

The write register used to create the indexing style file.

\glswritedefhook glossaries v3.10a

Hook used when writing entries to theglsdefs file after all the 〈key〉=〈value〉 information has
beenwritten and before the end brace that closes the final argument of\glsdefs@newdocentry.

§2.4; 102\glswriteentry{〈label〉}{〈indexing code〉} glossaries v4.16+

Does 〈indexing code〉 unless indexonlyfirst=true and the entry identified by 〈label〉
has been marked as used.

§14.3;

348
\glsX〈counter〉X〈format〉{〈H-prefix〉}{〈location〉} (xindy only)

Used with xindy for location formats.

Glsxtr

§1.7.1; 76\glsxtr@makeglossaries{〈label-list〉} glossaries-extra v1.09+

This command is written to the aux file for the benefit of makeglossaries and make-
glossaries-lite.

§1.7.3; 77\glsxtr@record{〈label〉}{〈h-prefix〉}{〈counter〉}{〈format〉}{〈loc〉}
glossaries-extra v1.08+

This command is written to the aux file to provide the indexing information for bib2gls.

625

Command Summary

§1.7.3; 78\glsxtr@record@nameref{〈label〉}{〈href
prefix〉}{〈counter〉}{〈format〉}{〈location〉}{〈title〉}{〈href anchor〉}{〈href value〉}
glossaries-extra v1.37+

This command is written to the aux file to provide the indexing information for bib2gls
when the record=nameref option is used.

§1.7.3; 78\glsxtr@recordsee{〈label〉}{〈xr list〉} glossaries-extra v1.14+

This command is written to the aux file to provide the \glssee information for bib2gls.

§1.7.3; 77\glsxtr@resource{〈options〉}{〈basename〉} glossaries-extra v1.08+

This command is written to the aux file to provide the resource options for bib2gls.

\glsxtr@texencoding{〈encoding〉} glossaries-extra v1.11+

This command is written to theaux file to provide the file encoding information forbib2gls.

\glsxtrabbrvfootnote{〈entry-label〉}{〈text〉} glossaries-extra v1.07+

Command that produces the footnote for the footnote abbreviation styles, such as footnote and

postfootnote.

\glsxtrabbrvtype initial: \glsdefaulttype glossaries-extra

Expands to the label of the default abbreviation glossary. The abbreviations package

option will redefine this to abbreviations.

\glsxtrbookindexname{〈entry-label〉} glossary-bookindex v1.21+

Used by the bookindex style to display a top-level entry’s name.

626

Command Summary

\glsxtr〈category〉accsupp{〈replacement〉}{〈content〉}

If defined, used by \glsfieldaccsupp for the accessibility support for the category iden-

tified by 〈category〉.

\glsxtr〈category〉〈field〉accsupp{〈replacement〉}{〈content〉}

If defined, used by \glsfieldaccsupp for the accessibility support for the category iden-

tified by 〈category〉 and the internal field label given by 〈field〉.

\glsxtrcopytoglossary{〈entry-label〉}{〈glossary-type〉} modifier: *
glossaries-extra v1.12+

Copies the entry to the internal glossary list for the given glossary. The starred version performs

a global change. The unstarred version can be localised. Only for use with the “unsrt” family of

commands.

\glsxtr〈counter〉locfmt{〈location〉}{〈title〉}

If defined, used with record=name to format locations associated with 〈counter〉.

\glsxtrdopostpunc{〈code〉}〈token〉 glossaries-extra v1.49+

If 〈token〉 is a recognised punctuation character this does the punctuation character and then

〈code〉, otherwise if does 〈code〉 followed by 〈token〉.

\glsxtrfieldforlistloop{〈entry-label〉}{〈field〉}{〈handler-cs〉}
glossaries-extra v1.12+

Iterates over the given field’s value using etoolbox’s \forlistcsloop.

\glsxtrfieldformatlist{〈entry-label〉}{〈field-label〉}
glossaries-extra v1.42+

Formats the value of the given field, which should be an etoolbox internal list, using the same list

handler macro as datatool’s \DTLformatlist.

627

Command Summary

\glsxtrfmt[〈options〉]{〈entry-label〉}{〈text〉} glossaries-extra v1.12+

Behaves like\glslink[〈options〉]{〈entry-label〉}{\〈csname〉{〈text〉}〈insert〉}where the

control sequence name 〈csname〉 is obtained from a designated field.

\GlsXtrFmtField initial: useri glossaries-extra v1.12+

Expands to the name of the used by \glsxtrfmt.

\glsxtrfootnotedescname glossaries-extra v1.42+

Expands to the name value for styles like short-footnote-desc.

\glsxtrfootnotedescsort glossaries-extra v1.42+

Expands to the sort value for footnote styles like short-footnote-desc.

\glsxtrforcsvfield{〈entry-label〉}{〈field-label〉}{〈handler cs〉}
modifier: * glossaries-extra v1.24+

Iterates over the comma-separated list stored in the given field (identified by its internal label)

for the entry identified by 〈entry-label〉 and performs 〈handler cs〉{〈element〉} for each element

of the list.

\GLSxtrfull[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries-extra

As \glsxtrfull but converts the link text to all caps.

\Glsxtrfull[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries-extra

As \glsxtrfull but converts the link text to sentence case.

628

Command Summary

\glsxtrfull[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries-extra

References the abbreviation identified by 〈entry-label〉. The text produced is obtained from the

short and long values, formatted according to the abbreviation style associated with the

entry’s category. The 〈insert〉 argument will be inserted at the end of the link text. This com-

mand does not alter or depend on the first use flag. The format produced by this command

may not match the format produced by the first use of \gls{〈entry-label〉}, depending on the
abbreviation style.

\GLSxtrfullpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries-extra

As \glsxtrfullpl but converts the link text to all caps.

\Glsxtrfullpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries-extra

As \glsxtrfullpl but converts the link text to sentence case.

\glsxtrfullpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries-extra

As \glsxtrfull but for the plural form.

\glsxtrfullsep{〈entry-label〉} glossaries-extra

Separator used by the parenthetical inline full and also for some display full forms.

\glsxtrGeneralInitRules glossaries-extra-bib2gls v1.49+

A shortcut that expands to the ignorable rules, combining diacritic rules, hyphen rules, general

punctuation rules, digit rules, and fraction rules.

629

Command Summary

\glsxtrGeneralLatinAtoGrules glossaries-extra-bib2gls v1.49+

Expands to the A–G subset of General Latin I sort rules.

\glsxtrGeneralLatinNtoZrules glossaries-extra-bib2gls v1.49+

Expands to the N–Z subset of General Latin I sort rules.

\glsxtrgetgrouptitle{〈group-label〉}{〈cs〉} glossaries-extra v1.14+

Obtains the title corresponding to the group identified by 〈group-label〉 and stores the result in

the control sequence 〈cs〉.

\Glsxtrglossentry{〈entry-label〉} glossaries-extra v1.54+

As \glsxtrglossentry but applies sentence case.

\glsxtrglossentry{〈entry-label〉} glossaries-extra v1.21+

Used for standalone entries to display the name with \glossentryname, with appropriate
hooks.

\glsxtrhiername{〈entry-label〉} glossaries-extra v1.37+

Displays the entry’s hierarchical name.

\GlsXtrIfFieldEqNum{〈field-label〉}{〈entry-label〉}{〈number〉}{〈true〉}
{〈false〉} modifier: * glossaries-extra v1.31+

Compares the numeric value stored in the given field with 〈number〉.

\GlsXtrIfFieldEqStr{〈field-label〉}{〈entry-label〉}{〈value〉}{〈true〉}
{〈false〉} modifier: * glossaries-extra v1.21+

Tests if the entry given by 〈entry-label〉 has the field identified by its internal label 〈field-label〉

630

Command Summary

set to 〈value〉.

\GlsXtrIfFieldNonZero{〈field-label〉}{〈entry-label〉}{〈true〉}{〈false〉}
modifier: * glossaries-extra v1.31+

Tests if the numeric value stored in the given field is non-zero.

\GlsXtrIfFieldUndef{〈field-label〉}{〈entry-label〉}{〈true〉}{〈false〉}
glossaries-extra v1.23+

Expandable command that tests if the given field (identified by its internal label) is undefined for

the entry given by 〈entry-label〉. Internally uses etoolbox’s \ifcsundef command.

\glsxtrifhasfield{〈field-label〉}{〈entry-label〉}{〈true〉}{〈false〉}
modifier: * glossaries-extra v1.19+

Tests if the field identified by its internal label 〈field-label〉 for the entry given by 〈entry-label〉
is defined and is not empty. This is like \ifglshasfield but doesn’t produce a warning

if the entry or field doesn’t exist. This sets \glscurrentfieldvalue to the field value

and does 〈true〉 if its defined and not empty, otherwise it does 〈false〉. The unstarred version

adds implicit grouping to make nesting easier. The starred version doesn’t (to make assignments

easier).

\GlsXtrIfHasNonZeroChildCount{〈entry-label〉}{〈true〉}{〈false〉}
modifier: * glossaries-extra-bib2gls v1.47+

Tests if the value in the childcount field is non-zero (using \GlsXtrIfFieldNon-
Zero). This requires the save-child-count resource option.

§15.4;

367
\GlsXtrIfUnusedOrUndefined{〈entry-label〉}{〈true〉}{〈false〉}
glossaries-extra v1.34+

Does 〈true〉 if the entry hasn’t been defined or hasn’t been marked as used, otherwise does 〈true〉.
Note that this command will generate an error or warning (according to undefaction) if
the entry hasn’t been defined, but will still do 〈true〉.

631

Command Summary

\glsxtrifwasfirstuse{〈true〉}{〈false〉} glossaries-extra

Initialised by the \gls-like and \glstext-like commands, this expands to 〈true〉 if the
calling command was considered the first use, otherwise it expands to 〈false〉. This command
may be used within the post-link hook (where it’s too late to test the first use flag with \ifgls-
used).

\GlsXtrIfXpFieldEqXpStr{〈field-label〉}{〈entry-label〉}{〈value〉}
{〈true〉}{〈false〉} modifier: * glossaries-extra v1.31+

Like \GlsXtrIfFieldEqStr but first (protected) expands both the field value and the

supplied 〈value〉.

\glsxtrIgnorableRules glossaries-extra-bib2gls v1.49+

A shortcut that expands to the control rules, space rules and non-printable rules.

\Glsxtrinlinefullformat{〈entry-label〉}{〈insert〉}

Used by \Glsxtrfull to display the sentence case inline full form (defined by the abbrevi-

ation style).

\glsxtrinlinefullformat{〈entry-label〉}{〈insert〉} glossaries-extra

Used by \glsxtrfull to display the inline full form (defined by the abbreviation style).

\Glsxtrinlinefullplformat{〈entry-label〉}{〈insert〉} glossaries-extra

Used by \Glsxtrfullpl to display the plural sentence case inline full form (defined by the

abbreviation style).

\glsxtrinlinefullplformat{〈entry-label〉}{〈insert〉} glossaries-extra

Used by \glsxtrfullpl to display the plural inline full form (defined by the abbreviation

style).

632

Command Summary

\GlsXtrLoadResources[〈options〉] glossaries-extra v1.11+

For use with bib2gls, this both sets up the resource options (which bib2gls can detect

from the aux file) and inputs the glstex file created by bib2gls.

\glsxtrlocalsetgrouptitle{〈group-label〉}{〈group-title〉}
glossaries-extra v1.24+

Locally assigns the given title 〈group-title〉 to the group identified by 〈group-label〉.

\GLSxtrlong[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries-extra

As \glsxtrlong but converts the link text to all caps.

\Glsxtrlong[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries-extra

As \glsxtrlong but converts the link text to sentence case.

\glsxtrlong[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries-extra

References the abbreviation identified by 〈entry-label〉. The text produced is obtained from the

long value, formatted according to the abbreviation style associated with the entry’s category.

The 〈insert〉 argument will be inserted at the end of the link text. This command does not alter
or depend on the first use flag.

\GLSxtrlongpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries-extra

As \glsxtrlongpl but converts the link text to all caps.

633

Command Summary

\Glsxtrlongpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries-extra

As \glsxtrlongpl but converts the link text to sentence case.

\glsxtrlongpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries-extra

As \glsxtrlong but the text produced is obtained from the longplural value.

\glsxtrnewgls[〈default-options〉]{〈prefix〉}{〈cs〉} glossaries-extra v1.21+

Defines the command 〈cs〉[〈options〉]{〈entry-label〉} to behave like\gls[〈default-options〉,〈options〉]
{〈prefix〉〈entry-label〉}.

\glsxtrnewglslike[〈default-options〉]{〈prefix〉}{〈\gls-like
cs〉}{〈\glspl-like cs〉}{〈\Gls-like cs〉}{〈\Glspl-like cs〉}glossaries-extra v1.21+

Like \glsxtrnewgls but provides plural and sentence case commands as well.

\glsxtrnewnumber[〈key=value list〉]{〈entry-label〉}{〈num〉} glossaries-extra

(requires \usepackage[numbers]{glossaries-extra})

Defines a new glossary entry with the given label, type set to numbers, the category set

to number, the name set to 〈num〉 and the sort set to 〈entry-label〉. The optional argument
is a comma-separated list of glossary entry keys, which can be used to override the defaults.

\glsxtrnewsymbol[〈key=value list〉]{〈entry-label〉}{〈sym〉} glossaries-extra

(requires \usepackage[symbols]{glossaries-extra})

Defines a new glossary entry with the given label, type set to symbols, the category set

to symbol, the name set to 〈sym〉 and the sort set to 〈entry-label〉. The optional argument
is a comma-separated list of glossary entry keys, which can be used to override the defaults.

634

Command Summary

\glsxtrnopostpunc glossaries-extra v1.22+

When placed at the end of the description, this switches off the post-description punc-

tuation (inserted automatically via options such as postdot) but doesn’t suppress the post-
description hook. Does nothing outside of the glossary.

\glsxtrp{〈field〉}{〈entry-label〉} glossaries-extra v1.07+

For use in headings and captions (instead of the \gls-like or \glstext-like commands).
This command is designed to expand to the field value if used in a PDF bookmark and can also

expand to a more appropriate command if it ends up in the page header. Note that there’s no

option argument.

\glsxtrparen{〈text〉} glossaries-extra v1.17+

Used to encapsulate 〈text〉 in parentheses.

\glsxtrpostlinkAddSymbolOnFirstUse glossaries-extra

May be used within a post-link hook to display the symbol in parentheses on first use.

\glsxtrpostlinkhook glossaries-extra v1.0+

An additional post-link hook that supports categories.

\GlsXtrResetLocalBuffer glossaries-extra v1.49+

If local unset for repeat entries has been enabled with \GlsXtrUnsetBufferEnable-
RepeatLocal, this will locally reset all entries that are in the buffer that hadn’t been marked
as used before the function was enabled.

\GlsXtrSetAltModifier{〈token〉}{〈options〉}

Sets 〈token〉 as a modifier for the \gls-like and \glstext-like commands that will auto-
matically implement the given options.

635

Command Summary

\GlsXtrSetField{〈entry-label〉}{〈field-label〉}{〈value〉} glossaries-extra v1.12+

Assigns 〈value〉 to the field identified by its internal label 〈field-label〉 for the entry identified by
〈entry-label〉. An error (or warning with undefaction=warn) occurs if the entry hasn’t
been defined.

\glsxtrsetgrouptitle{〈group-label〉}{〈group-title〉} glossaries-extra v1.14+

Globally assigns the given title 〈group-title〉 to the group identified by 〈group-label〉.

\GlsXtrSetPlusModifier{〈options〉} glossaries-extra v1.49+

Overrides the options that should be implemented by the plus (+) modifier for \gls-like and
\glstext-like commands.

\GlsXtrSetStarModifier{〈options〉} glossaries-extra v1.49+

Overrides the options that should be implemented by the star (*) modifier for \gls-like and
\glstext-like commands.

\GLSxtrshort[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries-extra

As \glsxtrshort but converts the link text to all caps.

\Glsxtrshort[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries-extra

As \glsxtrshort but converts the link text to sentence case.

\glsxtrshort[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries-extra

References the abbreviation identified by 〈entry-label〉. The text produced is obtained from the

short value, formatted according to the abbreviation style associated with the entry’s category.

636

Command Summary

The 〈insert〉 argument will be inserted at the end of the link text. This command does not alter
or depend on the first use flag. For the first optional argument, see \glslink options.

\Glsxtrshortpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries-extra

As \glsxtrshortpl but converts the link text to sentence case.

\glsxtrshortpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries-extra

As \glsxtrshort but the text produced is obtained from the shortplural value.

\GlsXtrStartUnsetBuffering modifier: * glossaries-extra v1.30+

Enables unset buffering. The starred version doesn’t check for duplicates.

\GlsXtrStopUnsetBuffering modifier: * glossaries-extra v1.30+

Stops buffering. The starred version performs a global unset.

\GlsXtrUnsetBufferEnableRepeatLocal glossaries-extra v1.49+

Allows repeat entries within the buffering code to be locally unset before the link text.

\GlsXtrUseAbbrStyleFmts{〈style-name〉} glossaries-extra

Implements the 〈display definitions〉 code for the given abbreviation style.

\GlsXtrUseAbbrStyleSetup{〈style-name〉} glossaries-extra

Implements the 〈setup〉 code for the given abbreviation style.

637

Command Summary

\glsxtrusefield{〈entry-label〉}{〈field-label〉} glossaries-extra v1.12+

Expands to the value of the given field (identified by its internal label 〈field-label〉) for the entry
given by 〈entry-label〉. Expands to \relax if the entry or field are undefined.

H

Table 12.1\hyperbf{〈location(s)〉} glossaries

If hyperlinks are supported this does \textbf{\glshypernumber{〈location(s)〉}}
otherwise it just does \textbf{〈location(s)〉}.

Table 12.1\hyperemph{〈location(s)〉} glossaries

If hyperlinks are supported this does \emph{\glshypernumber{〈location(s)〉}} oth-

erwise it just does \emph{〈location(s)〉}.

Table 12.1\hyperit{〈location(s)〉} glossaries

If hyperlinks are supported this does \textit{\glshypernumber{〈location(s)〉}}
otherwise it just does \textit{〈location(s)〉}.

Table 12.1\hypermd{〈location(s)〉} glossaries

If hyperlinks are supported this does \textmd{\glshypernumber{〈location(s)〉}}
otherwise it just does \textmd{〈location(s)〉}.

Table 12.1\hyperrm{〈location(s)〉} glossaries

If hyperlinks are supported this does \textrm{\glshypernumber{〈location(s)〉}}
otherwise it just does \textrm{〈location(s)〉}.

Table 12.1\hypersc{〈location(s)〉} glossaries

If hyperlinks are supported this does \textsc{\glshypernumber{〈location(s)〉}}

638

Command Summary

otherwise it just does \textsc{〈location(s)〉}.

Table 12.1\hypersf{〈location(s)〉} glossaries

If hyperlinks are supported this does \textsf{\glshypernumber{〈location(s)〉}}
otherwise it just does \textsf{〈location(s)〉}.

Table 12.1\hypersl{〈location(s)〉} glossaries

If hyperlinks are supported this does \textsl{\glshypernumber{〈location(s)〉}}
otherwise it just does \textsl{〈location(s)〉}.

Table 12.1\hypertt{〈location(s)〉} glossaries

If hyperlinks are supported this does \texttt{\glshypernumber{〈location(s)〉}}
otherwise it just does \texttt{〈location(s)〉}.

Table 12.1\hyperup{〈location(s)〉} glossaries

If hyperlinks are supported this does \textup{\glshypernumber{〈location(s)〉}}
otherwise it just does \textup{〈location(s)〉}.

I

§15.4;

365
\ifglossaryexists{〈glossary-type〉}{〈true〉}{〈false〉} modifier: *
glossaries

If the glossary given by 〈glossary-type〉 exists, this does 〈true〉, otherwise it does 〈false〉. The
unstarred form treats ignored glossaries as non-existent. The starred form (v4.46+) will do 〈true〉
if 〈glossary-type〉 matches an ignored glossary.

§15.4;

368
\ifglsdescsuppressed{〈entry-label〉}{〈true〉}{〈false〉} glossaries v3.08a+

Does 〈true〉 if the entry’sdescription field is just\nopostdesc otherwise does 〈false〉.

639

Command Summary

§2.3; 93\ifglsentrycounter 〈true〉\else 〈false〉\fi initial: \iffalse
glossaries v3.0+

Conditional corresponding to the entrycounter option.

§15.4;

366
\ifglsentryexists{〈entry-label〉}{〈true〉}{〈false〉}

Does 〈true〉 if the entry given by 〈entry-label〉 exists, otherwise does 〈false〉.

§15.4;

372
\ifglsfieldcseq{〈entry-label〉}{〈field-label〉}{〈cs-name〉}{〈true〉}
{〈false〉} glossaries v4.16+

Tests if the value of the given field is equal to the replacement text of the command given by

the control sequence name 〈cs-name〉 using etoolbox’s \ifcsstrequal. Triggers an error
if the given field (identified by its internal field label) hasn’t been defined. Uses \glsdoif-
exists.

§15.4;

371
\ifglsfielddefeq{〈entry-label〉}{〈field-label〉}{〈cs〉}{〈true〉}{〈false〉}
glossaries v4.16+

Tests if the value of the given field is equal to the replacement text of the given command 〈cs〉
using etoolbox’s \ifdefstrequal. Triggers an error if the given field (identified by its

internal field label) hasn’t been defined. Uses \glsdoifexists.

§15.4;

369
\ifglsfieldeq{〈entry-label〉}{〈field-label〉}{〈string〉}{〈true〉}{〈false〉}
glossaries v4.16+

Tests if the value of the given field is equal to the given string using etoolbox’s\ifcsstring.
Triggers an error if the given field (identified by its internal field label) hasn’t been defined. Uses

\glsdoifexists.

§15.4;

368
\ifglsfieldvoid{〈field-label〉}{〈entry-label〉}{〈true〉}{〈false〉}
glossaries v4.50+

An expandable test to determine if the entry is undefined or the field is undefined or empty.

The 〈field-label〉 must be the field’s internal label. Internally uses etoolbox’s \ifcsvoid
command.

640

Command Summary

§15.4;

367
\ifglshaschildren{〈entry-label〉}{〈true〉}{〈false〉} glossaries v3.02+

Does 〈true〉 if the given entry has child entries otherwise does 〈false〉. Note that this has to iterate
over the set of defined entries for the entry’s glossary to find one that has the entry identified in

its parent field. A more efficient approach can be achieved with bib2gls and the save
-child-count resource option.

§15.4;

368
\ifglshasdesc{〈entry-label〉}{〈true〉}{〈false〉} glossaries v3.08a+

Does 〈true〉 if the entry’s description field is set otherwise does 〈false〉.

§15.4;

368
\ifglshasfield{〈field〉}{〈entry-label〉}{〈true〉}{〈false〉} glossaries v4.03+

(robust)

If the field identified by either its key or its internal field label 〈field〉 for the entry identified by
〈entry-label〉 is set and non-empty, this sets \glscurrentfieldvalue to the field value

and does 〈true〉 otherwise it does 〈false〉.

§15.4;

367
\ifglshaslong{〈entry-label〉}{〈true〉}{〈false〉} glossaries v3.11a+

Does 〈true〉 if the entry’s long field is set otherwise does 〈false〉.

§15.4;

367
\ifglshasparent{〈entry-label〉}{〈true〉}{〈false〉} glossaries v3.02+

Does 〈true〉 if the entry’s parent field is set otherwise does 〈false〉.

§16; 380\ifglshasprefix{〈entry-label〉}{〈true〉}{〈false〉} glossaries-prefix v4.45+

Expands to 〈true〉 if the prefix field is non-empty.

§16; 380\ifglshasprefixfirst{〈entry-label〉}{〈true〉}{〈false〉}
glossaries-prefix v4.45+

Expands to 〈true〉 if the prefixfirst field is non-empty.

641

Command Summary

§16; 380\ifglshasprefixfirstplural{〈entry-label〉}{〈true〉}{〈false〉}
glossaries-prefix v4.45+

Expands to 〈true〉 if the prefixfirstplural field is non-empty.

§16; 380\ifglshasprefixplural{〈entry-label〉}{〈true〉}{〈false〉}
glossaries-prefix v4.45+

Expands to 〈true〉 if the prefixplural field is non-empty.

§15.4;

368
\ifglshasshort{〈entry-label〉}{〈true〉}{〈false〉} glossaries v3.11a+

Does 〈true〉 if the entry’s short field is set otherwise does 〈false〉.

§15.4;

367
\ifglshassymbol{〈entry-label〉}{〈true〉}{〈false〉} glossaries v3.08a+

Does 〈true〉 if the entry’s symbol field is set otherwise does 〈false〉.

\ifglshyperfirst 〈true〉\else 〈false〉\fi initial: \iftrue
glossaries

Conditional corresponding to the hyperfirst option.

§2.4; 102\ifglsindexonlyfirst 〈true〉\else 〈false〉\fi initial: \iffalse
glossaries v3.02+

Conditional corresponding to the indexonlyfirst option.

§2.3; 99\ifglsnogroupskip 〈true〉\else 〈false〉\fi initial: \iffalse
glossaries v3.03+

Conditional set by the nogroupskip option.

642

Command Summary

§7.1; 239\ifglsresetcurrcount 〈true〉\else 〈false〉\fi initial: \iffalse
glossaries v4.50+

Conditional that determines whether or not the reset commands should reset the entry count

stored in currcount to zero.

§2.3; 96\ifglssubentrycounter 〈true〉\else 〈false〉\fi initial: \iffalse
glossaries v3.0+

Conditional corresponding to the subentrycounter option.

§2.2; 88\ifglstoc 〈true〉\else 〈false〉\fi initial: \iffalse glossaries

Conditional corresponding to the toc option.

§2.2; 89\ifglsucmark 〈true〉\else 〈false〉\fi initial: varies glossaries v3.02+

Conditional corresponding to the ucmark option.

§15.4;

366
\ifglsused{〈entry-label〉}{〈true〉}{〈false〉} glossaries

Does 〈true〉 if the entry has been marked as used, does 〈false〉 if the entry is marked as unused,
and does neither if the entry hasn’t been defined (but will generate an error).

§2.4; 101\ifglswrallowprimitivemods 〈true〉\else 〈false〉\fi
initial: \iffalse glossaries v4.22+

If esclocations=true and this conditional is true, then some primitives will be locally

redefined while indexing occurs in order to escape special characters in the location without

prematurely expanding \thepage.

§2.5; 111\ifglsxindy 〈true〉\else 〈false〉\fi initial: \iffalse glossaries v1.17+

Conditional that, if true, indicates that xindy should be used.

643

Command Summary

\ifglsxtrinsertinside 〈true〉\else 〈false〉\fi initial: \iffalse
glossaries-extra v1.02

A conditional used by the predefined abbreviation styles to determine whether the 〈insert〉 part
should go inside or outside of the style’s font formatting commands.

§9; 259\ifignoredglossary{〈glossary-label〉}{〈true〉}{〈false〉} modifier: *
glossaries v4.08+

Does 〈true〉 if the glossary identified by 〈glossary-label〉 has been defined as an ignored glossary,
otherwise does 〈false〉.

§13.1.1;

305
\indexspace

Provided by various packages, including glossary-list and glossary-tree, this creates a vertical
space.

L

§4.6; 160\loadglsentries[〈type〉]{〈filename〉} glossaries

Locally assigns \glsdefaulttype to 〈type〉 and inputs 〈filename〉. If the optional argu-
ment is omitted, the default glossary is assumed. Note that if any entries with 〈filename〉 have
the type key set (including implicitly in commands like \newabbreviation), then this
will override the type given in the optional argument.

§4; 135\longnewglossaryentry{〈entry-label〉}{〈key=value list〉}{〈description〉}
glossaries v3.11a+

Defines a new glossary entry with the given label. The second argument is a comma-separated

list of glossary entry keys. The third argument is the description, which may include paragraph

breaks.

§4; 135\longprovideglossaryentry{〈entry-label〉}{〈key=value
list〉}{〈description〉} glossaries v3.14a+

As \longnewglossaryentry but does nothing if the entry is already defined.

644

Command Summary

M

\makefirstuc{〈text〉} mfirstuc

Robust command that converts the first character of 〈text〉 to uppercase (sentence case) unless
〈text〉 starts with a command, in which case it will attempt to apply the case change to the first
character of the first argument following the command, if the command is followed by a group.

As frommfirstuc v2.08, this command internally uses \MFUsentencecase to perform the

actual case change. See the mfirstuc documentation for further details, either:

�

texdoc mfirstuc

or visit ctan.org/pkg/mfirstuc.

§3.2; 130\makeglossaries glossaries

(Options 2 and 3 only)

Opens the associated indexing files that need to be processed bymakeindex orxindy. This
command has an optional argument with glossaries-extra.

§3.1; 130\makenoidxglossaries glossaries v4.04+

(Option 1 only)

Sets up all non-ignored glossaries so that they can be displayedwith\printnoidxglossary.

\mfirstucMakeUppercase{〈text〉} mfirstuc

This command was used by\makefirstuc to convert its argument to all caps and was rede-

fined by glossaries to use\MakeTextUppercase, but withmfirstuc v2.08+ and glossaries

v4.50+ this command is instead defined to use the LATEX3 all caps command, which is expand-

able. This command is no longer used by \makefirstuc (which instead uses \MFU-
sentencecase). The glossaries (v4.50+) and glossaries-extra (v1.49+) packages now

use \glsuppercase for the all caps commands, such as \Gls.

\MFUaddmap{〈cs1〉}{〈cs2〉} mfirstuc v2.08+

Identifies amapping from the command 〈cs1〉 to command 〈cs2〉 for\makefirstuc and also

645

https://www.tug.org/texdoc/
https://ctan.org/pkg/mfirstuc

Command Summary

identifies 〈cs2〉 as a blocker. Mappings and blockers aren’t supported by \MFUsentence-
case, so both 〈cs1〉 and 〈cs2〉 are identified as exclusions for \MFUsentencecase.

\MFUblocker{〈cs〉} mfirstuc v2.08+

Locally identifies 〈cs〉 as a blocker command for\makefirstuc and an exclusion for\MFU-
sentencecase (which doesn’t support blockers).

\MFUexcl{〈cs〉} mfirstuc v2.08+

Locally identifies 〈cs〉 as an exclusion command, which will be recognised by both \make-
firstuc and \MFUsentencecase.

§15.2;

362
\MFUsentencecase{〈text〉} mfirstuc v2.08+

Fully expands 〈text〉 and converts the first letter to uppercase. Unlike \makefirstuc, this
command is expandable, but only recognises commands identified as exclusions. See themfirstuc

documentation for further details. This command is provided by glossaries-extra v1.49+ if an

old version of mfirstuc is detected.

N

\newabbreviation[〈key=value list〉]{〈label〉}{〈short〉}{〈long〉}
glossaries-extra

Defines a new entry that represents an abbreviation. This internally uses \newglossary-
entry and any provided options (glossary entry keys) given in 〈key=value list〉 will be ap-

pended. The category is set to abbreviation by default, but may be overridden in 〈options〉.
The appropriate style should be set before the abbreviation is definedwith\setabbreviation-
style.

\newabbreviationstyle{〈style-name〉}{〈setup〉}{〈display definitions〉}
glossaries-extra

Defines an abbreviation style, which can be set with \setabbreviationstyle.

646

Command Summary

§6; 198\newacronym[〈key=value list〉]{〈entry-label〉}{〈short〉}{〈long〉} glossaries

This command is provided by the base glossaries package to define a new acronym but it’s re-

defined by glossaries-extra to use \newabbreviation with the category key set to

acronym. With just the base glossaries package, use \setacronymstyle to set the style.

With glossaries-extra, use \setabbreviationstyle[acronym]{〈style〉} to set

the style that governs \newacronym.

\newacronymhook glossaries

Hook used by\newacronym just before the entry is defined by\newglossaryentry.

§6.2.2;

216
\newacronymstyle{〈name〉}{〈format def〉}{〈style defs〉} glossaries v4.02+

Defines an acronym style for use with the base glossaries package’s acronym mechanism. These

styles are not compatible with glossaries-extra. The 〈format def〉 part is the code used as the
entry format definition within \defglsentryfmt. The 〈style defs〉 is the code that rede-
fines the acronym formatting commands, such as\genacrfullformat, and the additional
fields command \GenericAcronymFields.

§9; 258\newglossary[〈log-ext〉]{〈glossary-label〉}{〈in-ext〉}{〈out-ext〉}{〈title〉}
[〈counter〉] glossaries

Defines a glossary identified by 〈glossary-label〉 (which can be referenced by thetype key when

defining an entry). The 〈title〉 will be used when displaying the glossary (using commands like
\printglossary), but this title can be overridden by the title option. The optional

〈counter〉 indicates which counter should be used by default for the location when indexing any
entries that have been assigned to this glossary. (This can be overridden by the counter
option.) The other arguments are file extensions for use with makeindex or xindy. These
arguments aren’t relevant for other indexing options (in which case, youmay prefer to use\new-
glossary*).

§9; 258\newglossary*{〈glossary-label〉}{〈title〉}[〈counter〉] glossaries v4.08+

A shortcut that supplies file extensions based on the glossary label:

647

Command Summary

\newglossary[〈glossary-label〉-glg]{〈glossary-label〉}{〈glossary-label〉-
gls}{〈〈glossary-label〉-glo〉}{〈title〉}[〈counter〉]

§4; 134\newglossaryentry{〈entry-label〉}{〈key=value list〉} glossaries

Defines a new glossary entry with the given label. The second argument is a comma-separated

list of glossary entry keys.

§13.2;

331
\newglossarystyle{〈style-name〉}{〈definitions〉} glossaries

Defines a new glossary style called 〈style-name〉.

\newignoredglossary{〈glossary-label〉} glossaries v4.08+

Defines a glossary that should be ignored by iterative commands, such as\printglossaries.
This glossary has no associated indexing files and has hyperlinks disabled. You can use an ignored

glossary for common terms or acronyms or abbreviations that don’t need to be included in any

listing (but you may want these terms defined as entries to allow automated formatting with the

\gls-like commands). An ignored glossary can’t be displayed with\printglossary but

may be displayed with the “unsrt” family of commands, such as \printunsrtglossary.
The glossaries-extra package provides a starred form of this command.

§2.6; 120\newterm[〈key=value list〉]{〈entry-label〉} glossaries v4.02+

(requires index package option)

Defines a new glossary entry with the given label, type set to index, the name set to 〈entry-
label〉 and the description set to \nopostdesc. The optional argument is a comma-
separated list of glossary entry keys, which can be used to override the defaults.

§3.2; 132\noist glossaries

Prevents \makeglossaries from creating the default indexing application style file.

§4; 136\nopostdesc glossaries v1.17+

When placed at the end of the description, this switches off the post-description hook

648

Command Summary

(including the post-description punctuation). Does nothing outside of the glossary.

O

§6.4; 232\oldacronym[〈label〉]{〈short〉}{〈long〉}{〈key=value list〉} glossaries v1.18+

Defines an acronym using the syntax of the old glossary package.

P

§1.5.1;

Table 1.2
\pagelistname initial: Page List glossaries

(language-sensitive)

Provided by glossaries if it hasn’t already been defined. Used as the page list column header for

some of the tabular-like glossary styles.

§16; 379\PGLS[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries-prefix v3.14a+

As \pgls but all caps.

§16; 379\Pgls[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries-prefix v3.14a+

As \pgls but sentence case.

§16; 378\pgls[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries-prefix v3.14a+

Similar to \gls but inserts the appropriate prefix, if provided.

§16; 379\PGLSpl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries-prefix v3.14a+

As \pgls but all caps.

649

Command Summary

§16; 379\Pglspl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries-prefix v3.14a+

As \pgls but sentence case.

§16; 378\pglspl[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries-prefix v3.14a+

Similar to \glspl but inserts the appropriate prefix, if provided.

\pglsxtrshort[〈options〉]{〈entry-label〉}[〈insert〉] modifiers: * +
glossaries-extra v1.49+

(requires glossaries-prefix)

As \glsxtrshort but inserts the prefix field and separator in front if set.

§8.2; 255\pretoglossarypreamble[〈type〉]{〈text〉} glossaries-extra v1.12+

Locally prepends 〈text〉 to the preamble for the glossary identified by 〈type〉. If 〈type〉 is omitted,
\glsdefaulttype is assumed.

\printabbreviations[〈options〉] glossaries-extra

(requires \usepackage[abbreviations]{glossaries-extra})

Shortcut for \printglossary[type=\glsxtrabbrvtype].

§2.7; 121\printacronyms[〈options〉] glossaries v3.08a+

(requires the acronyms package option)

Shortcut for \printglossary[type=\acronymtype].

§8; 246\printglossaries glossaries

Iterates over all non-ignored glossaries and does \printglossary[type=〈type〉] for

each glossary.

650

Command Summary

§8; 246\printglossary[〈options〉] glossaries

Displays the glossary by inputting a file created by makeindex or xindy. Must be used

with \makeglossaries and either makeindex or xindy.

§2.6; 120\printindex[〈options〉] v4.02+ (requires the index package option)

Shortcut provided by theindex package option that simply does\printglossary[type
=index].

§8; 245\printnoidxglossaries glossaries v4.04+

Iterates over all non-ignored glossaries and does\printnoidxglossary[type=〈type〉]
for each glossary.

§8; 245\printnoidxglossary[〈options〉] glossaries v4.04+

Displays the glossary by obtaining the indexing information from the aux file and using TEX to

sort and collate. Must be used with \makenoidxglossaries or with the glossaries not

identified in the optional argument of \makeglossaries when using the hybrid method.

This method can be very slow and has limitations.

§2.6; 119\printnumbers[〈options〉] glossaries v4.02+

(requires the numbers package option)

Shortcut for \printglossary[type=numbers].

§2.6; 118\printsymbols[〈options〉] glossaries v4.02+

(requires the symbols package option)

Shortcut for \printglossary[type=symbols].

\printunsrtacronyms[〈options〉] glossaries-extra-bib2gls v1.40+

(requires \usepackage[acronyms,record]{glossaries-extra})

Shortcut for \printunsrtglossary[type=\acronymtype].

651

Command Summary

§8; 247\printunsrtglossaries glossaries-extra v1.08+

Iterates over all non-ignored glossaries and does\printunsrtglossary[type=〈type〉]
for each glossary.

§8; 246\printunsrtglossary[〈options〉] glossaries-extra v1.08+

Displays the glossary by iterating over all entries associated with the given glossary (in the order

in which they were added to the glossary). Group headers will only be inserted if the group
key has been defined and has been set (typically with the record option and bib2gls).
Location lists will only be shown if thelocation orloclist fields have been set (typically

by bib2gls).

§8; 247\printunsrtinnerglossary[〈options〉]{〈pre-code〉}{〈post-code〉}
glossaries-extra v1.44+

Similar to \printunsrtglossary but doesn’t contain the code that starts and ends the

glossary (such as beginning and ending the theglossary environment). See the glossaries-extra
manual for further details.

§4; 135\provideglossaryentry{〈entry-label〉}{〈key=value list〉} glossaries v3.14a

As \newglossaryentry but does nothing if the entry is already defined.

\provideignoredglossary{〈glossary-label〉} modifier: *
glossaries-extra v1.12+

As \newignoredglossary but does nothing if the glossary has already been defined.

\ProvidesGlossariesLang{〈language〉}[〈version〉] glossaries v4.12+

Used at the start of a glossaries language definition file (ldf) to declare the file and version

details.

R

652

Command Summary

\renewacronymstyle{〈name〉}{〈format def〉}{〈display defs〉}
glossaries v4.02+

As \newacronymstyle but redefines an existing acronym style.

§13.2;

331
\renewglossarystyle{〈style-name〉}{〈definitions〉} glossaries v3.02+

Redefines the glossary style called 〈style-name〉.

\RequireGlossariesLang{〈language〉} glossaries v4.12+

Indicates that the language definition file (ldf) corresponding to the given language should be
loaded, if it hasn’t already been loaded.

S

\seealsoname initial: see also glossaries-extra v1.16+

(language-sensitive)

Used as a cross-reference tag. The default value is \alsoname, if that command has been

defined, or “see also”.

\seename initial: see glossaries

(language-sensitive)

Provided by glossaries if it hasn’t already been defined. May already be defined by a language

package.

\setabbreviationstyle[〈category〉]{〈style-name〉} glossaries-extra

Sets the current abbreviation style to 〈style-name〉 for the category identified by 〈category〉. If
the optional argument is omitted, abbreviation is assumed.

653

Command Summary

§2.7; 123\SetAcronymLists{〈list〉} glossaries v2.04+

Sets the list of acronym lists (overriding any that have previously been identified).

� \SetAcronymStyle glossaries v2.04

Deprecated with the introduction of \setacronymstyle. Removed in v4.50. Use roll-

back if backward-compatibility required or use \setacronymstyle.

§6.2; 207\setacronymstyle{〈style-name〉} glossaries v4.02+

Sets the acronym style. Don’t use with glossaries-extra.

� \SetCustomStyle glossaries v2.06

Deprecated with the introduction of \setacronymstyle. Removed in v4.50. Use roll-

back if backward-compatibility required or use\newacronymstyle and\setacronym-
style.

� \SetDefaultAcronymStyle glossaries v2.04

Deprecated with the introduction of \setacronymstyle. Removed in v4.50. Use roll-

back if backward-compatibility required or use \setacronymstyle{long-short}.

� \SetDescriptionAcronymDisplayStyle glossaries

Deprecated with the introduction of \setacronymstyle. Removed in v4.50. Use roll-

back if backward-compatibility required or use \setacronymstyle.

� \SetDescriptionAcronymStyle glossaries

Deprecated with the introduction of \setacronymstyle. Removed in v4.50. Use roll-

back if backward-compatibility required or use \setacronymstyle.

654

Command Summary

� \SetDescriptionDUAAcronymDisplayStyle glossaries

Deprecated with the introduction of \setacronymstyle. Removed in v4.50. Use roll-

back if backward-compatibility required or use \setacronymstyle.

� \SetDescriptionDUAAcronymStyle glossaries

Deprecated with the introduction of \setacronymstyle. Removed in v4.50. Use roll-

back if backward-compatibility required or use \setacronymstyle.

� \SetDescriptionFootnoteAcronymDisplayStyle glossaries

Deprecated with the introduction of \setacronymstyle. Removed in v4.50. Use roll-

back if backward-compatibility required or use \setacronymstyle.

� \SetDescriptionFootnoteAcronymStyle glossaries

Deprecated with the introduction of \setacronymstyle. Removed in v4.50. Use roll-

back if backward-compatibility required or use \setacronymstyle.

� \SetDUADisplayStyle glossaries

Deprecated with the introduction of \setacronymstyle. Removed in v4.50. Use roll-

back if backward-compatibility required or use \setacronymstyle.

� \SetDUAStyle glossaries

Deprecated with the introduction of \setacronymstyle. Removed in v4.50. Use roll-

back if backward-compatibility required or use\newacronymstyle and\setacronym-
style.

§12.1;

276
\setentrycounter[〈prefix〉]{〈counter〉} glossaries

Sets up the hypertarget prefix and location counter for use with \glshypernumber.

655

Command Summary

� \SetFootnoteAcronymDisplayStyle glossaries

Deprecated with the introduction of \setacronymstyle. Removed in v4.50. Use roll-

back if backward-compatibility required or use \setacronymstyle.

� \SetFootnoteAcronymStyle glossaries

Deprecated with the introduction of \setacronymstyle. Removed in v4.50. Use roll-

back if backward-compatibility required or use \setacronymstyle.

§8.2; 254\setglossarypreamble[〈type〉]{〈text〉} glossaries v3.07+

Globally sets the preamble for the glossary identified by 〈type〉 to 〈text〉. If 〈type〉 is omitted,
\glsdefaulttype is assumed.

§2.2; 89\setglossarysection{〈name〉} glossaries v1.1+

Equivalent to the package option section=〈name〉.

§2.3; 96\setglossarystyle{〈style-name〉} glossaries v3.08a+

Sets the default glossary style to 〈style-name〉.

� \SetSmallAcronymDisplayStyle glossaries

Deprecated with the introduction of \setacronymstyle. Removed in v4.50. Use roll-

back if backward-compatibility required or use \setacronymstyle.

� \SetSmallAcronymStyle glossaries

Deprecated with the introduction of \setacronymstyle. Removed in v4.50. Use roll-

back if backward-compatibility required or use \setacronymstyle.

656

Command Summary

§3.2; 131\setStyleFile{〈name〉} glossaries v1.17+

Sets the file name of themakeindex orxindy style file that’s created by\makeglossaries.

§2.10;

129
\setupglossaries{〈options〉} glossaries v3.11a+

Change allowed options that are defined by the base glossaries package. Note that some options

can only be passed as package options. To change options defined or modified by the glossaries

-extra package, use \glossariesextrasetup.

� \SmallNewAcronymDef glossaries

Deprecated with the introduction of \setacronymstyle. Removed in v4.50. Use roll-

back if backward-compatibility required or use \setacronymstyle.

§13.2.3;

338
\subglossentry{〈level〉}{〈entry-label〉}{〈number-list〉} glossaries v3.08a+

(glossary style command)

Redefined by the glossary styles to display child entries.

§1.5.1;

Table 1.2
\symbolname initial: Symbol glossaries

(language-sensitive)

Provided by glossaries if it hasn’t already been defined. Used as a column header for some of

the tabular-like glossary styles.

T

§2.3; 93\theglossaryentry glossaries v3.0+

(requires entrycounter=true)

Displays the value of the glossaryentry counter.

657

Command Summary

§2.3; 95\theglossarysubentry glossaries v3.0+

(requires subentrycounter=true)

Displays the value of the glossarysubentry counter.

W

§3.2; 131\writeist glossaries

Writes themakeindex/xindy style file. This command is used by\makeglossaries
and then disabled.

X

\xcapitalisefmtwords{〈text〉} mfirstuc v2.03+

Passes the argument to \capitalisefmtwords but with the first token in 〈text〉 ex-
panded. The starred version uses the starred version of \capitalisefmtwords.

\xGlsXtrSetField{〈entry-label〉}{〈field-label〉}{〈value〉}
glossaries-extra v1.12+

As \GlsXtrSetField but expands the value and uses a global assignment.

658

Environment Summary

§13.2.3;

337
\begin{theglossary} glossaries

(glossary style environment)

Redefined by the glossary styles to format the glossary according to the style specifications. The

entire glossary content (not including the section header, preamble and postamble) is contained

within this environment.

659

Package Option Summary

\usepackage[〈options〉]{glossaries-extra}

Extension package that loads glossaries, provides additional commands, and modifies some of

the base glossaries commands to integrate them with the new commands or to make them more

flexible.

abbreviations � §2.7; 122

Provides a new glossary with the label abbreviations and title given by \abbrevia-
tionsname, redefines\glsxtrabbrvtype toabbreviations, redefines\acronym-
type to \glsxtrabbrvtype (unless the acronym or acronyms option has been

used), and provides \printabbreviations.

accsupp � §2.9; 127

Loads glossaries-accsupp.

autoseeindex=〈boolean〉 default: true; initial: true� §2.4; 103

Indicates whether or not to enable automatic indexing of see and seealso fields.

docdef=〈value〉 default: true; initial: false� §2.1; 87

Determines whether or not \newglossaryentry is permitted in the document environ-

ment.

docdef=atom 87
As restricted but creates the glsdefs file for atom’s autocomplete support.

docdef=false 87
Don’t allow \newglossaryentry in the document environment.

docdef=restricted 87
Allow \newglossaryentry in the document environment, but only before any

glossaries.

docdef=true 87
Allow \newglossaryentry in the document environment if the base glossaries

package would allow it.

equations=〈boolean〉 default: true; initial: false� §2.4; 104

660

Package Option Summary

Automatically switch the location counter to equation when inside a numbered equation environ-

ment.

floats=〈boolean〉 default: true; initial: false� §2.4; 104

Automatically switch the location counter to the corresponding counter when inside a floating

environment.

indexcounter � §2.4; 105

Defines the index counter wrglossary and implements counter=wrglossary.

indexcrossrefs=〈boolean〉 default: true; initial: true� §2.4; 103

If true, automatically indexes cross references at the end of the document.

nomissingglstext=〈boolean〉 default: true; initial: false� §2.9; 127

Determines whether or not to display warning text if the external indexing file hasn’t been gen-

erated due to an incomplete build.

postdot � glossaries-extra v1.12+

A shortcut for nopostdot=false.

postpunc=〈value〉 � glossaries-extra v1.21+

An alternative to postdot, this can be used to insert a different punctuation character after

the description.

prefix � glossaries-extra v1.42+ §2.9; 127

Loads glossaries-prefix.

record=〈value〉 default: only; initial: off� §2.4; 104

Indicates whether or not bib2gls is being used (in which case entry indexing is performed

by adding bib2gls records in the aux file).

record=hybrid 104
Performs a mixture of bib2gls records in the aux file (to select entries from a bib
file) and makeindex/xindy indexing in their associated files. This option is best

avoided.

record=nameref 104
Entry indexing is performed by adding bib2gls nameref records in the aux file.

Glossaries should be displayed with the “unsrt” family of commands.

record=off 104
Entry indexing is performed as per the base glossaries package, using either \make-
glossaries or \makenoidxglossaries.

record=only 104
Entry indexing is performed by adding bib2gls records in the aux file. Glossaries

should be displayed with the “unsrt” family of commands.

661

Package Option Summary

stylemods=〈list〉 default: default� §2.3; 100

Loads glossaries-extra-stylemods with the given options. If stylemods=default then

no options are passed to glossaries-extra-stylemods.

undefaction=〈value〉 initial: error� §2.1; 86

Indicates whether to trigger an error or warning if an unknown entry label is referenced.

undefaction=error 86
Trigger an error if an unknown entry label is referenced.

undefaction=warn 87
Trigger a warning if an unknown entry label is referenced.

§1; 2\usepackage[〈options〉]{glossaries}

Base package. This package will be implicitly loaded by glossaries-prefix, glossaries-accsupp
and glossaries-extra.

acronym=〈boolean〉 default: true; initial: false� §2.7; 121

If true, provides a new glossary with the labelacronym and title given by\acronymname,
redefines \acronymtype to acronym, and provides \printacronyms.

acronymlists={〈label-list〉} � glossaries v2.04+ §2.7; 122

Identifies the glossaries that contain acronyms (definedwith the base glossaries packages acronym

mechanism).

acronyms � glossaries v3.14a+ §2.7; 122

Provides a new glossary with the labelacronym, redefines\acronymtype toacronym,
and provides \printacronyms.

automake=〈value〉 default: immediate; initial: false� glossaries v4.08+ §2.5; 113

Indicates whether or not to attempt to use TEX’s shell escape to run an indexing application.

automake=delayed glossaries v4.50+ 115
Use the shell escape to run makeindex or xindy at the end of the document.

automake=false glossaries v4.08+ 115
Don’t use the shell escape.

automake=immediate glossaries v4.42+ 115
Use the shell escape to run makeindex or xindy before \makeglossaries
opens the associated indexing files.

automake=lite glossaries v4.50+ 115

662

Package Option Summary

Use the shell escape to runmakeglossaries-lite before\makeglossaries
opens the associated indexing files.

automake=makegloss glossaries v4.50+ 115
Use the shell escape to runmakeglossaries before\makeglossaries opens

the associated indexing files.

automake=true alias: delayed � glossaries v4.08+

Deprecated synonym for automake=delayed.

automakegloss alias: makegloss� glossaries v4.50+

Synonym for automake=makegloss.

automakeglosslite alias: lite� glossaries v4.50+

Synonym for automake=lite.

compatible-2.07 � � §2.9; 128

Option removed in version 4.50. Now only available with rollback.

compatible-3.07 � � §2.9; 128

Option removed in version 4.50. Now only available with rollback.

counter=〈counter-name〉 initial: page� §2.3; 99

Sets the default location counter.

counterwithin=〈parent-counter〉 � glossaries v3.0+ §2.3; 94

Sets the parent counter for glossaryentry.

debug=〈value〉 initial: false� glossaries v4.24+ §2.1; 80

Adds markers to the document for debugging purposes.

debug=false glossaries v4.24+ 80
Disable debugging actions.

debug=showaccsupp glossaries v4.45+ 81
Implements debug=true and also shows accessibility information in the document.

debug=showtargets glossaries v4.24+ 80
Implements debug=true and also shows target markers in the document.

debug=true glossaries v4.24+ 80
Writes wrglossary(〈type〉)(〈indexing info〉) to the log file if there is an attempt

to index an entry before the associated indexing file has been opened (makeindex
and xindy only). With glossaries-extra, this setting will also display the label of any
undefined entries that are referenced in the document.

description � � §2.8; 124

663

Package Option Summary

Deprecated in version 4.02 (2013-12-05) and removed in version 4.50. Now only available with

rollback.

disablemakegloss � glossaries v4.45+ §2.5; 116

Disables \makeglossaries.

dua � � §2.8; 127

Deprecated in version 4.02 (2013-12-05) and removed in version 4.50. Now only available with

rollback.

entrycounter=〈boolean〉 default: true; initial: false� glossaries v3.0+ §2.3; 92

Enables the entry counter for top-level entries.

esclocations=〈boolean〉 default: true; initial: false� glossaries v4.33+ §2.4; 100

If true, escapes locations before indexing.

footnote � � §2.8; 126

Deprecated in version 4.02 (2013-12-05) and removed in version 4.50. Now only available with

rollback.

hyperfirst=〈boolean〉 default: true; initial: true� glossaries v2.03+ §2.1; 85

If false, this option will suppress hyperlinks on first use for the \gls-like commands.

index � glossaries v4.02+ §2.6; 120

Provides a new glossary with the label index and the title \indexname, and provides

\printindex and \newterm.

indexonlyfirst=〈boolean〉 default: true; initial: false� glossaries v3.02+ §2.4; 101

Indicates whether or not to only index the first use.

kernelglossredefs=〈value〉 default: true; initial: false� glossaries v4.41+ §2.9; 128

Indicates whether or not to redefined the kernel glossary commands\glossary and\make-
glossary.

kernelglossredefs=false 128
Don’t redefine \glossary and \makeglossary.

kernelglossredefs=nowarn 128
Redefine \glossary and \makeglossary without any warnings.

kernelglossredefs=true 128
Redefine \glossary and \makeglossary but their use will trigger a warning.

languages � glossaries v4.50+ §2.1; 84

Implementstranslate=babel and adds the supplied languages to tracklang’s list of tracked

languages.

664

Package Option Summary

locales alias: languages� glossaries v4.55+

Synonym of languages.

makeindex � §2.5; 111

(Option 2)

Indicates that the indexing should be performed by makeindex (default).

mfirstuc=〈value〉 initial: unexpanded� glossaries v4.50+ §2.9; 127

The value may be either expanded or unexpanded and performs the same function as

mfirstuc’s expanded and unexpanded package options. Note that there’s no value corre-

sponding to mfirstuc’s other package option.

nogroupskip=〈boolean〉 default: true; initial: false� glossaries v3.03+ §2.3; 99

If true, suppress the gap between letter groups in the glossaries by default.

noglossaryindex � glossaries v4.42+ §2.6; 121

Counteracts the index option.

nohypertypes={〈list〉} � glossaries v3.05+ §2.6; 117

Identifies the list of glossaries that should have hyperlinks suppressed.

nolangwarn � glossaries v4.33+ §2.1; 79

Suppresses the warning if no language support is found.

nolist � glossaries v1.18+ §2.3; 97

Don’t load glossary-list, which is normally loaded automatically. Note that if glossaries is loaded
before glossaries-extra, then this option should be passed directly to glossaries not glossaries

-extra otherwise it will be too late to implement.

nolong � glossaries v1.18+ §2.3; 96

Don’t load glossary-long, which is normally loaded automatically. Note that if glossaries is

loaded before glossaries-extra, then this option should be passed directly to glossaries not

glossaries-extra otherwise it will be too late to implement.

nomain � glossaries v2.01+ §2.6; 118

Prevents the definition of the main glossary. You will need to define another glossary to use

instead. For example, with the acronyms package option.

nonumberlist � §2.3; 98

Set no location lists as the default for all glossaries. May be overridden for individual glossaries

with nonumberlist=true.

nopostdot=〈boolean〉 default: true; initial: true� glossaries v3.03+ §2.3; 99

If true, suppresses the automatic insertion of a full stop after each entry’s description in the

glossary (for styles that support this). The default is nopostdot=true for glossaries-extra
and nopostdot=false for just glossaries.

665

Package Option Summary

noredefwarn � §2.1; 79

Suppresses a warning if theglossary or \printglossary have already been defined (which

indicates that the document class or another package also provides a mechanism for creating a

glossary that could potentially conflict with glossaries). This option is automatically implemented

with glossaries-extra.

nostyles � glossaries v1.18+ §2.3; 97

Don’t load the default set of predefined styles. Note that if glossaries is loaded before glossaries

-extra, then this option should be passed directly to glossaries not glossaries-extra otherwise it
will be too late to implement.

nosuper � glossaries v1.18+ §2.3; 97

Don’t load glossary-super, which is normally loaded automatically. Note that if glossaries

is loaded before glossaries-extra, then this option should be passed directly to glossaries not

glossaries-extra otherwise it will be too late to implement.

notranslate � glossaries v3.14a+ §2.1; 84

Equivalent to translate=false.

notree � glossaries v1.18+ §2.3; 97

Don’t load glossary-tree, which is normally loaded automatically. Note that if glossaries is

loaded before glossaries-extra, then this option should be passed directly to glossaries not

glossaries-extra otherwise it will be too late to implement.

nowarn � §2.1; 79

Suppresses warnings.

numberedsection=〈value〉 default: nolabel; initial: false� glossaries v1.1+ §2.2; 89

Indicates whether or not glossary section headers will be numbered and also if they should auto-

matically be labelled.

numberedsection=autolabel 90
Use numbered sectional units for glossaries and automatically add a label based on the

glossary label.

numberedsection=false 90
Use unnumbered sectional units for glossaries.

numberedsection=nameref 91
Use unnumbered sectional units for glossaries and automatically add a label based on the

glossary label.

numberedsection=nolabel 90
Use numbered sectional units for glossaries but no label.

numberline=〈boolean〉 default: true; initial: false� glossaries v1.1+ §2.2; 88

666

Package Option Summary

If true (and toc=true), includes \numberline when adding a glossary to the table of

contents.

numbers � glossaries v3.11a+ §2.6; 119

Provides a new glossary with the label numbers and the title \glsnumbersgroup-
name, and provides \printnumbers. With glossaries-extra, this additionally defines

\glsxtrnewnumber.

order � glossaries v1.17+ §2.5; 110

Indicates whether word or letter order should be used. With Options 2 and 3, this information is

written to the aux file, where it can be picked up by makeglossaries. This option will
have no effect if you call makeindex or xindy explicitly.

order=letter 110
Letter order (“seal” before “sea lion”).

order=word 110
Word order (“sea lion” before “seal”).

restoremakegloss � glossaries v4.45+ §2.5; 116

Cancels the effect of disablemakegloss.

sanitizesort=〈boolean〉 default: true; initial: varies � §2.5; 105

Indicates whether the default sort value should be sanitized (only applicable withsort=standard).

savenumberlist=〈boolean〉 default: true; initial: false� glossaries v3.02+ §2.3; 92

(Options 2 and 3 only)

If true, save number lists. Only applicable with Options 2 and 3 as Options 1 and 4 have the

number list stored in the loclist field and Option 4 also has the formatted number list in the

location field.

savewrites=〈boolean〉 default: true; initial: false� glossaries v3.0+ §2.1; 83

If true, indexing information is stored until the end of the document to reduce the number of

write registers.

section=〈name〉 default: section� §2.2; 88

Indicates which section heading command to use for the glossary. The value may be one of the

standard sectioning command’s control sequence name (without the leading backslash), such as

chapter or section.

seeautonumberlist � glossaries v3.0+ §2.3; 98

Automatically adds nonumberlist={false} to any entries with the see key set.

seenoindex=〈value〉 initial: error� glossaries v4.24+ §2.4; 100

Indicates what to do if the see key is used before the associated indexing files have been opened

by \makeglossaries.

667

Package Option Summary

seenoindex=error 100
Triggers an error if the see key is used before \makeglossaries.

seenoindex=ignore 100
Does nothing if the see key is used before \makeglossaries.

seenoindex=warn 100
Triggers a warning if the see key is used before \makeglossaries.

shortcuts={〈boolean〉} default: false; initial: false� §2.7; 124

Defines various shortcut commands. Has additional values with glossaries-extra.

smallcaps � � §2.8; 125

Deprecated in version 4.02 (2013-12-05) and removed in version 4.50. Now only available with

rollback.

smaller � � §2.8; 125

Deprecated in version 4.02 (2013-12-05) and removed in version 4.50. Now only available with

rollback.

sort=〈value〉 initial: standard� glossaries v3.0+ §2.5; 106

Indicates how the sort key should automatically be assigned if not explicitly provided (for

\makeglossaries and \makenoidxglossaries only).

sort=clear glossaries v4.50+ 106
Sets the sort key to an empty value. Use this option if no indexing is required for a

slightly faster build.

sort=def 106
Use the (zero-padded) order of definition as the default for the sort key.

sort=none glossaries v4.30+ 106
Don’t process the sort key. Use this option if no indexing is required for a slightly

faster build.

sort=standard 107
Use the value of the name key as the default for the sort key and implement the

\glsprestandardsort hook.

sort=use 107
Use the (zero-padded) order of use as the default for the sort key.

style=〈style-name〉 initial: varies � §2.3; 96

Sets the default glossary style to 〈style-name〉.

subentrycounter=〈boolean〉 default: true; initial: false� glossaries v3.0+ §2.3; 94

668

Package Option Summary

Enables the entry counter for level 1 entries.

symbols � glossaries v3.11a+ §2.6; 118

Provides a new glossary with the label symbols and the title \glssymbolsgroup-
name, and provides \printsymbols. With glossaries-extra, this additionally defines

\glsxtrnewsymbol.

toc=〈boolean〉 default: true; initial: varies � §2.2; 87

If true, each glossary will be automatically added to the table of contents if the starred (unnum-

bered) sectioning command is used. The default is toc=false with glossaries and toc=
true with glossaries-extra. This option has no effect if the unstarred (numbered) sectioning
command is used.

translate=〈value〉 default: true; initial: varies � glossaries v1.1+ §2.1; 83

Indicates how multilingual support should be provided, if applicable.

translate=babel 84
Uses babel’s language hooks to implement multilingual support (default for glossaries

-extra if babel has been detected).

translate=false 84
Don’t implement multilingual support (default if no language package has been detected).

translate=true 84
Uses translator’s language hooks to implementmultilingual support (default for glossaries

if a language package has been detected).

ucmark=〈boolean〉 default: true; initial: varies � glossaries v3.02+ §2.2; 89

Indicates whether or not to use all caps in the glossary header.

writeglslabelnames � glossaries v4.47+ §2.1; 86

Creates a file called \jobname.glslabels that contains all defined entry labels and

names (for the benefit of auto-completion tools).

writeglslabels � glossaries v4.45+ §2.1; 86

Creates a file called \jobname.glslabels that contains all defined entry labels (for the

benefit of auto-completion tools).

xindy={〈options〉} � glossaries v1.17+ §2.5; 111

(Option 3)

Indicates that the indexing should be performed by xindy.

xindygloss � glossaries v3.14a+ §2.5; 112

(Option 3)

Equivalent to xindy with no value.

xindynoglsnumbers � glossaries v4.02+ §2.5; 113

(Option 3)

Equivalent to xindy={glsnumbers=false}.

669

Index

Symbols

\\ . 136, 281, 303

% . 344, 605

_ . 173

, (comma) 134, 135, 165

: (colon) . 135, 432

! (exclamation mark) 52, 165

? (question mark) 52, 165, 287

. (full stop or period) see full stop (.)
^ . 173

~ (literal) . 344, 617

~ (non-breaking space) see non-breaking

space (~)
~n . 344

\' . 15

' (apostrophe) . 139

" (double-quote) 52, 135, 165, 286, 344, 345,

358, 607

\ (literal backslash) . 139, 281, 293, 344, 569

) (range end) . . . 261, 278, 279, 574, see also

ranges (locations)

((range start) . . 261, 278, 279, 614, see also

ranges (locations)

\{ . 344

{ . 20, 344, 604

\} . 344

} . 20, 344, 569

$. 20

* (star modifier) . 168–171 passim, 175, 183,

202, 378, 597

\& . 195, 554, 604

& . 300

\# . 105

. 105, 216, 331, 389

. 216, 331

+ (plus modifier) . 168–171 passim, 175, 183,

189, 202, 378, 597

= (equals) 134, 135, 165

| (pipe) . 52, 165, 478

\␣ Table 6.2; 228, 232, 377, 455, 457

␣ (space) 195, 270, 604, 609

\@ . 228, 229, 420, 501

@ (at) . 287

\@arabic . 281

\@firstofone 206

\@for . 364

\@gls@codepage §1.7.1; 76, 546

\@gls@reference §1.7.1; 77, 546

\@glsorder §1.7.1; 76, 546

\@glsxtr@altmodifier §1.7.3;

78, 546

\@glsxtr@newglslike §1.7.3;

78, 546

\@glsxtr@prefixlabellist
§1.7.3; 78, 546

\@istfilename §1.7.1; 76, 77, 547

\@mkboth . 253

\@newglossary §1.7.1; 75, 547

\@roman . 281

\@xdylanguage §1.7.1; 76, 547

A

abbreviation style (glossaries-extra) . . 23, 41,

42, 122, 143, 181, 198, 206, 212,

399, 405–410 passim, 414–417

passim, 516, 518, 629, 633, 636, 653

footnote . 409, 626

long-noshort . 206
long-short-desc 41, 439

long-short-em 419

\\ 670 abbreviation style (glossaries-extra)

Index

long-short-sc-desc 405, 407

long-short-sc 404, 408

long-short-user 42
long-short 398, 417, 419
postfootnote 409, 626

short-footnote-desc 628

short-long . 23

short-nolong-noreg 501
short-nolong 398, 500

short-sc-footnote-desc . 408, 409, 414

short-sc-footnote 409

short-sc-postfootnote-desc 409,

410, 414

abbreviations 121, 197, 646

\abbreviationsname 547, 660

\Ac §6.1; Table 6.1; 547

\ac §6.1; Table 6.1; 547

accessibility package 495

accessibility attribute 565, 612

accsupp package 388, 394, 495, 565

\Acf §6.1; Table 6.1; 548

\acf §6.1; Table 6.1; 548

\Acfp §6.1; Table 6.1; 548

\acfp §6.1; Table 6.1; 548

\Acl §6.1; Table 6.1; 548

\acl §6.1; Table 6.1; 548

\Aclp §6.1; Table 6.1; 548

\aclp §6.1; Table 6.1; 548

\Acp §6.1; Table 6.1; 549

\acp §6.1; Table 6.1; 549

\ACRfull §6.1; 204, 549

\Acrfull . §6.1; Table 6.1; 204, 548, 549

\acrfull §6.1; Table 6.1; 178, 204,

208–215 passim, 220, 226, 236, 404,

406, 419, 500, 548, 549, 550, 589

\ACRfullfmt . 549

\Acrfullfmt . 549

\acrfullfmt 216, 220, 549, 551

\acrfullformat � 550

\ACRfullpl §6.1; 204, 550

\Acrfullpl §6.1; Table 6.1; 204,

548, 550

\acrfullpl . . §6.1; Table 6.1; 204, 548,

550, 590

\ACRfullplfmt 550

\Acrfullplfmt 550

\acrfullplfmt 550

\acrlinkfullformat � 550

\ACRlong §6.1; 203, 551

\Acrlong . §6.1; Table 6.1; 203, 548, 551

\acrlong . §6.1; Table 6.1; 178, 203, 208,

404, 406, 419, 500, 548, 551, 589

\ACRlongpl §6.1; 204, 551

\Acrlongpl §6.1; Table 6.1; 203,

548, 551

\acrlongpl . . §6.1; Table 6.1; 203, 548,

551, 590

\acrnameformat 551

acronym format see acronym style

acronym style 59, 124, 134–138 passim, 143,

147–154 passim, 184, 197–200

passim, 204–212 passim, 216–218,

225, 231, 408, 409, 414, 418, 419,

471, 495, 515–518 passim, 529,

549–553, 561, 566, 578, 591, 620,

647, 653

dua-desc §6.2.1.5; 215, 529

dua §6.2.1.5; 206, 215, 216, 529

footnote-desc §6.2.1.6; 215, 529

footnote-sc-desc . . . §6.2.1.6; 212, 216,

408, 409, 529

footnote-sc §6.2.1.6; 215, 529

footnote-sm-desc . . . §6.2.1.6; 216, 529

footnote-sm §6.2.1.6; 215, 530

footnote §6.2.1.6; 204, 215, 216, 530

long-sc-short-desc §6.2.1.3; 214,

405, 530

long-sc-short . . §6.2.1.1; 209, 211, 214,
218, 404, 530

long-short-desc §6.2.1.3; 214, 217, 530

long-short . §6.2.1.1; 184, 211, 212–218
passim, 499, 530, 654

long-sm-short-desc §6.2.1.3; 214, 530

long-sm-short §6.2.1.1; 210, 212,
214, 530

long-sp-short-desc . §6.2.1.3; 214, 531

long-sp-short . . §6.2.1.1; 212, 214, 531
sc-short-long-desc §6.2.1.4; 214,

abbreviations 671 acronym style

Index

216, 531

sc-short-long . . §6.2.1.2; 213, 215, 531

short-long-desc §6.2.1.4; 214, 215, 531

short-long . §6.2.1.2; 213, 214, 215, 531

sm-short-long-desc §6.2.1.4; 214,

216, 531

sm-short-long . . §6.2.1.2; 213, 215, 531
\acronymentry . . . §6.2; 208, 210–216,

222, 552

\acronymfont §6.2.1; 202–206 passim,

209, 210–216 passim, 226, 321, 405,

411, 552

\acronymname §1.5.1; Table 1.2; 56, 58,

547, 552, 662

acronyms 40, 121, 197, 647

\acronymsort §6.2; 209, 210–216,

221, 552

\acronymtype §9; 121, 260, 552

\acrpluralsuffix §6.2.1; 210,

211–215 passim, 552

\ACRshort §6.1; 203, 552

\Acrshort §6.1; Table 6.1; 202, 552, 553

\acrshort §6.1; Table 6.1; 178, 202,

203, 226, 404, 406, 419, 499, 500,

552, 553, 617

\ACRshortpl §6.1; 203, 553

\Acrshortpl . §6.1; Table 6.1; 203, 553

\acrshortpl . §6.1; Table 6.1; 203, 553,

554, 606

\Acs §6.1; Table 6.1; 553

\acs §6.1; Table 6.1; 553

\Acsp §6.1; Table 6.1; 553

\acsp §6.1; Table 6.1; 554

\addcontentsline 88

\addglossarytocaptions 57,

60, 554

align environment 172, 238

all caps 89, 172, 182, 361, 378, 414

\Alph 16, 280–283 passim

\alph 16, 280–283 passim

\alpha . 13, 173

\alsoname 466, 467, 653

\altnewglossary . . §9; 247, 259, 554

amsgen package . 8, 229

amsmath package 172, 238, 373

\andname . 554

\appto . 292

\apptoglossarypreamble . . . §8.2;

255, 554

\arabic . . . 16, 280–283 passim, 350, 448

arara 6, 18, 22, 26, 37, 63, 71, 76, 77, 430

array package . 310, 318

ASCII 139, 280, 281, 507

\AtBeginDocument 161

atom . 87

attribute . . see accessibility attribute, category

attributes & xindy attributes

auto-completion 77, 86, 669

B

babel package . 16, 44, 45, 52–56 passim, 84,

111, 135, 161, 165, 285, 289, 346,

432, 547, 669

\babelprovide 44

beamer class 172, 235, 238

\BeginAccSupp 495–499 passim

\bfseries . 273

bib2gls . 23

-g . see --group
--group 24, 26, 37, 99, 401, 459,

471, 478, 485, 487, 515

-m see --map-format
--map-format 430

--no-group 525

\bibglsdelimN 195, 196, 554

\bibglslastDelimN . . 195, 196, 554

book class . 253

booktabs package 307, 311, 314, 487

\bottomrule 314, 315

C

\c . 15

\capitalisefmtwords . . . 190, 363,

555, 569, 658

\capitalisewords 190, 363,

555, 569

\caption . 104, 167

\captions〈language〉 . . . 56, 59, 84, 554

\acronymentry 672 \captions〈language〉

Index

case change 361, 507, see also uppercase,

lowercase, title case, sentence case &

all caps

categories 514, 629, 633, 636

abbreviation . . 41, 42, 86, 103, 397, 398,

404, 407, 411, 415, 419, 499, 500,

646, 653

acronym . 41, 42, 86, 103, 198, 397, 398,

404–411 passim, 415, 419, 420,

500, 647

general 413, 454, 461, 471, 500

index . 500

number . 500

symbol 462, 466, 500

category attributes 34, 35, 86, 103, 118, 188,

199, 299, 300, 334, 411, 413,

417–426 passim, 500, 501, 610

discardperiod . . 417–420 passim,

500, 501

glossdesc . . 34, 334, 411, 413, 423

glossdescfont . 34, 300, 334, 443

glossname 35, 299, 334

glossnamefont 299, 334, 443

glosssymbolfont . 300, 334, 426

indexonlyfirst 103

insertdots 417, 419, 501

nohyper . 118

nohyperfirst 86, 188

noshortplural 417

pluraldiscardperiod 417

retainfirstuseperiod . . . 417

\cGls §7.1; 241, 242, 555, see also

\glsenableentrycount &

\cGlsformat
\cgls . . §7.1; 240, 241–243, 503, 555, see

also

\glsenableentrycount &

\cglsformat
\cGlsformat §7.1; 242, 555

\cglsformat §7.1; 241, 555

\cGlspl §7.1; 241, 242, 556, see also

\glsenableentrycount &

\cGlsplformat
\cglspl §7.1; 240, 241, 242, 556, see also

\glsenableentrycount &

\cglsplformat
\cGlsplformat §7.1; 242, 556

\cglsplformat §7.1; 241, 556

\chapter 88–91 passim, 167, 190,

252–255 passim, 446

chapter counter 278, 350, 488

\cite . 8

classicthesis package 8, 96, 97, 304, 307

CLDR . 27, 46, 508

\cleardoublepage 253

\clearpage . 253

CLI 6, 15, 20, 508, 510, 512

codepage . . . 76, 112, 346, 347, 546, 611, see

also encoding

composite location see compositor

compositor . . 132, 280–287 passim, 355, 610

convertgls2bib . . 398, 400, 421, 427,

429, 433–437 passim, 457, 468, 484

--bibenc . 484

-i . . . see --index-conversion
--ignore-type 441

--index-conversion . 445, 470

--preamble-only . 398, 406, 422,

429, 434, 437, 441, 445, 450, 457,

463, 470, 478, 482, 484, 493

--split-on-type 434, 450

-t see --split-on-type
--texenc . 484

\csletcs . 292

\currentglossary §8; 247,

335–337, 556

\CurrentTrackedDialect . . 57–61

passim

\CurrentTrackedLanguage 57–61

\CustomAcronymFields � 556

\CustomNewAcronymDef � 556

D

datatool-base package a, 7, 12, 558, 559
datatool-english 245, 249

datatool package Table 1.1; 9–13 passim, 245,

249, 250, 558, 559, 627

\datatool_sortwordseq:NN . 250

case change 673 \datatool_sortwordseq:NN

Index

\DeclareAcronymList . . . §2.7; 123,

181, 198, 364, 557

\def . 375

\DefaultNewAcronymDef � . . . 557

\defglsdisplay � 557

\defglsdisplayfirst � 557

\defglsentryfmt . . §5.1.4; 168, 171,

175, 176, 181, 185, 202, 208, 216,

557, 647

\DefineAcronymSynonyms . . . §2.7;

124, 557, see also shortcuts
\delimN . . . §12; 195, 272, 276, 296, 554,

557, 592, 603

\delimR . §12.2; 195, 274, 276, 278, 289,

290, 558, 592, 603

description environment 8, 96, 300, 304–306,

337, 532, 536

\DescriptionDUANewAcronym-
Def � . 558

\DescriptionFootnoteNew-
AcronymDef � 558

\descriptionname §1.5.1; Table 1.2;

58, 558

\DescriptionNewAcronymDef �
558

\dgls . 78, 546, 558

\dicei . 351, 476

\diceii . 351

\diceiii . 351

\diceiv . 351

\dicev . 351

\dicevi . 351

display style (or format) see entry format

doc package . 129, 259

document environment Table 1.1; 9, 87,

161–165 passim, 239, 571, 660

\DTLformatlist 558, 627

\DTLifinlist 559

\DUANewAcronymDef � 559

DVI . 168

E

\emph Table 12.1; 273, 274, 279

encap see location encap (format)

encoding . . 15, 22, 52, 60, 61, 73–77 passim,

112, 346, 347, 474, 483–485, 507,

513, 626, see also codepage

\EndAccSupp . 495

\ensuremath 31, 138, 426

entry see glossary entries

entry format 122, 123, 153, 171–176 passim,

181, 184, 190, 201, 202, 207, 208,

216, 412, 620, 647

entry line . 92, 94, 166–169 passim, 174, 333,

338, 508, 609

entry location . . 272, 273, 280, 508, 510, 511

\entryname . . §1.5.1; Table 1.2; 58, 559

equation counter . 104, 278, 420–423 passim,

431, 661

equation environment 420

\es@scroman 285–295 passim

etoolbox package . . . 109, 182, 196, 296, 298,

366–374 passim, 456, 457, 627,

631, 640

example-glossaries
-acronym.tex §1.4; 40

example-glossaries-acronym
-desc.tex §1.4; 41

example-glossaries-acronyms
-lang.tex §1.4; 41

example-glossaries
-brief.tex §1.4; 38

example-glossaries
-childmultipar.tex . §1.4;

43

example-glossaries
-childnoname.tex . §1.4; 42

example-glossaries-cite.tex
§1.4; 43

example-glossaries
-images.tex §1.4; 40

example-glossaries-long.tex
§1.4; 38

example-glossaries
-longchild.tex §1.4; 42

example-glossaries
-multipar.tex §1.4; 38

\DeclareAcronymList 674example-glossaries-multipar.tex

Index

example-glossaries
-parent.tex §1.4; 42

example-glossaries
-symbolnames.tex . §1.4; 39

example-glossaries
-symbols.tex §1.4; 39

example-glossaries-url.tex
§1.4; 43

example-glossaries-user.tex
§1.4; 39

example-glossaries-utf8.tex
§1.4; 38

example-glossaries-xr.tex
§1.4; 44

extended Latin alphabet Table 1.1; 13, 20, 45,

486, 508

extended Latin character 12, 483, 508,

511, 512, see also non-Latin character

F

field . 508

file extensions 75, see also file formats

file formats

acn . 260

acr . 260

alg . 260

aux 66, 68, 75, 115, 116, 164, 195, 258,

283, 335, 510, 651

bib 23, 77, 262, 511

glg 74, 75, 115, 245, 258, 287

glg2 . 259

glo 17, 21, 68, 74, 75, 259, 286

glo2 . 259

gls 17, 22, 74, 75, 259, 287

gls2 . 259

glsdefs . . 77, 87, 161, 165, 571, 625

glslabels . 669

glstex 77, 258, 512

idx . 260

ilg . 260

ind . 260

ist 16, 17, 76, 130, 131, 283–286

passim

ldf . 652

log 113, 245, 663

nlg . 260

nlo . 260

nls . 260

slg . 260

slo . 260

sls . 260

tex . 52

toc . 87

xdy 21, 70, 76, 130, 131, 281, 283, 295,

344–358

first use . . . 137, 138, 184, 187, 201, 378, 508

first use flag . 168–171 passim, 202, 238, 366,

508, 598, 607, 608, 620

first use text . 508

\firstacronymfont §6.2.1; 184,

206, 209, 211, 213, 559

flowfram package . 315

fmtcount package 353, 354, 483

fontenc package . 395

fontspec package . 395

\footnote 188, 215, 412

\FootnoteNewAcronymDef � . 560

\forallabbreviationlists
364, 560

\forallacronyms §15.3; 122,

364, 560

\forallglossaries . §15.3; 364, 560

\forallglsentries . §15.3; 364, 560

\foreignlanguage 443

\forglsentries §15.3; 364, 560

\forlistcsloop 627

\forlistloop 196, 296, 298

format

abbreviation see abbreviation style

(glossaries-extra)

acronym see acronym style

entry see entry format

glossary see glossary styles

location see location encap (format)

standard see standard location format

frame environment . 235

\frontmatter 286

example-glossaries-parent.tex 675 \frontmatter

Index

full stop (.) 99, 228–230, 280, 303, 304,
404, 417, 665

G

\gdef . 375

\Genacrfullformat §5.1.4; 185, 561

\genacrfullformat §5.1.4; 184,

207, 208, 216, 219, 226, 561, 647

\GenericAcronymFields . . §6.2.2;

217, 222, 561, 647

\Genplacrfullformat §5.1.4;

185, 561

\genplacrfullformat §5.1.4;

184, 561

gettitlestring package 304, 597

\GetTitleStringSetup 304

\〈group-label〉groupname §13.2.1;

301, 335

group (letters, numbers, symbols) . 12, 21–30

passim, 37, 46, 106, 107, 112, 139,

251, 252, 300, 301, 305–307,

311–328 passim, 332–341 passim,

357, 401, 452, 474–483 passim, 487,

509, 515, 525, 526, 532–536 passim,

540–545 passim, 568, 591, 597,

601–604 passim, 611–618 passim,

630–636 passim, 652, 665

GUI . 395, 509

Glo

\glolinkprefix . . . §13.2.1; 171, 251,

333, 526, 561

glossaries-accsupp package . . §17; 81, 127,

136, 143, 384, 387, 394, 494–499

passim, 514–521, 565, 566, 570–590

passim, 598–601 passim, 606,

612–617 passim, 621–624, 660, 662

glossaries-babel package 84
glossaries-dictionary

-English.dict 57

glossaries-dictionary-〈Lang〉
.dict 57, 593

glossaries-english.ldf . . 45, 57

glossaries-extra-bib2gls package . 490, 558,

573, 579, 629–632, 651

glossaries-extra-stylemods package . . . 100,

300, 304, 325, 588, 606, 662

glossaries-extra package a, 660

abbreviations . §2.7; 5, 122, 384,

398, 405, 552, 626, 650, 660

accsupp . . . §2.9; 127, 384, 499, 565,

566, 660

autoseeindex §2.4; 103, 467, 468,

518, 660

docdef §2.1; Table 1.1; 77, 83, 86, 87,

134, 135, 164, 660

atom . 87, 660

false . 87, 660

restricted 87, 161, 660

true . 87, 660

equations . §2.4; 104, 170, 272, 660

floats §2.4; 104, 170, 272, 661

indexcounter §2.4; 105, 661

indexcrossrefs . . §2.4; 103, 661

nomissingglstext §2.9;

127, 661

postdot . . . 5, 99, 304, 404, 413, 421,

439, 467, 635, 661, see also

nopostdot & postpunc
postpunc 99, 304, 606, 661

prefix §2.9; 127, 376, 403, 441,

493, 661

record §2.4; Table 1.1; 9, 23–27

passim, 34, 49, 77, 92, 104, 117, 278,

282–284, 297, 298, 398, 406, 421,

422, 429–433 passim, 439, 445, 457,

463, 468, 470, 478, 482–485 passim,

489–493 passim, 516, 626, 627, 651,

652, 661

hybrid 104, 661

nameref 104, 105, 515, 661

off . 104, 661

only 104, 105, 515, 661

stylemods . . §2.3; 5, 8, 96, 98, 100,

310–313 passim, 318, 319, 326, 327,

403, 405, 421, 439, 460, 463, 467,

487, 488, 662

full stop (.) 676 glossaries-extra

Index

undefaction . . . §2.1; 86, 366, 631,

636, 662

error . 86, 662

warn 87, 587, 662

glossaries-french a

glossaries-german.ldf 45

glossaries-german a

glossaries-irish.ldf 60

glossaries-〈iso-lang〉-〈iso-region〉
.ldf . 59

glossaries-〈lang〉.ldf 57

glossaries-〈language〉 a
glossaries-polyglossia package 84
glossaries-prefix package §16; 127, 136, 143,

376, 377, 378, 402, 403, 441, 442,

492, 493, 517, 518, 580, 581, 607,

641, 642, 649, 650, 661, 662

glossaries package §1; a, 2, 231, 662

acronym . . §2.7; Table 1.2; 74, 79, 90,

118, 121, 122, 129, 162, 231, 260,

264, 384, 396–398, 404, 405, 552,

660, 662

acronymlists §2.7; 122, 123, 181,

198, 260, 364, 662

acronyms . . §2.7; 118, 122, 231, 260,

552, 650, 651, 660, 662, 665

automake . . . §2.5; 62, 111, 113, 115,

245, 258, 292, 346, 432, 662

delayed 16, 115, 662, 663

false 115, 662

immediate . . 16, 83, 115, 116, 662

lite 83, 114, 115, 116, 662, 663

makegloss 83, 115, 116, 663

true � see delayed
automakegloss see makegloss
automakeglosslite . . see lite
compatible-2.07 � . . . §2.9; 128,

129, 132, 663

compatible-3.07 � §2.9;

128, 663

counter §2.3; 99, 101, 132, 143, 170,

258, 272, 278, 280, 347–350 passim,

423, 514, 569, 661, 663

counterwithin §2.3; 94, 301,

340, 663

debug §2.1; 79, 80, 81, 82, 663

false . 80, 663

showaccsupp 81, 499, 663

showtargets 80, 359, 573,

613, 663

true 80, 81, 663

description � §2.8; 124,

125–127, 663

disablemakegloss . §2.5; 9, 116,

664, 667

dua � §2.8; 125, 127, 664

entrycounter §2.3; 92, 93–95,

248, 249, 300–304 passim, 332, 339,

340, 360, 575, 578, 607, 608, 614,

640, 657, 664

esclocations §2.4; 100, 101, 281,

293–295, 351, 353, 474, 643, 664

footnote � §2.8; 124, 125, 126, 664

hyperfirst . §2.1; 85, 86, 169, 187,

188, 215, 412, 642, 664

index . . §2.6; 118, 120, 121, 260, 648,

651, 664, 665

indexonlyfirst . . §2.4; 101, 102,

103, 272, 625, 642, 664

kernelglossredefs §2.9;

128, 664

false 128, 664

nowarn 128, 664

true . 128, 664

languages §2.1; 44, 45, 84, 129,

664, 665

locales see languages
makeindex . . §2.5; 79, 111, 129, 665

mfirstuc §2.9; 127, 128, 362,

363, 665

nogroupskip . . . §2.3; 99, 248, 249,

301–307 passim, 311–319 passim,

328, 341, 487, 605, 642, 665

noglossaryindex . §2.6; 121, 665

nohypertypes . §2.6; 85, 117, 121,

168, 169, 183, 187, 188, 259, 665

nolangwarn §2.1; a, 79, 665

nolist §2.3; 97, 129, 304, 665

glossaries-french 677 glossaries

Index

nolong . . §2.3; 96, 97, 129, 301, 307,

460, 665

nomain . . . §2.6; 118, 119–122 passim,

129, 259, 260, 404, 440, 570, 665

nonumberlist . . . §2.3; 64, 98, 141,

248, 251, 256, 257, 262, 272, 285,

307, 401, 471, 484, 511, 562, 665

nopostdot . §2.3; 99, 248, 304, 404,

452, 467, 606, 661, 665, see also

postdot & postpunc
noredefwarn §2.1; 79, 666

nostyles §2.3; 31–36 passim, 96, 97,

129, 301–307 passim, 315, 321, 403,

439, 460, 488, 666

nosuper . . §2.3; 8, 97, 129, 301, 315,

460, 666

notranslate §2.1; 53, 84, 129, 666

notree . . §2.3; 97, 129, 321, 326, 666

nowarn §2.1; 79, 80, 666

numberedsection . . . §2.2; 88, 89,

91, 248–252 passim, 526, 569, 666

autolabel 90, 666

false . 90, 666

nameref 91, 666

nolabel 90, 666

numberline §2.2; 88, 666

numbers . . . §2.6; 118, 119, 260, 604,

634, 651, 667

order §2.5; Table 1.3; 18, 23, 76, 105,

110, 250, 452, 459, 527, 667

letter 110, 667

word . 110, 667

restoremakegloss . . . §2.5; 116,

117, 667

sanitizesort . §2.5; Table 1.1; 13,

105, 106, 107, 139, 140, 249,

574, 667

savenumberlist . . . §2.3; 92, 195,

196, 251, 256, 488–490, 562, 667

savewrites §2.1; 83, 667

section §2.2; 88, 252, 253, 656, 667

seeautonumberlist . . . §2.3; 98,

142, 269, 667

seenoindex §2.4; 100, 142, 667

error 100, 668

ignore 100, 668

warn . 100, 668

shortcuts §2.7; 124, 204, 547–549,

553, 554, 668

smallcaps � §2.8; 124, 125,

126, 668

smaller � . §2.8; 124, 125, 126, 668

sort §2.5; 31, 105, 106, 107, 668

clear 9, 106, 668

def . 13, 106, 107, 138–140, 301, 668

none Table 1.1; 9, 106, 668

standard 107, 108, 245, 574, 607,

667, 668

use . 13, 106, 107, 138–140, 301, 668

style . . §2.3; 23, 96, 97, 98, 248, 311,

313, 318, 319, 326, 327, 331,

532, 668

subentrycounter . . . §2.3; 92, 94,

95, 96, 157, 159, 248, 249, 301, 332,

339, 340, 607, 614, 615, 643,

658, 668

symbols . §2.6; 5, 13, 17, 21, 22, 118,

260, 616, 634, 651, 669

toc §2.2; 18, 87, 88, 252, 254, 403,

405, 563, 643, 667, 669

translate . §2.1; 45, 53–56 passim,

83, 129, 664, 666, 669

babel . 84, 669

false 83, 84, 669

true 83, 84, 593, 669

ucmark §2.2; 89, 253, 643, 669

writeglslabelnames . §2.1; 77,

86, 669

writeglslabels §2.1; 77, 86, 669

xindy . §2.5; Table 1.3; 21, 46, 73, 74,

111, 112–114, 129, 294, 344, 357,

474, 482–484, 669

codepage §2.5; Table 1.3; 112

glsnumbers §2.5; 112, 113,

357, 669

language §2.5; Table 1.3; 111

xindygloss §2.5; 112, 129, 669

678

Index

xindynoglsnumbers . . . §2.5; 46,

113, 129, 669

\glossariesextrasetup 129,

561, 657

\glossary 128, 129, 664

glossary-bookindex package 36, 301,

535, 626

glossary-hypernav package . §13.2.2; 7, 335,

592, 601, 602, 615

glossary-inline package . . §13.1.9; 327, 328,

535, 593–595, 606

glossary-list package . . §13.1.1; 96, 97, 304,

305, 405, 532, 536, 542, 597,

644, 665

glossary-long package . §13.1.2; 96, 97, 307,

310–319 passim, 403, 532–538

passim, 572, 604, 665

glossary-longbooktabs package §13.1.4; 313,
487, 532–538 passim, 599, 604–608

passim

glossary-longextra package . . 301, 308, 403,

487, 536

glossary-longragged package . . §13.1.3; 310,
313, 314, 533, 538, 539

glossary-mcols package §13.1.8; Table 13.2;

97, 325, 326, 539–542, 599

glossary-super package . . §13.1.5; 8, 96, 97,

315, 318, 533, 534, 542, 543, 572,

604, 666

glossary-superragged package §13.1.6; 318,

534, 543, 544

glossary-topic package . . 301, 325, 460–463

passim, 544, 545

glossary-tree package . §13.1.7; 96, 97, 321,

326, 460, 463, 534, 535, 545, 588,

611, 618, 619, 644, 666

glossary . . 2, 8, 136, 163, 245, 258, 364, 509

abbreviations . . . §2.7; 122, 398,

547, 660

acronym §2.7; 121, 662

index §2.6; 120, 260

main §9; 118, 259, 665

numbers §2.6; 119, 260

symbols . . . §2.6; 118, 119, 184, 260,

634, 651, 669

glossary package . . . 128, 197, 231, 232, 649

glossary entries 2, 8, 134, 166, 198

glossary entry fields

childcount 367, 631

currcount §7.1; 239, 240, 643

desc §4.4; Table 4.1; 368

descaccess 385, 390, 393, 576

descplural §4.4; Table 4.1

descpluralaccess 385, 390,

393, 576

dtlsortgroup §8.1; 250

firstpl §4.4; Table 4.1

level 157, 252, 509

loclist 195, 196, 257, 296, 297,

490, 603, 652, 667

longpl §4.4; Table 4.1

prenumberlist 141, 256, 257,

517, 603

prevcount §7.1; 239

shortpl §4.4; Table 4.1; 388

siblingcount 456

siblinglist 456

sortvalue §4.4; Table 4.1; 374

useri §4.4; Table 4.1; 372, 425,

455, 510

useriaccess 386, 391, 393

userii §4.4; Table 4.1

useriiaccess 386, 391, 393

useriii §4.4; Table 4.1

useriiiaccess 386, 391, 393

useriv §4.4; Table 4.1

userivaccess 386, 391, 394

userv §4.4; Table 4.1

uservaccess 387, 391, 394

uservi §4.4; Table 4.1

userviaccess 387, 392, 394

glossary entry keys . 514

access §17.1; 384, 390, 392, 496,

514, 566, 575, 601

alias §4; 44, 142, 143, 162, 168,

406, 514

category . §4; 41, 86, 143, 181, 187,

416–419 passim, 461–466 passim,

\glossariesextrasetup 679 glossary entry keys

Index

471, 501, 514, 634, 646, 647

counter . . §4; 99, 143, 170, 280, 514

description . §4; Table 4.1; 31, 41,

105, 135, 136, 137, 144, 153, 155,

178, 191, 193, 198, 211–217 passim,

368, 377, 385, 408, 445, 464, 492,

495, 503, 508, 514, 515, 561, 571,

575, 576, 635, 639, 641, 648

descriptionaccess . §17.1; 385,

390, 393, 514, 572

descriptionplural §4;

Table 4.1; 137, 155, 193, 385, 515,

571, 576

descriptionpluralaccess
§17.1; 385, 390, 393, 515, 572

first . . . §4; 134, 137, 138, 144, 169,

172, 176, 177, 183, 184, 192, 197,

200, 208, 234, 375, 376, 385, 408,

501, 515, 576, 577, 589, 590

firstaccess . §17.1; 385, 392, 515,

577, 589

firstplural . . . §4; Table 4.1; 138,

146, 173–177 passim, 184, 192, 376,

385, 501, 515, 577, 590

firstpluralaccess . §17.1; 385,

390, 392, 515, 577, 590

group 510, 515, 652

location . . Table 1.1; 195, 196, 296,

297, 490, 516, 573, 579, 652, 667

long . §4; 85, 143, 144, 152, 155, 169,

172, 183, 184, 198, 203–208 passim,

367, 385, 416, 516, 551, 565, 578,

629, 633, 641

longaccess . . §17.1; 385, 391, 393,

516, 565, 579, 598

longplural . §4; Table 4.1; 59, 138,

143, 173, 184, 198, 203, 205, 211,

386, 516, 551, 566, 579, 634

longpluralaccess . . §17.1; 386,

391, 393, 516, 566, 579, 599

name §4; 13, 21, 25, 31, 35–42 passim,

62, 105–109 passim, 135, 136,

137–140, 155–159 passim, 177, 191,

198, 208–212 passim, 222, 270, 271,

375, 377, 384, 407, 414, 416, 422,

426, 435, 457–465 passim, 474, 486,

492, 495, 501, 508, 514, 516, 519,

564, 566, 579, 590, 601, 634,

648, 668

nonumberlist . . §4; 140, 141, 142,

257, 269, 517, 667

parent . . §4; 135, 136, 137, 157–159,

367, 374, 375, 509, 517, 580, 641

plural . . . §4; 59, 134, 137, 138, 145,

146, 160, 173, 176, 184, 192, 198,

375, 376, 385, 455–457, 464, 492,

501, 515, 517, 580, 605

pluralaccess §17.1; 385, 390,

392, 517, 580, 606

prefix . §16; 376, 377–380, 492, 517,

580, 641, 650

prefixfirst . . §16; 376, 378–381,

517, 581, 641

prefixfirstplural . . §16; 376,

378–381, 518, 581, 642

prefixplural . §16; 376, 377–381,

492, 518, 581, 642

see . . . §4; 44, 82, 98–103 passim, 141,

142, 143, 162, 168, 267–272 passim,

405, 406, 466–469 passim, 514, 518,

609, 660, 667, 668

seealso . . §4; 44, 103, 142, 162, 406,

411, 467, 469, 518, 660

short . §4; 25, 85, 143, 144, 155, 169,

172, 183, 184, 198, 202–208 passim,

368, 386, 407, 433, 438, 518, 553,

566, 581, 582, 612, 629, 636, 642

shortaccess . §17.1; 386, 390, 393,

495, 496, 500, 518, 566, 570,

582, 612

shortplural §4; Table 4.1; 59, 137,

138, 143, 173, 184, 198, 199, 203,

210, 211, 386, 388, 518, 519, 552,

553, 566, 582, 612, 620, 637

shortpluralaccess . §17.1; 386,

391, 393, 519, 566, 582, 613

sort . §4; Table 4.1; 13, 20, 21, 25, 62,

105–107, 136, 138, 139, 140, 144,

680

Index

155, 159, 165, 208–212 passim, 249,

374, 375, 407, 409, 414, 416, 421,

422, 435, 442–445 passim, 452, 457,

458, 465, 474–480 passim, 486, 512,

519, 552, 582, 634, 668

symbol . . §4; 31, 35, 39, 40, 138, 144,

155, 169, 178, 185, 186, 191, 193,

222, 304, 334, 367, 385, 424–426,

501, 519, 582, 583, 615, 642

symbolaccess §17.1; 385, 390,

392, 497, 519, 583, 615

symbolplural . . §4; 138, 155, 193,

385, 519, 583, 616

symbolpluralaccess §17.1;

385, 390, 392, 519, 583, 616

text . . . §4; 36, 37, 137, 144, 169–177

passim, 183, 184, 192, 197, 200, 208,

234, 270, 271, 375, 376, 385, 408,

426, 433, 438, 464, 469, 501, 515,

517, 519, 520, 583, 590, 617

textaccess . . §17.1; 385, 390, 392,

520, 584, 617

type §4; 17, 22, 122, 140, 149,

160–163 passim, 198, 199, 210, 258,

373, 375, 434, 442, 450, 520, 584,

634, 644–648 passim

user1 . . . §4; Table 4.1; 39–43 passim,

140, 179, 193, 341, 369, 370, 386,

425, 455, 462, 495, 497, 501, 510,

520, 584, 621

user1access . §17.1; 386, 391, 393,

497, 520, 584, 621

user2 . §4; Table 4.1; 39, 40, 140, 179,

194, 342, 386, 520, 584, 585, 621

user2access . §17.1; 386, 391, 393,

520, 585, 621

user3 . §4; Table 4.1; 39, 40, 140, 179,

194, 386, 520, 585, 622

user3access . §17.1; 386, 391, 393,

520, 585, 622

user4 . §4; Table 4.1; 39, 40, 140, 180,

194, 386, 521, 585, 586, 622

user4access . §17.1; 386, 391, 394,

521, 586, 623

user5 . §4; Table 4.1; 39, 40, 140, 180,

194, 387, 521, 586, 623

user5access . §17.1; 387, 391, 394,

521, 586, 623

user6 . §4; Table 4.1; 39, 40, 140, 180,

194, 387, 521, 586, 624

user6access . §17.1; 387, 392, 394,

521, 587, 624

glossary file see indexing file

glossary, ignored see ignored glossary

glossary styles 96, 157, 255, 532

altlist . . §13.1.1; 225, 306, 405, 439, 532

altlistgroup §13.1.1; 306, 532

altlisthypergroup §13.1.1; 306, 532

altlong4col-booktabs §13.1.4; 310,

315, 532

altlong4col . . §13.1.2; 303, 309, 310, 532

altlong4colborder §13.1.2; 310, 532

altlong4colheader §13.1.2; 310, 315, 533

altlong4colheaderborder . . . §13.1.2; 310,

487, 533

altlongragged4col-booktabs . . . §13.1.4;

313, 315, 487, 533

altlongragged4col §13.1.3; 312, 313, 533

altlongragged4colborder §13.1.3;

313, 533

altlongragged4colheader . . §13.1.3; 313,

315, 533

altlongragged4colheaderborder . §13.1.3;

313, 533

altsuper4col . §13.1.5; 303, 317, 318, 533

altsuper4colborder §13.1.5; 318, 534

altsuper4colheader . . . §13.1.5; 318, 534

altsuper4colheaderborder §13.1.5;

318, 534

altsuperragged4col . . . §13.1.6; 320, 534

altsuperragged4colborder §13.1.6;

320, 534

altsuperragged4colheader §13.1.6;

320, 534

altsuperragged4colheaderborder §13.1.6;

320, 534

alttree §13.1.7; Table 13.2; 303, 316,

321, 323, 324, 325, 463, 534, 618

glossary file 681 glossary styles

Index

alttreegroup §13.1.7; Table 13.2;

325, 535

alttreehypergroup . . . §13.1.7; Table 13.2;

325, 460, 535

bookindex 36, 37, 439, 535, 626

index §13.1.7; Table 13.2; 8, 96, 97, 306,

307, 322, 323, 326, 331, 332, 535,

618, 619

indexgroup . . §13.1.7; Table 13.2; 12, 23,

323, 331, 535, 618

indexhypergroup §13.1.7; Table 13.2;

321, 323, 335, 535

inline . . §13.1.9; 327, 328, 459, 508, 535

list §13.1.1; 8, 96, 97, 299, 305, 306, 332,

337–341 passim, 381, 439, 536, 597

listdotted . . . §13.1.1; 303, 304, 306, 307,

536, 597

listgroup §13.1.1; 107, 301, 306, 536

listhypergroup . . . §13.1.1; 306, 321–324

passim, 536, 597

long-booktabs . . §13.1.4; 308, 309, 315,

339, 536

long-name-desc-sym-loc . . . 487, 536

long-name-desc 536

long §13.1.2; 245, 300, 303, 308,

309, 536

long3col-booktabs §13.1.4; 309,

315, 536

long3col . . §13.1.2; Table 13.1; 309, 537

long3colborder §13.1.2; Table 13.1;

309, 537

long3colheader §13.1.2; Table 13.1; 309,

315, 537

long3colheaderborder §13.1.2;

Table 13.1; 309, 537

long4col-booktabs . . . §13.1.4; 309, 315,
487, 537

long4col §13.1.2; 301, 309, 310, 537

long4colborder . . . §13.1.2; 309, 310, 537

long4colheader §13.1.2; 309, 310,

315, 537

long4colheaderborder §13.1.2; 310,

487, 538

longborder §13.1.2; 308, 538

longheader . §13.1.2; 308, 315, 337, 538

longheaderborder §13.1.2; 255, 308, 538

longragged-booktabs §13.1.4; 312,
315, 538

longragged §13.1.3; 311, 312, 538

longragged3col-booktabs . §13.1.4; 312,

315, 538

longragged3col §13.1.3; 312, 538

longragged3colborder . §13.1.3; 312, 539

longragged3colheader §13.1.3; 312,

315, 539

longragged3colheaderborder . . . §13.1.3;

312, 539

longraggedborder §13.1.3; 311, 539

longraggedheader §13.1.3; 312, 315, 539

longraggedheaderborder §13.1.3;

312, 539

mcolalttree §13.1.8; Table 13.2; 256, 539

mcolalttreegroup §13.1.8; Table 13.2; 540

mcolalttreehypergroup §13.1.8;

Table 13.2; 540

mcolalttreespannav . §13.1.8; Table 13.2;

540

mcolindex . §13.1.8; Table 13.2; 326, 540

mcolindexgroup §13.1.8; Table 13.2; 540

mcolindexhypergroup §13.1.8;

Table 13.2; 540

mcolindexspannav . . §13.1.8; Table 13.2;

540

mcoltree §13.1.8; Table 13.2; 541

mcoltreegroup . . §13.1.8; Table 13.2; 541

mcoltreehypergroup . §13.1.8; Table 13.2;

326, 541

mcoltreenoname §13.1.8; Table 13.2; 541

mcoltreenonamegroup §13.1.8;

Table 13.2; 541

mcoltreenonamehypergroup §13.1.8;

Table 13.2; 541

mcoltreenonamespannav §13.1.8;

Table 13.2; 541

mcoltreespannav . . . §13.1.8; Table 13.2;

542

sublistdotted §13.1.1; 307, 542

super §13.1.5; 245, 316, 317, 542

682

Index

super3col §13.1.5; 317, 542

super3colborder §13.1.5; 317, 542

super3colheader §13.1.5; 317, 542

super3colheaderborder §13.1.5; 317, 542

super4col . . . §13.1.5; 301, 317, 318, 542

super4colborder . §13.1.5; 317, 318, 543

super4colheader . §13.1.5; 317, 318, 543

super4colheaderborder §13.1.5; 317,

318, 543

superborder §13.1.5; 316, 543

superheader §13.1.5; 316, 543

superheaderborder §13.1.5; 255,

316, 543

superragged §13.1.6; 319, 320, 543

superragged3col §13.1.6; 320, 543

superragged3colborder §13.1.6; 320, 544

superragged3colheader §13.1.6;

320, 544

superragged3colheaderborder . . §13.1.6;

320, 544

superraggedborder . . . §13.1.6; 319, 544

superraggedheader . . . §13.1.6; 319, 544

superraggedheaderborder §13.1.6;

319, 544

topic 362, 462–464, 544

topicmcols . 545

tree . §13.1.7; Table 13.2; 222, 299, 322,

323, 324, 463, 545, 618

treegroup §13.1.7; Table 13.2; 323,

545, 618

treehypergroup §13.1.7; Table 13.2; 305,

323, 545, 619

treenoname . . . §13.1.7; Table 13.2; 321,

323, 545

treenonamegroup . . . §13.1.7; Table 13.2;

323, 324, 459, 545

treenonamehypergroup §13.1.7;

Table 13.2; 324, 545

\glossaryentry §12.5; 286, 562

glossaryentry counter . . §2.3; 92, 93–95, 575,

607, 608, 614, 657, 663

\glossaryentrynumbers §8.2; 256,

257, 338, 562, 602, 603, 608

\glossaryheader . §13.2.3; 257, 328,

337, 340, 562

\glossarymark � . §8.2; 252, 253, 562

\glossaryname . . §1.5.1; Table 1.2; 46,

56, 58, 84, 260, 554, 562

\glossarypostamble §8.2; 255, 562

\glossarypreamble §8.2; 94,

254, 562, see also

\setglossarypreamble
\glossarysection §8.2; 88, 252,

255, 328, 563

\glossarystyle � 563

glossarysubentry counter . . §2.3; 95, 96, 607,

608, 614, 658

\glossarytitle §8.2; 247, 253,

254, 563

\glossarytoctitle . §8.2; 248, 254,

255, 563

\glossentry . . . §13.2.3; 252, 257, 332,

333, 338, 339, 563, 594

\Glossentrydesc . §13.2.1; 334, 423,

563, 571

\glossentrydesc . . §13.2.1; 34, 178,

193, 300, 334, 412, 413, 423, 514,

563, 571

\Glossentryname . §13.2.1; 299, 334,

340, 563, 601

\glossentryname . §13.2.1; 177, 191,

299, 300, 329, 333, 334, 339, 340,

360, 517, 563, 564, 601, 616, 630

\glossentrynameother . . . 37, 564

\Glossentrysymbol . . . §13.2.1; 334,

564, 615

\glossentrysymbol §13.2.1; 35,

178, 193, 300, 334, 564, 615

Gls

\GLS §5.1.2; 173, 379, 564

\Gls §5.1.2; 173, 379, 564

\gls §5.1.2; 137, 172, 378, 379, 564

\gls-like 168, 171, 509
\gls-like and \glstext-like options 522

counter . . . §5.1.1; 99, 143, 170, 280,

347, 424, 522, 647

\glossaryentry 683 \gls-like and \glstext-like options

Index

format . . . §5.1.1; 169, 170, 196, 263,

273–278 passim, 287, 348, 349, 423,

424, 428, 429, 475, 511, 522, 523,

567, 614

hyper . §5.1.1; 85, 168, 169, 171, 175,

183, 187, 189, 261, 491, 522, 592

hyperoutside §5.1.1; 170, 522

local §5.1.1; 170, 522

noindex §5.1.1; 170, 523

postunset §5.1.1; 171, 523

prefix §5.1.1; 171, 523

prereset §5.1.1; 171, 235, 523

preunset §5.1.1; 171, 235, 523

textformat . . §5.1.1; 170, 261, 523

theHvalue §5.1.1; 171, 523

thevalue §5.1.1; 171, 508, 524

types §10; 262, 524, 567

wrgloss §5.1.1; 170, 524

\gls@accessibility §17.5;

394, 565

\gls@accsupp@engine §17.5;

394, 565

\glsabbrvfont 565

\glsaccessibility §17.2; 387, 388,

394, 565, 566, 612

\Glsaccesslong 565

\glsaccesslong 565

\Glsaccesslongpl 565

\glsaccesslongpl 565, 566

\glsaccessname 389, 566

\glsaccessshort 566

\glsaccessshortpl 566

\glsaccsupp §17.2; 387, 497, 566, 587

\glsacrpluralsuffix . §6; 59, 199,

210–213 passim, 552, 566

\glsacspace . . . §6.2.1.1; 212, 214, 567

\glsacspacemax 212, 567

\glsadd . §10; 34, 82, 101–103, 142, 240,

242, 261, 262–265 passim, 272, 280,

436, 438, 508, 522, 567

\glsaddall §10; 82, 163, 246, 262, 272,

273, 399, 401, 484, 524, 567

\glsaddallunused §10; 262,

263, 567

\glsaddeach 262, 567, 614

\glsaddkey . §4.3.1; 140, 146, 147, 148,

149, 368, 469, 567, see also

\glsaddstoragekey
\GlsAddLetterGroup 477, 568

\glsaddstoragekey §4.3.2; 140,

147, 149, 155, 167, 189, 226, 418,

471–473, 568, see also

\glsaddkey
\GlsAddXdyAttribute . . §14.3; 274,

275, 348, 349, 475, 478, 568

\GlsAddXdyCounters . . . §14.3; 348,

349, 568

\GlsAddXdyLocation . . . §14.3; 294,

295, 349, 350, 355, 476, 478,

482, 568

\GlsAddXdyStyle §14.1; 345, 568, see

also \GlsSetXdyStyles
\glsautoprefix §2.2; 90, 91, 569

\glsbackslash §14; 344, 569

\glscapitalisewords . . §15.2; 190,

363, 507, 569, 584

\glscapscase §5.1.4; 182, 183,

216, 569, see also

\glsentryfmt, \glslabel,
\glsifplural,
\glsinsert &

\glscustomtext
\glscategory 471, 569

\glsclearpage §8.2; 253, 569

\glsclosebrace . . §14; 344, 476, 569

\glscounter . . . §2.3; 99, 276, 569, 575

\glscurrententrylabel 361, 443,

455–457, 570

\glscurrentfieldvalue . . . §15.4;

369, 455, 570, 631, 641

\glscustomtext §5.1.4; 182, 183,

202, 570, see also

\glsentryfmt, \glslabel,
\glsifplural,
\glscapscase &

\glsinsert
\GlsDeclareNoHyperList . . . §2.6;

117, 570

\gls@accessibility 684 \GlsDeclareNoHyperList

Index

\glsdefaultshortaccess . . §17.1;

386, 500, 570

\glsdefaulttype 121, 140, 160, 162,

181, 199, 245–247, 254, 260, 346,

364, 520, 528, 552–560 passim, 570,

626, 644, 650, 656

\glsdefpostdesc 455, 465, 570

\glsdefpostlink 137, 570

\glsdefs@newdocentry . . 571, 625

\GLSdesc §5.1.3; 178, 571

\Glsdesc §5.1.3; 178, 266, 571

\glsdesc §5.1.3; 144, 178, 266, 412,

423, 424, 432, 433, 514, 571

\GLSdescplural 571

\Glsdescplural 571

\glsdescplural 571

\glsdescriptionaccess-
display §17.3; 390, 572

\glsdescriptionpluralaccess-
display §17.3; 390, 572

\glsdescwidth §13.1; 255, 301,

308–312, 316–320, 572

\glsdisablehyper . §15.1; 169, 183,

187–191 passim, 359, 572

\Glsdisp §5.1.2; 174, 182, 572

\glsdisp §5.1.2; 85, 137, 138, 146, 147,

171, 174, 175, 182, 240, 470, 509,

570, 572, 596

\glsdisplay � 572

\glsdisplayfirst � 573

\glsdisplaynumberlist §5.2;

Table 1.1; 92, 195, 196, 488–490,

573, 602, 604

\glsdohyperlink §15.1; 80, 360,

573, 574, see also

\glsdohypertarget,
\glsdonohyperlink &

\glsdohyperlinkhook
\glsdohyperlinkhook §15.1;

360, 573

\glsdohypertarget . §15.1; 80, 281,

359, 372, 573, see also

\glsdohyperlink &

\glsdohypertargethook

\glsdohypertargethook . . . §15.1;

360, 573, 595

\glsdoifexists §15.4; 366, 367, 573,

574, 588, 640, see also

\ifglsentryexists,
\glsdoifexistsordo &

\glsdoifnoexists
\glsdoifexistsordo §15.4;

366, 574, see also

\ifglsentryexists,
\glsdoifexists &

\glsdoifnoexists
\glsdoifexistsorwarn §15.4;

366, 574

\glsdoifnoexists . §15.4; 366, 574,

see also \ifglsentryexists,
\glsdoifexistsordo &

\glsdoifexists
\glsdonohyperlink . §15.1; 359, 574

\glsdosanitizesort §2.5; 107,

448, 574

\glsenableentrycount . §7.1; 239,

240, 241, 503, 574, 575, 581

\glsenablehyper §15.1; 187,

359, 574

\glsendrange 262, 279, 574

\glsentryaccess §17.4; 392, 575

\glsentrycounter . . §12.1; 276, 575

\glsentrycounterfalse §2.3;

93, 575

\glsentrycounterlabel §2.3;

93, 575

\GlsEntryCounterLabelPrefix
§2.3; 92, 575

\glsentrycountertrue §2.3;

93, 575

\glsentrycurrcount §7.1; 239, 575

\Glsentrydesc §5.2; 31, 34, 193,

413, 575

\glsentrydesc §5.2; 34, 192, 266,

334, 412, 413, 514, 576

\glsentrydescaccess §17.4;

392, 576

\Glsentrydescplural §5.2;

\glsdefaultshortaccess 685 \Glsentrydescplural

Index

193, 576

\glsentrydescplural §5.2;

193, 576

\glsentrydescpluralaccess
§17.4; 393, 576

\Glsentryfirst §5.2; 192, 576

\glsentryfirst . . §5.2; 192, 478, 576

\glsentryfirstaccess §17.4;

392, 577

\Glsentryfirstplural §5.2;

192, 577

\glsentryfirstplural §5.2;

192, 577

\glsentryfirstpluralaccess
§17.4; 392, 577

\glsentryfmt . . §5.1.4; 168, 171, 175,

181, 184–188 passim, 490, 491, 550,

572, 573, 577, see also

\glsgenentryfmt &

\defglsentryfmt
\GLSentryfull 577

\Glsentryfull . . . §6.1; 192, 206, 577

\glsentryfull . . . §6.1; 206, 207, 210,

214, 216, 220, 577, 578

\GLSentryfullpl 578

\Glsentryfullpl §6.1; 206, 578

\glsentryfullpl §6.1; 206, 578

\glsentryitem . . §13.2.1; 93, 95, 300,

332, 339, 340, 372, 578

\Glsentrylong . . . §6.1; 192, 205, 220,

222, 578

\glsentrylong . . . §6.1; 204, 206, 220,

222, 565, 578

\glsentrylongaccess §17.4;

393, 579

\Glsentrylongpl §6.1; 205, 220, 579

\glsentrylongpl §6.1; 205, 220,

566, 579

\glsentrylongpluralaccess
§17.4; 393, 579

\Glsentryname §5.2; 30, 191, 192,

299, 579

\glsentryname §5.2; 30, 191, 271,

299, 333, 334, 389, 478, 517,

566, 579

\glsentrynumberlist §5.2; 92,

195, 196, 488–490, 579

\glsentryparent . . . §15.6; 251, 374,

455, 456, 580

\Glsentryplural §5.2; 192, 580

\glsentryplural §5.2; 192,

455–457, 580

\glsentrypluralaccess . . . §17.4;

392, 580

\Glsentryprefix . §16; 379, 381, 580

\glsentryprefix §16; 380, 381,

443, 580

\Glsentryprefixfirst . . §16; 379,

381, 580

\glsentryprefixfirst . . §16; 381,

580, 581

\Glsentryprefixfirstplural
§16; 379, 381, 581

\glsentryprefixfirstplural
§16; 381, 581

\Glsentryprefixplural §16; 379,

381, 581

\glsentryprefixplural §16;

381, 581

\glsentryprevcount §7.1; 239,

240–242, 581

\Glsentryshort . . §6.1; 192, 206, 581

\glsentryshort §6.1; 205, 206,

566, 581

\glsentryshortaccess §17.4;

393, 582

\Glsentryshortpl 582

\glsentryshortpl 566, 582

\glsentryshortpluralaccess
§17.4; 393, 582

\glsentrysort §15.6; 374, 582

\Glsentrysymbol §5.2; 193, 582

\glsentrysymbol . . §5.2; 31, 35, 185,

193, 334, 491, 519, 582

\glsentrysymbolaccess . . . §17.4;

392, 583

\Glsentrysymbolplural §5.2;

193, 583

\glsentrydescplural 686 \Glsentrysymbolplural

Index

\glsentrysymbolplural §5.2; 193,

519, 583

\glsentrysymbolpluralaccess
§17.4; 392, 583

\Glsentrytext . . . §5.2; 147, 190, 192,

362, 381, 507, 567, 583

\glsentrytext . . . §5.2; 147, 167, 189,

191, 192, 204, 226, 240, 271, 392,

446, 455, 469, 567, 583, 592

\glsentrytextaccess §17.4;

392, 584

\glsentrytitlecase §5.2; 176, 190,

507, 584

\glsentrytype §15.6; 182, 365,

373, 584

\Glsentryuseri §5.2; 193, 584

\glsentryuseri . . §5.2; 193, 520, 584

\glsentryuseriaccess §17.4;

393, 584

\Glsentryuserii §5.2; 194, 584

\glsentryuserii §5.2; 194, 520, 585

\glsentryuseriiaccess . . . §17.4;

393, 585

\Glsentryuseriii . . . §5.2; 194, 585

\glsentryuseriii §5.2; 194,

520, 585

\glsentryuseriiiaccess . . §17.4;

393, 585

\Glsentryuseriv §5.2; 194, 585

\glsentryuseriv §5.2; 194, 521, 585

\glsentryuserivaccess . . . §17.4;

394, 586

\Glsentryuserv §5.2; 194, 586

\glsentryuserv . . §5.2; 194, 521, 586

\glsentryuservaccess §17.4;

394, 586

\Glsentryuservi §5.2; 194, 586

\glsentryuservi §5.2; 194, 521, 586

\glsentryuserviaccess . . . §17.4;

394, 587

\glsexpandfields §4.4; 156,

587, 610

\gls〈field-label〉accsupp . . . §17.2; 387,

496, 497, 501, 587

\glsfieldaccsupp §17.2; 387,

587, 627

\glsfielddef §15.6; 163, 375,

587, 588

\glsfieldedef . . §15.6; 375, 587, 588

\glsfieldfetch §15.6; 157, 374,

509, 588

\glsfieldgdef 588

\glsfieldxdef §15.6; 189, 375,

473, 588

\glsfindwidesttoplevelname
§13.1.7; 324, 460, 588

\glsFindWidestUsedLevelTwo
461, 588

\glsFindWidestUsedTopLevel-
Name 461, 588

\GLSfirst §5.1.3; 176, 588

\Glsfirst §5.1.3; 176, 589

\glsfirst §5.1.3; 176, 177, 208,

588, 589

\glsfirstabbrvscfont 589

\glsfirstaccessdisplay 589

\glsfirstlongfootnotefont
589

\GLSfirstplural . . . §5.1.3; 177, 589

\Glsfirstplural . . . §5.1.3; 177, 589

\glsfirstplural §5.1.3; 177,

589, 590

\glsfirstpluralaccess-
display §17.3; 390, 590

\glsfmtfirst 478, 590

\Glsfmtlong . 590

\glsfmtname 271, 478, 590

\glsfmtshort 202, 590

\glsfmttext 167, 271, 446, 590

\glsgenacfmt . . §5.1.4; 184, 208, 216,

219, 226, 561, 591

\glsgenentryfmt . . §5.1.4; 153, 181,

182, 184, 216, 219, 591, 592

\glsgetgrouptitle . . . §13.2.1; 300,

301, 306, 323, 335, 336, 591, see also

\glsxtrsetgrouptitle
\glsgroupheading §13.2.3; 257, 328,

331, 338, 339, 340, 591

\glsentrysymbolplural 687 \glsgroupheading

Index

\glsgroupskip §13.2.3; 257, 303–308

passim, 314, 328, 339, 340, 591, 605

\glsglossarymark §8.2; 89, 252,

253–255, 562, 591

\glshyperfirstfalse 223, 591

\glshyperfirsttrue 591

\glshyperlink . . . §5.2; 188, 190, 191,

251, 359, 592

\glshypernavsep . §13.2.2; 306, 336,

337, 592, 602, 615

\glshypernumber . . . §12.1; 274, 276,

282, 289–292, 297, 592, 603, 624,

625, 638, 639, 655

\glsifhyper � 592

\glsifhyperon . §5.1.4; 183, 189, 592,

see also \glsentryfmt &

\glslinkvar
\glsIfListOfAcronyms §2.7;

123, 592

\glsifmeasuring §15.5; 373, 592

\glsifplural . . §5.1.4; 182, 183, 216,

230, 593, see also

\glsentryfmt, \glslabel,
\glscapscase,
\glsinsert &

\glscustomtext
\glsifusedtranslatordict . 57,

60, 593

\glsignore . §12.1; 169, 170, 263, 273,

284, 510, 523, 567, 593

\glsindexingsetting §1.3; 9, 106,

111, 593

\glsindexonlyfirstfalse . §2.4;

102, 593

\glsindexonlyfirsttrue . . . §2.4;

102, 593

\glsinlinedescformat . . . §13.1.9;

330, 593

\glsinlinedopostchild . §13.1.9;

328, 594

\glsinlineemptydescformat
§13.1.9; 330, 594

\glsinlineifhaschildren
§13.1.9; 329, 594

\glsinlinenameformat . . . §13.1.9;

329, 330, 594

\glsinlineparentchild-
separator . . . §13.1.9; 328, 594

\glsinlinepostchild §13.1.9; 328,

330, 594

\glsinlineseparator §13.1.9;

328, 594

\glsinlinesubdescformat
§13.1.9; 330, 595

\glsinlinesubnameformat
§13.1.9; 330, 595

\glsinlinesubseparator §13.1.9;

328, 595

\glsinsert . . §5.1.4; 182, 183, 595, see

also \glsentryfmt,
\glslabel, \glsifplural,
\glscapscase &

\glscustomtext
\glskeylisttok §6.2.2; 217, 595

\glslabel . . . §5.1.4; 85, 144, 147, 182,

183, 201, 226, 230, 425, 595, see also

\glsentryfmt,
\glsifplural,
\glscapscase,
\glsinsert,
\glscustomtext &

\glstype
\glslabelhypertarget §15.1; 360,

595, 596

\glslabelhypertargetdefs
§15.1; 361, 595

\glslabelhypertargetprefix
§15.1; 360, 595, 596

\glslabelhypertargetvalue
§15.1; 361, 596

\glslabeltok §6.2.2; 217, 596

\glsletentryfield . §15.6; 374, 596

\Glslink §5.1.3; 175, 596

\glslink §5.1.3; 85, 146, 147, 169, 175,

176, 221, 240, 250, 251, 423–427

passim, 509, 572, 596, 628

\glslinkcheckfirsthyperhook
§2.1; 85, 596

\glsgroupskip 688 \glslinkcheckfirsthyperhook

Index

\glslinkpostsetkeys . . §5.1.5; 86,

183, 186, 189, 230, 473, 597

\glslinkpresetkeys 186, 597

\glslinkvar . §5.1.4; 183, 597, see also

\glsentryfmt &

\glslinkvar
\glslistdottedwidth §13.1.1;

307, 597

\glslistexpandedname . . . §13.1.1;

305, 597

\glslistgroupheaderfmt §13.1.1;

305, 597

\glslistinit §13.1.1; 304, 597

\glslistnavigationitem §13.1.1;

305, 306, 321, 597

\glslocalreset §7; 234, 239, 598, see

also \glsreset,
\glsresetall &

\glsunset
\glslocalresetall §7; 234, 598, see

also \glsreset,
\glslocalreset,
\glsresetall &

\glslocalunsetall
\glslocalunset §7; 234, 239,

522, 598, see also \glsunset,
\glsunsetall &

\glsreset
\glslocalunsetall §7; 235, 598, see

also \glsunset,
\glslocalunset,
\glsunsetall &

\glslocalresetall
\glslocationcstoencap . . . §12.5;

289, 290–292, 598

\glslongaccessdisplay . . . §17.3;

391, 598

\glslongfont 598

\glslongpluralaccessdisplay
§17.3; 391, 599

\glslongtok §6.2.2; 217, 599

\glslowercase . . §15.2; 361, 507, 599

\glsLTpenaltycheck §13.1.4;

314, 599

\glsmakefirstuc 362, 599

\glsmcols §13.1.8; 326, 599

\glsmeasuredepth . . §15.5; 373, 599

\glsmeasureheight . §15.5; 372, 600

\glsmeasurewidth . . §15.5; 373, 600

\glsmfuaddmap §15.2; 363, 600

\glsmfublocker §15.2; 363, 600

\glsmfuexcl §15.2; 361, 362, 363,

364, 600

\glsmoveentry §4.7; 163, 600, see also

\glsxtrcopytoglossary
\GLSname §5.1.3; 177, 600

\Glsname §5.1.3; 177, 601

\glsname §5.1.3; 177, 178, 517, 600, 601

\glsnameaccessdisplay . . . §17.3;

389, 390, 601

\glsnamefont §13; 210, 299, 300, 321,

333, 334, 564, 601

\glsnavhypergroupdotarget
§13.2.2; 336, 601, 602

\glsnavhyperlink §13.2.2; 336, 601

\glsnavhyperlinkname . . . §13.2.2;

336, 601

\glsnavhypertarget . §13.2.2; 335,

336, 601, 602

\glsnavigation . . . §13.2.2; 335, 336,

337, 592, 602

\glsnavigationitem §13.2.2;

336, 602

\glsnextpages . . . §8.2; 141, 256, 257,

517, 602

\glsnoexpandfields §4.4; 156, 497,

602, 610

\glsnoidxdisplayloc . . §12.6; 276,

297, 298, 602

\glsnoidxdisplayloclist-
handler §5.2; 196, 602

\glsnoidxloclist §12.6; 195,

296, 603

\glsnoidxloclisthandler §12.6;

296, 603

\glsnoidxnumberlistloop-
handler §12.6; 298, 603

\glsnoidxprenumberlist . . . §8.2;

\glslinkpostsetkeys 689 \glsnoidxprenumberlist

Index

141, 256, 257, 603

\glsnonextpages §8.2; 141, 256, 257,

517, 562, 603

\glsnumberformat . §12.1; 275, 279,

289, 352, 428–430, 511, 603

\glsnumberlistloop . . . §12.6; 296,

298, 603

\glsnumbersgroupname §1.5.1;

Table 1.2; 58, 260, 604, 667

\glsnumlistlastsep §5.2; 195,

196, 604

\glsnumlistsep §5.2; 195, 604

\glsopenbrace §14; 344, 476, 604

\glspagelistwidth §13.1; 301,

309–312 passim, 317–320

passim, 604

\glspar §4; 136, 604

\glspatchLToutput . . 599, 604, 608

\glspatchtabularx §15.5; 172, 238,

373, 604

\glspenaltygroupskip . . . §13.1.4;

314, 605

\glspercentchar §14; 344, 605

\GLSpl §5.1.2; 173, 182, 379, 605

\Glspl §5.1.2; 173, 182, 379, 605

\glspl §5.1.2; 137, 173, 182, 378,

379, 605

\GLSplural §5.1.3; 177, 605

\Glsplural §5.1.3; 176, 605

\glsplural §5.1.3; 176, 605

\glspluralaccessdisplay §17.3;

390, 606

\glspluralsuffix §4.1; 59, 137,

138, 145, 146, 198, 199, 210, 211,

455, 515, 517, 566, 606

\glspostdescription . . . §13.1; 99,

248, 303, 413, 511, 514, 570, 606

\glspostinline . . . §13.1.9; 329, 606

\glspostinlinedescformat . 606

\glspostinlinesubdescformat
606

\glspostlinkhook . §5.1.5; 183, 187,

229, 230, 511, 606

\glsprefixsep . . . §16; 377, 378, 379,

382, 607

\glsprestandardsort . . . §2.5; 107,

108, 109, 138, 446, 448, 607, 668

\glsps . 433, 607

\glspt . 433, 607

\glsquote §14; 345, 607

\glsrefentry . . . §2.3; 92, 93, 95, 248,

249, 452, 459, 575, 607

\glsreset . §7; 102, 198, 199, 234, 239,

263, 607, see also

\glslocalreset,
\glsresetall &

\glsunset
\glsresetall . . . §7; 234, 608, see also

\glsreset,
\glslocalreset,
\glslocalresetall &

\glsunsetall
\glsresetcurrcountfalse . §7.1;

239, 608

\glsresetcurrcounttrue . . . §7.1;

239, 608

\glsresetentrycounter . §2.3; 93,

94, 608

\glsresetentrylist §8.2; 256, 608

\glsresetsubentrycounter §2.3;

95, 332, 608

\glsrestoreLToutput §13.1.4;

314, 608

\glssee . . . §11; 78, 98–103 passim, 141,

266, 267–272 passim, 466–468, 518,

608, 626

\glsseeformat . §11.1; 267, 269, 271,

297, 298, 609

\glsseeitem §11.1; 270, 609

\glsseeitemformat §11.1; 270, 271,

405, 411, 609

\glsseelastsep §11.1; 270, 609

\glsseelist §11.1; 270, 271, 609

\glsseesep §11.1; 270, 609

\glssentencecase . §15.2; 172, 182,

190, 362, 381, 507, 609

\glsSetAlphaCompositor . . . §3.2;

133, 355, 610

\glsnonextpages 690 \glsSetAlphaCompositor

Index

\glssetcategoryattribute 443,

501, 610

\glsSetCompositor . §3.2; 132, 280,

285, 610

\glssetexpandfield §4.4; 156,

602, 610

\glssetnoexpandfield . §4.4; 155,

156, 587, 610

\GlsSetQuote . . §1.5; 16, 52, 286, 610

\glsSetSuffixF §12.2; 279, 280, 610

\glsSetSuffixFF §12.2; 279,

280, 611

\glssettoctitle §8.2; 254, 611

\glssetwidest §13.1.7; 324, 325, 460,

463, 534, 535, 539, 540, 611

\GlsSetWriteIstHook . . . §3.2; 131,

283, 611

\GlsSetXdyCodePage §14.2;

Table 1.3; 113, 347, 611

\GlsSetXdyFirstLetterAfter-
Digits §14.4; 21, 46, 357,

358, 611

\GlsSetXdyLanguage §14.2;

Table 1.3; 112, 113, 129, 346, 474,

478, 611

\GlsSetXdyLocationClass-
Order §14.3; 283, 356, 612

\GlsSetXdyMinRangeLength
§14.3; 279, 356, 357, 612

\GlsSetXdyNumberGroupOrder
§14.4; 21, 112, 358, 612

\GlsSetXdyStyles . §14.1; 345, 612,

see also \GlsAddXdyStyle
\glsshortaccessdisplay . . §17.3;

390, 612

\glsshortaccsupp . §17.2; 388, 496,

587, 612

\glsshortplaccsupp . . . §17.2; 388,

496, 612

\glsshortpluralaccess-
display §17.3; 391, 613

\glsshorttok §6.2.2; 217, 613

\glsshowaccsupp §2.1; 81, 613

\glsshowtarget §2.1; 80, 81, 613

\glsshowtargetfont . §2.1; 81, 613

\glsshowtargetfonttext . . . §2.1;

81, 613

\glsshowtargetinner §2.1; 80, 613

\glsshowtargetouter §2.1; 81,

613, 614

\glsshowtargetsymbol §2.1;

81, 614

\glssortnumberfmt §2.5; 107,

448, 614

\glsstartrange . . 262, 279, 574, 614

\glsstepentry §2.3; 93, 614

\glsstepsubentry §2.3; 95, 614

\glssubentrycounterfalse §2.3;

96, 614

\glssubentrycounterlabel §2.3;

95, 614

\glssubentrycountertrue . §2.3;

96, 614

\glssubentryitem . . §13.2.1; 95, 96,

332, 333, 339, 340, 615

\glssubgroupheading 338, 615

\GLSsymbol §5.1.3; 178, 615

\Glssymbol §5.1.3; 178, 615

\glssymbol . §5.1.3; 144, 169, 178, 185,

426, 491, 498, 519, 615, 616

\glssymbolaccessdisplay §17.3;

390, 615

\glssymbolnav §13.2.2; 337, 615

\GLSsymbolplural 616

\Glssymbolplural 616

\glssymbolplural 519, 616

\glssymbolpluralaccess-
display §17.3; 390, 616

\glssymbolsgroupname §1.5.1;

Table 1.2; 58, 260, 616, 669

\glstarget . §13.2.1; 80, 300, 333, 339,

359, 616

\glstexorpdfstring . . . §15.1; 167,

277, 361, 616

\GLStext §5.1.3; 148, 176, 361, 507,

568, 617

\Glstext §5.1.3; 148, 175, 362, 507,

568, 617

\glssetcategoryattribute 691 \Glstext

Index

\glstext . . §5.1.3; 85, 86, 147, 175, 177,

208, 424, 469, 473, 509, 567, 617

\glstext-like 168, 509

\glstextaccessdisplay . . . §17.3;

390, 617

\glstextformat . §5.1; 168, 170, 174,

175, 181, 185, 186, 190, 202, 522,

523, 617

\glstextup §6.2.1; 59, 211, 617

\glstildechar §14; 344, 617

\glstocfalse §2.2; 88, 618

\glstoctrue §2.2; 87, 618

\glstreechildpredesc . . . §13.1.7;

321, 618

\glstreegroupheaderfmt §13.1.7;

321, 326, 618

\glstreeindent . . . §13.1.7; 323, 618

\glstreeitem §13.1.7; 322, 618

\glstreenamebox . . §13.1.7; 325, 618

\glstreenamefmt . §13.1.7; 299, 300,

321, 326, 618

\glstreenavigationfmt . §13.1.7;

321, 323–326 passim, 619

\glstreepredesc . . §13.1.7; 321, 619

\glstreesubitem . . §13.1.7; 322, 619

\glstreesubsubitem §13.1.7;

322, 619

\glstype . . §5.1.4; 85, 182, 183, 619, see

also \glslabel
\glsucmarkfalse 619

\glsucmarktrue 619

\glsunexpandedfieldvalue
§15.6; 305, 374, 619

\glsunset . §7; 234, 239, 240, 522, 620,

see also \glslocalunset,
\glsunsetall &

\glsreset
\glsunsetall §7; 85, 163, 188,

234, 620, see also \glsunset,
\glslocalunset,
\glslocalunsetall &

\glsresetall
\glsupacrpluralsuffix . . §6.2.1;

59, 210, 620

\glsuppercase . §15.2; 172, 253, 361,

363, 378, 392, 507, 620, 645

\GlsUseAcrEntryDispStyle
§6.2.2; 217, 620

\GlsUseAcrStyleDefs §6.2.2;

218, 620

\GLSuseri §5.1.3; 179, 620

\Glsuseri §5.1.3; 179, 621

\glsuseri . . §5.1.3; 145, 179, 498, 520,

620, 621

\glsuseriaccessdisplay . . §17.3;

391, 621

\GLSuserii §5.1.3; 179, 621

\Glsuserii §5.1.3; 179, 621

\glsuserii §5.1.3; 179, 520, 621

\glsuseriiaccessdisplay §17.3;

391, 621

\GLSuseriii §5.1.3; 179, 622

\Glsuseriii §5.1.3; 179, 622

\glsuseriii §5.1.3; 179, 520, 622

\glsuseriiiaccessdisplay
§17.3; 391, 622

\GLSuseriv §5.1.3; 180, 622

\Glsuseriv §5.1.3; 180, 622

\glsuseriv §5.1.3; 180, 521, 622

\glsuserivaccessdisplay §17.3;

391, 623

\GLSuserv §5.1.3; 180, 623

\Glsuserv §5.1.3; 180, 623

\glsuserv §5.1.3; 180, 521, 623

\glsuservaccessdisplay . . §17.3;

391, 623

\GLSuservi §5.1.3; 180, 623

\Glsuservi §5.1.3; 180, 623

\glsuservi . §5.1.3; 180, 521, 623, 624

\glsuserviaccessdisplay §17.3;

391, 624

\glswrallowprimitivemods-
false §2.4; 101, 624

\glswrallowprimitivemods-
true §2.4; 101, 351, 353, 624

\glswrglossdisableanchor-
cmds . . . §12.1; 276, 277, 282, 291,

292, 624

\glstext 692 \glswrglossdisableanchorcmds

Index

\glswrglossdisablelocation-
cmds §12.3; 282, 292, 624

\glswrglosslocationtarget
§12.1; 277, 292, 624

\glswrglosslocationtextfmt
§12.1; 276, 282, 625

\glswrite §3.2; 131, 625

\glswritedefhook 625

\glswriteentry §2.4; 102, 625

\glsX〈counter〉X〈format〉 §14.3; 348, 352,

476–478, 625

Glsxtr

\glsxtr@makeglossaries . §1.7.1;

76, 625

\glsxtr@record §1.7.3; 77, 625

\glsxtr@record@nameref . §1.7.3;

78, 626

\glsxtr@recordsee . §1.7.3; 78, 626

\glsxtr@resource . . . §1.7.3; 77, 626

\glsxtr@texencoding 626

\glsxtrabbrvfootnote 626

\glsxtrabbrvtype . . . 122, 552, 626,

650, 660

\glsxtrbookindexname . . . 37, 626

\glsxtr〈category〉accsupp 501,

502, 627

\glsxtr〈category〉〈field〉accsupp 388,

501, 502, 587, 627

\glsxtrcopytoglossary 164, 627,

see also \glsmoveentry
\glsxtr〈counter〉locfmt 431, 483, 627

\glsxtrdopostpunc 627

\glsxtrfieldforlistloop . . 298,

456, 627

\glsxtrfieldformatlist
359, 627

\glsxtrfmt 422, 426, 427, 628

\GlsXtrFmtField 425, 628

\glsxtrfootnotedescname . . 628

\glsxtrfootnotedescsort . . 628

\glsxtrforcsvfield 365, 628

\GLSxtrfull . 628

\Glsxtrfull 628, 632

\glsxtrfull . . 178, 404, 406, 419, 500,

549, 589, 628, 629, 632

\GLSxtrfullpl 629

\Glsxtrfullpl 629, 632

\glsxtrfullpl 550, 590, 629, 632

\glsxtrfullsep 629

\glsxtrGeneralInitRules
480, 629

\glsxtrGeneralLatinAtoG-
rules 480, 630

\glsxtrGeneralLatinNtoZ-
rules 480, 630

\glsxtrgetgrouptitle 630

\Glsxtrglossentry 31, 630

\glsxtrglossentry 34, 630

\glsxtrhiername 271, 630

\GlsXtrIfFieldEqNum 630

\GlsXtrIfFieldEqStr 630, 632

\GlsXtrIfFieldNonZero . 456, 631

\GlsXtrIfFieldUndef 631, see also

\ifglsfieldvoid
\glsxtrifhasfield . . 374, 455, 631

\GlsXtrIfHasNonZeroChild-
Count 329, 367, 631

\GlsXtrIfUnusedOrUndefined
§15.4; 235, 367, 631, see also

\ifglsused &

\glsxtrifwasfirstuse
\glsxtrifwasfirstuse . . 187, 632

\GlsXtrIfXpFieldEqXpStr . . 455,

456, 632

\glsxtrIgnorableRules 632

\Glsxtrinlinefullformat . . 632

\glsxtrinlinefullformat . . 632

\Glsxtrinlinefullplformat
632

\glsxtrinlinefullplformat
632

\GlsXtrLoadResources 23–27

passim, 34, 36, 105, 110, 164, 399,

407, 408, 439, 443, 447, 480,

512, 633

\glsxtrlocalsetgrouptitle

\glswrglossdisablelocationcmds693 \glsxtrlocalsetgrouptitle

Index

301, 633

\GLSxtrlong . 633

\Glsxtrlong . 633

\glsxtrlong . . 178, 404, 406, 419, 500,

551, 589, 633, 634

\GLSxtrlongpl 633

\Glsxtrlongpl 634

\glsxtrlongpl 551, 590, 633, 634

\glsxtrnewgls 634

\glsxtrnewglslike . . . 78, 439, 443,

546, 634

\glsxtrnewnumber 120, 160,

634, 667

\glsxtrnewsymbol . 13, 21, 119, 160,

634, 669

\glsxtrnopostpunc . . 136, 445, 453,

455, 461, 462, 470, 635, see also

\nopostdesc
\glsxtrp 144, 169, 607, 635

\glsxtrparen 635

\glsxtrpostlinkAddSymbolOn-
FirstUse 635

\glsxtrpostlinkhook 606, 635

\GlsXtrResetLocalBuffer . . 635

\GlsXtrSetAltModifier . 78, 183,

546, 635

\GlsXtrSetField 636, 658

\glsxtrsetgrouptitle 301,

516, 636

\GlsXtrSetPlusModifier
183, 636

\GlsXtrSetStarModifier
183, 636

\GLSxtrshort 636

\Glsxtrshort 636

\glsxtrshort 178, 202, 404, 406, 419,

500, 553, 617, 636, 637, 650

\Glsxtrshortpl 637

\glsxtrshortpl 553, 606, 637

\GlsXtrStartUnsetBuffering
637, see also \GlsXtrStop-
UnsetBuffering

\GlsXtrStopUnsetBuffering
637, see also \GlsXtrStart-

UnsetBuffering
\GlsXtrUnsetBufferEnable-

RepeatLocal 635, 637

\GlsXtrUseAbbrStyleFmts . . 637

\GlsXtrUseAbbrStyleSetup . 637

\glsxtrusefield 157, 359, 373,

509, 638

H

hierarchical level 136, 157, 509

homograph . . Table 13.1; 157, 159, 339, 509,

535, 541, 545

\hyperbf . Table 12.1; 275, 348, 421–430

passim, 477, 638

\hyperemph Table 12.1; 638

\hyperit Table 12.1; 429, 430, 638

\hyperlink 187, 274, 276, 290,

360, 573

hyperlink . . . 6, 32, 80, 85, 86, 118, 168–173

passim, 183, 187, 191, 201, 202, 215,

242, 273–276 passim, 280, 284, 359,

472, 508, 511

\hypermd Table 12.1; 638

\hyperpage 274, 282

hyperref package c, 8, 26, 34, 35, 83, 91, 105,

167–169, 173, 183, 187, 191, 196,

206, 252, 253, 273–282 passim, 289,

291, 304, 335, 350, 359–361, 395,

421, 433, 489, 574, 616

\hyperrm Table 12.1; 421, 638

\hypersc Table 12.1; 638

\hypersf Table 12.1; 639

\hypersl Table 12.1; 639

\hypertarget 187, 573

hypertarget . 80

\hypertt Table 12.1; 639

\hyperup Table 12.1; 639

I

\if@openright 253

\ifcsstrequal 372

\ifcsstring . 369

\ifcsundef 366, 631

\GLSxtrlong 694 \ifcsundef

Index

\ifcsvoid 368, 640

\ifdef . 374

\ifdefstrequal 371, 372

\ifglossaryexists . §15.4; 365, 639

\ifglsdescsuppressed §15.4; 330,

368, 639

\ifglsentrycounter §2.3; 93,

575, 640

\ifglsentryexists §15.4; 366,

574, 640, see also

\glsdoifexistsordo,
\glsdoifexists &

\glsdoifnoexists
\ifglsfieldcseq §15.4; 372, 640

\ifglsfielddefeq . . §15.4; 371, 640

\ifglsfieldeq §15.4; 230, 369,

371, 640

\ifglsfieldvoid §15.4; 368, 640, see

also \GlsXtrIfFieldUndef
\ifglshaschildren §15.4; 329, 367,

456, 641

\ifglshasdesc . . §15.4; 330, 368, 641

\ifglshasfield §15.4; 368, 374, 570,

631, 641, see also

\ifglsfieldvoid
\ifglshaslong . . . §15.4; 85, 152–155

passim, 216, 367, 641

\ifglshasparent . . . §15.4; 251, 367,

455, 641

\ifglshasprefix §16; 380, 641

\ifglshasprefixfirst §16;

380, 641

\ifglshasprefixfirstplural
§16; 380, 642

\ifglshasprefixplural §16;

380, 642

\ifglshasshort . §15.4; 85, 155, 216,

368, 642

\ifglshassymbol §15.4; 35, 340,

367, 642

\ifglshyperfirst 591, 642

\ifglsindexonlyfirst . §2.4; 102,

593, 642

\ifglsnogroupskip . . §2.3; 99, 248,

308, 339, 642

\ifglsresetcurrcount . §7.1; 239,

608, 643, see also

\glsenableentrycount,
\glsreset &

\glslocalreset
\ifglssubentrycounter . §2.3; 96,

614, 643

\ifglstoc §2.2; 88, 618, 643

\ifglsucmark §2.2; 89, 619, 643

\ifglsused . . . §15.4; 85, 183, 187, 216,

230, 235, 366, 367, 402, 632, 643

\ifglswrallowprimitivemods
§2.4; 101, 624, 643

\ifglsxindy §2.5; 111, 643

\ifglsxtrinsertinside 644

\ifignoredglossary . . §9; 259, 644

\ifundef . 374

ignored glossary 259, 509, 648

ignored location (or record) . . . 273, 284, 510

imakeidx package . 120

\include . 161

\includegraphics 495, 497

\index 120, 121, 261, 273, 278, 282,

287, 348

\indexentry . 286

indexing application 510

indexing file . . . 18, 64, 75, 93, 100, 105, 115,

127–131 passim, 163, 166, 191, 195,

242, 246, 252, 258–263 passim, 271,

281–286 passim, 293, 331, 344, 396,

403, 409, 476, 488, 510, 624, 645,

648, 661–663, 667

indexing (or recording) 8, 100–105, 166, 170,

202, 242, 510

\indexname 260, 664

\indexspace . . . §13.1.1; 305, 306, 322,

341, 644

\input 38, 161, 252, 331

inputenc package 46, 144, 357, 395, 474, 486

\inputencodingname . . 60, 112, 346

inter-sentence space 228

inter-word space . 228

internal field 510, see glossary entry fields

\ifcsvoid 695 internal field

Index

internal field (bib2gls) 510, 511, 515
internal field label . . 156, 190, 368, 369, 374,

375, 385–388, 496, 510, 511, 564,

587, 588, 596, 619, 627–631 passim,

636–641 passim

invisible location see location, empty (or

invisible)

\item 299, 305, 306, 321, 322

itemize environment 340

J

\jobname 86, 131, 165, 669

L

\label 90–95 passim, 135, 164, 250,

372, 525

\languagename 111, 112, 346

latex (DVI) . 168

latexmk . 63–65

latexrelease package . 8

Latin alphabet 15, 52, 112, 511, see also

extended Latin alphabet

Latin character . . 508, 511, see also extended

Latin character

letter group see group (letters, numbers,

symbols)

link text 166, 167, 171, 172, 511

\listbreak . 457

\loadglsentries §4.6; 11, 15, 19, 29,

30, 34, 38, 160, 162, 199, 644

location counter 104, 143, 170, 171, 195,

258, 272, 276, 281–285 passim, 296,

347–350 passim, 427, 508, 511, 514,

522, 524, 568, 647, 655, 661, 663

location, empty (or invisible) . . . 64, 169, 263,

272, 273, 281–285 passim, 482, 510,

see also ignored location (or record)

location encap (format) . 64, 68, 76, 169, 196,

261, 267, 273–278 passim, 282–290

passim, 296, 297, 348, 421, 427–429,

478, 510, 511, 522, 592, 593, 603

location, ignored/invisible see ignored location

(or record)

location list 12, 16, 20, 27, 29, 63, 66, 83, 92,

98, 99, 104, 132, 133, 140–142, 157,

159, 166–168, 190, 195, 196, 245,

251, 256–263 passim, 267–292

passim, 297, 301, 305–320 passim,

327, 338–340, 347, 355, 356, 399,

421, 422, 427, 428, 438, 469, 475,

484–490 passim, 511, 562, 602,

603, 667

\longnewglossaryentry . §4; 134,

135, 136, 147, 160, 304, 399, 644

\longprovideglossaryentry §4;

135, 644

longtable environment . . . 255, 300, 307–315

passim, 342, 532–539 passim, 604

longtable package 96, 308

lowercase 35, 36, 40, 200, 209, 228, 283,

285, 362, 411, 423, 507, 512, 599

M

\mainmatter . 286

\makeatletter 230

\makeatother 230

\makebox . 325

\makefirstuc 174, 190, 362, 363, 507,

599, 609, 645, 646

\makeglossaries . . §3.2; 5, 9, 15–21

passim, 29, 50, 52, 64, 76–82 passim,

100, 106, 111, 115–117, 130, 131,

132, 142, 163, 166, 245, 260, 266,

280, 286, 295, 345–350 passim,

356–358, 407, 422, 429, 434, 438,

443–451 passim, 458, 463, 468, 471,

475–478 passim, 482, 484, 489, 493,

568, 607, 610, 645, 648, 651,

657–668 passim

makeglossaries-lite . . §1.6.2; 18,

22, 65, 70, 71, 111–115 passim, 292,

346, 396–405 passim, 428–432

passim, 443, 447, 452, 474, 475, 499,

546, 547, 625, 663

-c . §1.6.2; 72

-g . §1.6.2; 72

internal field (bib2gls) 696 makeglossaries-lite

Index

--help §1.6.2; 71

-L . §1.6.2; 72

-l . §1.6.2; 72

-m . §1.6.2; 71

-n . §1.6.2; 71

-o . §1.6.2; 72

-p . §1.6.2; 72

-q . §1.6.2; 71

-r . §1.6.2; 72

-s . §1.6.2; 72

-t . §1.6.2; 73

--version §1.6.2; 71

-x . §1.6.2; 72

makeglossaries §1.6.1; 6, 17, 18, 22,

23, 52, 62–65 passim, 66, 67–76

passim, 93, 101, 111–118 passim,

132, 258, 266, 275, 284–294 passim,

346, 396–405 passim, 428–432, 443,

447–452 passim, 464, 474, 475, 499,

503, 546, 547, 598, 611, 625,

663, 667

-c . §1.6.1; 69

-d §1.6.1; 65, 67, 68–71 passim

-e §1.6.1; 64, 68, 132, 275, 429

-g . §1.6.1; 70

--help §1.6.1; 67

-k . §1.6.1; 69

-L . §1.6.1; 70

-l . §1.6.1; 69

-m . §1.6.1; 69

-n . §1.6.1; 67

-o . §1.6.1; 70

-p . §1.6.1; 69

-Q . §1.6.1; 69

-q . §1.6.1; 67, 68

-r . §1.6.1; 69

-s . §1.6.1; 70

-t . §1.6.1; 70

--version §1.6.1; 67

-x . §1.6.1; 69

makeglossariesgui 65, 504

\makeglossary 128, 129, 664

makeidx package . 120

makeindex . . 14, 130, 510, 645, 651, 665

-c . 69, 72

-g . 16, 52, 70, 72

-l Table 1.3; 18, 69–74 passim, 452

-o . 17, 74

-p . 69, 72

-r . 69, 72

-s 17, 18, 69, 70, 74

-t . 74

\MakeLowercase 507

\makenoidxglossaries . §3.1; 9–13

passim, 106, 116, 117, 130, 245, 266,

489, 607, 645, 651, 661, 668

\MakeTextUppercase 645

\markboth . 253

\markright . 253

math mode . 80, 166, 173, 183, 188, 426, 613

memoir class 89, 252, 253

\memUChead . 253

mfirstuc package . . a, 7, 35, 51, 52, 127, 128,

144, 172–175 passim, 190, 361–363,

486, 507, 555, 599, 600, 645, 646,

658, 665

\mfirstucMakeUppercase 645

\MFUaddmap 363, 600, 645, see also

\MFUexcl & \MFUblocker
\MFUblocker . . . 363, 364, 600, 646, see

also \MFUexcl& \MFUaddmap
\MFUexcl 363, 600, 646, see also

\MFUblocker &

\MFUaddmap
\MFUsentencecase . §15.2; 128, 190,

362, 381, 392, 507, 599, 645, 646

\midrule . 314, 315

minimalgls.tex §18.1; 395, 396, 504

multicol package . 326

multicols environment 326, 327

multiple encaps 64, 68, 275, 428, see also

location encap (format)

mwe-acr.tex . 504

mwe-acr-desc.tex 504

mwe-gls.tex . 504

mwe package 40, 43, 497

makeglossaries 697 mwe

Index

N

\nameref . 91, 360

nameref package . 91

\newabbreviation . . 5, 41, 122, 143,

157, 160, 172, 173, 397–399,

404–411 passim, 415, 419, 448, 450,

499, 501, 516, 518, 595–599 passim,

613, 644, 646, 647

\newabbreviationstyle 646

\newacronym §6; 41, 59, 122–127

passim, 134–143 passim, 152, 157,

160, 164, 166, 172, 173, 197, 198,

199–217 passim, 226–229 passim,

238, 268, 386, 397–399, 404–411

passim, 415, 419, 448, 450, 496, 499,

514–518 passim, 529, 552, 561, 570,

589, 590, 595–599 passim, 606, 613,

617, 647

\newacronymhook 647

\newacronymstyle §6.2.2; 216,

217–219, 556, 620, 647, 653–655

\newdualentry 264, 436–438

\newglossary §9; 9, 67–75 passim, 99,

118, 143, 170, 245, 247, 254, 258,

280, 347, 348, 365, 451, 647

\newglossary* §9; 258, 401, 441, 647

\newglossaryentry . . §4; Table 1.1;

31, 47, 82, 87, 98, 105, 107, 134,

142, 147, 152, 153, 160–166 passim,

172, 173, 197, 198, 208, 216, 217,

238, 280, 376, 377, 399, 404, 408,

413, 430, 435, 450, 463, 464, 471,

482, 484, 489–496 passim, 514–518

passim, 561, 646, 647, 648, 652, 660

\newglossarystyle §13.2; 303, 331,

341, 648

\newignoredglossary 85, 164, 259,

365, 509, 648, 652

\newline . 136, 303

\newterm . . §2.6; 120, 160, 268, 648, 664

\newwrite . 165

\nofiles . 116

\nohyperpage 280

\noist . . §3.2; 132, 280, 345–350 passim,

356–358, 474–478 passim, 648

non-breaking space (~) . . 212, 377, 492, 494
non-Latin alphabet Table 1.1; 13, 20, 45, 112,

486, 511

non-Latin character 12, 51, 56, 60, 144,

483, 511

\nopostdesc . . . §4; 135, 136, 158, 159,

304, 368, 445, 452–455 passim, 461,

462, 470, 639, 648, see also

\glsxtrnopostpunc
\null . 246

number list see location list

\numberline 88, 667

\Numberstring 354, 355, 483

O

\oldacronym §6.4; 232, 649

\onecolumn . 255

openright . 253

Option 1 (“noidx”) Table 1.1; 8, 9, 16, 63, 77,

87, 92, 105–110 passim, 118–121,

130, 134, 139–141, 157, 164, 195,

196, 231, 245, 256–258, 266,

273–278 passim, 282, 284, 296–298,

484, 485, 489, 490, 517, 602,

603, 645

Option 2 (makeindex) . . Tables 1.1, 13.1;
14, 16, 20–23 passim, 65, 111, 131,

138, 159, 275, 665

Option 3 (xindy) . Table 1.1; 8, 18, 21, 46,
111–113, 131, 132, 139, 144, 159,

250, 279, 280, 669

Option 4 (bib2gls) . . Table 1.1; 6, 23, 30,
34, 46, 62, 66, 77, 87, 134, 142, 164,

195, 196, 250, 258, 273–283 passim,

486, 667

Option 5 (“unsrt”) . Table 1.1; 2, 6, 9, 28, 30,

106, 157, 159, 246

Option 6 (“standalone”) 2, 6–9 passim,

30, 265

P

page counter 101, 258, 281–283, 294,

\nameref 698 page

Index

352, 424

page compositor see compositor

page list . Table 1.2; 168, 649, see location list

page precedence 132, 283

\pagelistname §1.5.1; Table 1.2;

58, 649

\pageref . 360

\par . 604

\part . 284, 482

part counter . 284

\PassOptionsToPackage 116

PDF . . 6, 331, 388–392 passim, 413, 496, 497

PDF bookmarks . . . 35, 36, 84, 166, 167, 190,

191, 206, 362, 381, 446, 507,

575–586, 635

PDF element 388, 496, 500

pdflatex . 168

\pdfstringdefDisable-
Commands 206

\pdfstringdefPreHook 277

period (.) see full stop (.)
\PGLS . §16; 379, 649

\Pgls . §16; 379, 649

\pgls §16; 378, 379, 649, 650

\PGLSpl §16; 379, 649

\Pglspl §16; 379, 650

\pglspl §16; 378, 379, 650

\pglsxtrshort 379, 650

\phantomsection 252, 253

polyglossia package . 45, 53, 55, 84, 111, 346

post-description hook . . . 303, 511, 514, 570,

635, 648

post-link hook . . . 174, 183–187 passim, 229,

412–416 passim, 509, 511, 515, 570,

606, 632, 635

postamble . 255, 659

preamble

bib . 457

document 16, 29, 56, 130, 134, 135, 161,

164, 238

glossary 94, 254, 255, 337, 554, 562,

650, 656, 659

\pretoglossarypreamble . . . §8.2;

255, 650

\print〈…〉glossary options . . . 94–99

passim, 525

entrycounter §8.1; 94, 248,

249, 525

flatten §8.1; 251, 525

groups §8.1; 251, 525

label §8.1; 250, 525

leveloffset . . §8.1; 157, 251, 525

nogroupskip . . . §8.1; 99, 248, 526

nonumberlist . §8.1; 98, 248, 511,

526, 665

nopostdot §8.1; 248, 526

numberedsection . §8.1; 248, 526

prefix §8.1; 251, 333, 526

sort §8.1; 106–110 passim, 249,

449, 526

case . 250, 526

def . 249, 526

letter 250, 526

nocase 250, 527

standard 250, 527

use . 249, 527

word . 250, 527

style §8.1; 96, 98, 248, 303, 314, 439,

527, 532

subentrycounter §8.1; 96,

249, 527

target §8.1; 37, 250, 527

targetnameprefix §8.1;

251, 527

title . §8.1; a, 55, 247, 254, 439, 527,

611, 647

toctitle . . §8.1; 248, 254, 527, 611

type . . . §8.1; 245, 246, 247, 258, 439,

528, 650–652

print “unsrt” glossary commands . . . 512, 516,

627, 648, 661

\printabbreviations 650, 660

\printacronyms . . §2.7; 121, 650, 662

\PrintChanges 129

\printglossaries . . §8; 17, 55, 164,

231, 246, 259, 430, 435, 438, 446,

449, 459, 463, 468, 471, 478, 482,

484, 489, 509, 648, 650

page compositor 699 \printglossaries

Index

\printglossary . §8; a, 15–20 passim,

55, 87, 127, 129, 165, 195, 245, 246,

252, 259, 260, 287, 331, 346, 407,

422, 443, 488, 490, 509, 647–650

passim, 651, 666

\printindex §2.6; 120, 651, 664

\printnoidxglossaries . . §8; 14,

231, 245, 489, 651

\printnoidxglossary . . . §8; 7, 14,

106–110 passim, 195, 245, 246, 249,

257, 259, 296, 297, 449, 526, 546,

602, 645, 651

\printnumbers . . . §2.6; 119, 651, 667

\printsymbols . . . §2.6; 118, 651, 669

\printunsrtacronyms 651

\printunsrtglossaries §8; 26–30

passim, 247, 430, 435, 438, 459, 463,

468, 471, 478, 482, 484, 489,

509, 652

\printunsrtglossary . . . §8; 23–30

passim, 34, 106, 134, 246, 247–251

passim, 259, 296, 329, 407, 422, 439,

490, 509, 512, 526, 648, 651, 652

\printunsrtinnerglossary . §8;

247, 248–251 passim, 259, 652

\print〈…〉glossary §8; 245,

247, 525, see \printglossary,
\printnoidxglossary,
\printunsrtglossary &

\printunsrtinner-
glossary

\protect . 101, 288

\protected@csedef 375

\protected@csxdef 375

\protected@edef 182

\protected@write 282

\providecommand . 437, 446, 447, 466

\provideglossaryentry . §4; 135,

163, 652

\provideignoredglossary
259, 652

\ProvidesGlossariesLang . . . 57,

60, 652

R

ranges (locations) . . Table 1.1; 13, 16, 27, 69,

72, 195, 196, 261, 273–276 passim,

278, 279–284 passim, 289–292

passim, 296, 356, 558, 612

\ref 8, 92, 164, 360, 361, 607

\refstepcounter . . . 93, 95, 372, 614

\relax 131, 132, 138, 172, 282, 338, 367,

368, 519, 580, 638

relsize package 210–213 passim, 512

\renewacronymstyle 653

\renewglossarystyle §13.2;

331, 653

report class . 253, 421

\RequireGlossariesLang 60, 653

resource file . 512

resource options 512, 526, 567, see

\GlsXtrLoadResources
abbreviation-sort

-fallback 407

append-prefix-field 443, 494

break-at 110, 459, 478, 480

category . 443

combine-dual-locations 439

compact-ranges 279

dual-category 443

dual-prefix 439, 443

dual-sort . 443

dual-type 439, 443

entry-type-aliases 466

ext-prefixes 433

field-aliases 466

identical-sort-action . . 458

ignore-fields 408

label-prefix 433, 439, 443

loc-counters 427

max-loc-diff 279

min-loc-range 279

name-case-change 36, 37

primary-location-formats
427

replicate-fields 36, 37

\printglossary 700 resource options

Index

save-child-count 329, 367,

456, 631, 641

save-locations . . 34, 36, 92, 98,

269, 272, 511, 516, 526

save-loclist 92

save-sibling-count . 456–458

selection . . 26, 103, 142, 262, 263,

273, 484, 567

set-widest 325, 463

sort-rule . 480

sort 26, 34, 36, 106, 246, 443,

480, 485

src . . 23, 26, 34, 36, 77, 407, 408, 439,

443, 480

suffixF . 279

suffixFF . 279

type . 443

write-preamble 480

resource set . 512

\Roman 16, 280–283 passim, 351

\roman 16, 280–283 passim, 295

S

\S . 431

sample.tex §18.6; 160, 451, 459

sample-chap-hyperfirst.tex
§18.8; 190, 472

sample-crossref.tex §18.7;

269, 466

sample-custom-acronym.tex
§18.2; 226, 414

sample-dot-abbr.tex . . §18.2; 230,

416, 419, 500, 501

sample-dual.tex §18.4; 264,

435, 441

sample-entrycount.tex . . §18.11;

503

sample-entryfmt.tex §18.11; 186,

259, 491

sample-FnDesc.tex . §18.2; 188, 412

sample-font-abbr.tex §18.2;

227, 418

sample-ignored.tex . . §18.11; 502

sample-index.tex . . §18.4; 121, 443

sample-inline.tex §18.6; 459

sample-langdict.tex . . §18.4; 439

sample-newkeys.tex §18.8;

149, 469

sample-noidxapp.tex . §18.10; 485

sample-noidxapp-utf8.tex
§18.10; 486

sample-nomathhyper.tex §18.11;

189, 490

sample-numberlist.tex . . §18.11;

488

sample-prefix.tex §18.11; 380, 492

sample-storage-abbr.tex §18.8;

152, 471

sample-storage-abbr
-desc.tex §18.8; 155, 472

sample4col.tex §18.11; 487

sampleaccsupp.tex §18.11; 387, 494

sampleAcr.tex 402, 407, 408

sampleAcrDesc.tex §18.2; 404, 411,

416, 467

sampleCustomAcr.tex . . §18.2; 409,

411, 415

sampleDB.tex 160, 399, 401

sampleDesc.tex §18.2; 408

sampleEq.tex . . . §18.3; 278, 420, 427

sampleEqPg.tex §18.3; 422

sampleFnAcrDesc.tex . . §18.2; 213,

408, 414

sampleNtn.tex §18.4; 431, 451

samplePeople.tex §18.5; 110,

444, 446

sampleSec.tex §18.3; 427, 483

sampleSort.tex §18.5; 16, 109,

431, 447

sampletree.tex §18.6; 158, 459

sampleutf8.tex §18.9; 483

samplexdy.tex . §18.9; 293, 295, 352,

474, 483

samplexdy2.tex §18.9; 351, 480

samplexdy3.tex §18.9; 355, 483

sanitize . 105, 107, 512

scrwfile package . 83

resource set 701 scrwfile

Index

\section 31, 88–91 passim, 252

section counter 348, 350, 428–431

passim, 481

\seealsoname 142, 514, 518, 653

\seename 267, 268, 518, 608, 653

sentence case 172, 182, 190, 362, 378,

381, 646

\setabbreviationstyle . . 23, 41,

42, 206, 404–408 passim, 419, 439,

501, 646, 647, 653

\SetAcronymLists §2.7; 123, 654, see

also \DeclareAcronymList
& acronymlists

\SetAcronymStyle � 654

\setacronymstyle . . . §6.2; 122–124,

172, 173, 197, 207, 208, 211, 216,

404, 409, 419, 448, 499, 529, 550,

556–560, 647, 654, 655–657

\SetCustomStyle � 654

\SetDefaultAcronymStyle � 654

\SetDescriptionAcronym-
DisplayStyle � 654

\SetDescriptionAcronym-
Style � 654

\SetDescriptionDUAAcronym-
DisplayStyle � 655

\SetDescriptionDUAAcronym-
Style � 655

\SetDescriptionFootnote-
AcronymDisplayStyle �
655

\SetDescriptionFootnote-
AcronymStyle � 655

\SetDUADisplayStyle � 655

\SetDUAStyle � 655

\setentrycounter . §12.1; 276, 278,

287, 348, 575, 655

\SetFootnoteAcronymDisplay-
Style � 656

\SetFootnoteAcronymStyle �
656

\setglossarypreamble . . §8.2; 94,

254, 255, 656

\setglossarysection §2.2; 89,

252, 656

\setglossarystyle . . . §2.3; 96, 98,

248, 303, 331, 337, 341, 532,

563, 656

\SetSmallAcronymDisplay-
Style � 656

\SetSmallAcronymStyle � . . . 656

\setStyleFile §3.2; 73, 74, 131, 474,

478, 657

\settodepth 372, 599

\settoheight 372, 600

\settowidth 372, 600

\setupglossaries . §2.10; 116, 121,

129, 657

shell escape 16, 62, 83, 113–115, 512,

662, 663

shellesc package . 113

siunitx package . 3, 491

small capitals (small caps) . 59, 200, 209–214,

222, 286–291 passim, 329, 362, 414,

416, 467, 507, 512, 589, 617, 620

\SmallNewAcronymDef � 657

\space . 212

space factor . 229

\spacefactor 230

standard LATEX extended Latin character

139, 512

standard location format 274

stix package . 351, 476

\string . 344, 345

sub-entry 157, 158–160, see hierarchical level

\subglossentry . . . §13.2.3; 252, 257,

338, 339, 657

\subitem . 322

subsequent use 137, 378, 513

\subsubitem . 322

supertabular environment . . 315–319 passim,

533, 534, 542–544

supertabular package 8, 97, 316, 319

\symbolname . §1.5.1; Table 1.2; 58, 657

T

table counter . 170

\section 702 table

Index

table of contents 87, 134, 167, 248, 252, 254

tabular environment 238, 572, 604

tabularx environment 172, 238, 373, 604

tabularx package 172, 238, 373, 604

tagpdf package . 495

texdoc . 395

texindy . 16, 69

\texorpdfstring 35, 167, 277,

361, 616

\textbar . 336

\textbf Table 12.1; 273, 274, 296,

321, 423

textcase package a, 172, 271

\textit . Table 12.1

\textmd . Table 12.1

\textrm . Table 12.1

\textsc Table 12.1; 59, 209–213 passim,

222, 281, 512, 617

\textsf . Table 12.1

\textsl . Table 12.1

\textsmaller . . . 210–214 passim, 512

\texttt . Table 12.1

\textulc . 617

\textup Table 12.1; 617

\the . 217

\the〈counter〉 282, 284, 349–352
passim, 482

theglossary environment §13.2.3; 129,

255–260 passim, 322, 337, 340, 562,

606, 652, 659, 666

\theglossaryentry . . . §2.3; 93, 657

\theglossarysubentry . . §2.3; 95,

96, 658

\theH〈counter〉 . . 278, 282–284, 349, 350,

421, 422, 523

\thepage . . 101, 115, 281–283, 292–295

passim, 353, 355, 476, 478, 643

title case 36, 176, 190, 191, 363, 507,

555, 584

\toprule . 314, 315

tracklang package 8, 44, 45, 57, 84, 664

translator package 45, 53–61 passim, 84,

554, 669

\twocolumn . 255

U

\unskip . 135

uppercase . 40, 209, 228, 283, 284, 292, 293,

361, 382, 414, 507, 512, 610, 620,

645, 646, see also title case, sentence

case & all caps

URL . 43

UTF-8 . 12, 15, 20, 25, 38, 46, 51, 52, 60–62,

73, 112, 135, 139, 144, 347, 395,

474, 483, 486, 513

W

whatsit . 170, 513

wrglossary counter . 661

\write . 131

\writeist §3.2; 131, 132, 658

X

\xcapitalisefmtwords 658

\xGlsXtrSetField 658

xindex . 16, 69, 510

xindy . . . 19, 130, 344–358, 510, 519, 645,

651, 669

-C Table 1.3; 22, 73, 112, 346, 475, 483

-I . 22, 73, 475

-L Table 1.3; 22, 73, 111, 346, 475

-M Table 1.3; 22, 23, 69–73 passim, 475

-o . 22, 73, 475

-t . 22, 73, 475

xindy attributes . 64, 132, 275, 276, 348, 349,

429, 475, 478, 568

xkeyval package 189, 492

\xspace . 232

xspace package Table 6.2; 232

xtab package . 8, 97

703

	List of Tables
	List of Examples
	User Guide
	Introduction
	glossaries.sty
	Rollback
	Integrating Other Packages and Known Issues
	Indexing Options
	Option 1 ("noidx")
	Option 2 (makeindex)
	Option 3 (xindy)
	Option 4 (bib2gls)
	Option 5 ("unsrt")
	Option 6 ("standalone")

	Dummy Entries for Testing
	Multi-Lingual Support
	\GlsSetQuote
	Changing the Fixed Names
	Creating a New Language Module

	Generating the Associated Glossary Files
	Using the makeglossaries Perl Script
	Using the makeglossaries-lite Lua Script
	Using xindy explicitly (Option 3)
	Using makeindex explicitly (Option 2)

	Note to Front-End and Script Developers
	MakeIndex and Xindy
	\@newglossary
	\glsxtr@makeglossaries
	\@istfilename
	\@glsorder
	\@xdylanguage
	\@gls@codepage
	\@gls@reference

	Entry Labels
	Bib2Gls
	\glsxtr@resource
	\glsxtr@record
	\glsxtr@record@nameref
	\glsxtr@recordsee
	\@glsxtr@newglslike
	\@glsxtr@altmodifier
	\@glsxtr@prefixlabellist

	Package Options
	General Options
	nowarn
	nolangwarn
	noredefwarn
	debug
	false
	true
	showtargets
	\glsshowtarget
	\glsshowtargetinner
	\glsshowtargetfonttext
	\glsshowtargetouter
	\glsshowtargetsymbol
	\glsshowtargetfont
	showaccsupp
	\glsshowaccsupp

	savewrites
	translate
	true
	false
	babel

	notranslate
	languages
	locales
	hyperfirst
	\glslinkcheckfirsthyperhook

	writeglslabels
	writeglslabelnames
	undefaction
	error
	warn

	docdef
	false
	restricted
	atom
	true

	Sectioning, Headings and TOC Options
	toc
	\glstoctrue
	\glstocfalse
	\ifglstoc

	numberline
	section
	\setglossarysection

	ucmark
	\ifglsucmark

	numberedsection
	false
	nolabel
	autolabel
	\glsautoprefix
	nameref

	Glossary Appearance Options
	savenumberlist
	entrycounter
	glossaryentry
	\glsrefentry
	\GlsEntryCounterLabelPrefix
	\glsresetentrycounter
	\glsstepentry
	\theglossaryentry
	\glsentrycounterlabel
	\ifglsentrycounter
	\glsentrycounterfalse
	\glsentrycountertrue

	counterwithin
	subentrycounter
	glossarysubentry
	\glsresetsubentrycounter
	\glsstepsubentry
	\theglossarysubentry
	\glssubentrycounterlabel
	\ifglssubentrycounter
	\glssubentrycounterfalse
	\glssubentrycountertrue

	style
	\setglossarystyle

	nolong
	nosuper
	nolist
	notree
	nostyles
	nonumberlist
	seeautonumberlist
	counter
	\glscounter

	nopostdot
	nogroupskip
	\ifglsnogroupskip

	stylemods

	Indexing Options
	seenoindex
	error
	warn
	ignore

	esclocations
	\ifglswrallowprimitivemods
	\glswrallowprimitivemodstrue
	\glswrallowprimitivemodsfalse

	indexonlyfirst
	\ifglsindexonlyfirst
	\glsindexonlyfirsttrue
	\glsindexonlyfirstfalse
	\glswriteentry

	indexcrossrefs
	autoseeindex
	record
	off
	only
	nameref
	hybrid

	equations
	floats
	indexcounter

	Sorting Options
	sanitizesort
	sort
	none
	clear
	def
	use
	\glssortnumberfmt
	standard
	\glsprestandardsort
	\glsdosanitizesort

	order
	word
	letter

	makeindex
	xindy
	\ifglsxindy

	xindygloss
	xindynoglsnumbers
	automake
	false
	true
	delayed
	immediate
	makegloss
	lite

	automakegloss
	automakeglosslite
	disablemakegloss
	restoremakegloss

	Glossary Type Options
	nohypertypes
	\GlsDeclareNoHyperList

	nomain
	symbols
	\printsymbols

	numbers
	\printnumbers

	index
	\newterm
	\printindex

	noglossaryindex

	Acronym and Abbreviation Options
	acronym
	\printacronyms

	acronyms
	abbreviations
	acronymlists
	\DeclareAcronymList
	\SetAcronymLists
	\glsIfListOfAcronyms

	shortcuts
	\DefineAcronymSynonyms

	Deprecated Acronym Style Options
	description
	smallcaps
	smaller
	footnote
	dua

	Other Options
	accsupp
	prefix
	nomissingglstext
	mfirstuc
	compatible-2.07
	compatible-3.07
	kernelglossredefs
	false
	true
	nowarn

	Setting Options After the Package is Loaded
	\setupglossaries

	Setting Up
	Option 1
	\makenoidxglossaries

	Options 2 and 3
	\makeglossaries
	\writeist
	\setStyleFile
	\GlsSetWriteIstHook
	\glswrite
	\noist
	\glsSetCompositor
	\glsSetAlphaCompositor

	Defining Glossary Entries
	\newglossaryentry
	\longnewglossaryentry
	\provideglossaryentry
	\longprovideglossaryentry
	name
	description
	parent
	descriptionplural
	text
	first
	plural
	firstplural
	symbol
	symbolplural
	sort
	type
	user1
	user2
	user3
	user4
	user5
	user6
	nonumberlist
	see
	seealso
	alias
	counter
	category

	Plurals
	\glspluralsuffix

	Other Grammatical Constructs
	Additional Keys
	Document Keys
	\glsaddkey

	Storage Keys
	\glsaddstoragekey

	Expansion
	\glssetexpandfield
	\glssetnoexpandfield
	\glsexpandfields
	\glsnoexpandfields

	Sub-Entries
	Hierarchy
	Homographs

	Loading Entries From a File
	\loadglsentries

	Moving Entries to Another Glossary
	\glsmoveentry

	Drawbacks With Defining Entries in the Document Environment
	Technical Issues
	Good Practice Issues

	Referencing Entries in the Document
	Links to Glossary Entries
	\glstextformat
	Options
	hyper
	format
	counter
	local
	noindex
	hyperoutside
	wrgloss
	textformat
	prefix
	thevalue
	theHvalue
	prereset
	preunset
	postunset

	The \gls-Like Commands (First Use Flag Queried)
	\gls
	\Gls
	\GLS
	\glspl
	\Glspl
	\GLSpl
	\glsdisp
	\Glsdisp

	The \glstext-Like Commands (First Use Flag Not Queried)
	\glslink
	\Glslink
	\glstext
	\Glstext
	\GLStext
	\glsfirst
	\Glsfirst
	\GLSfirst
	\glsplural
	\Glsplural
	\GLSplural
	\glsfirstplural
	\Glsfirstplural
	\GLSfirstplural
	\glsname
	\Glsname
	\GLSname
	\glssymbol
	\Glssymbol
	\GLSsymbol
	\glsdesc
	\Glsdesc
	\GLSdesc
	\glsuseri
	\Glsuseri
	\GLSuseri
	\glsuserii
	\Glsuserii
	\GLSuserii
	\glsuseriii
	\Glsuseriii
	\GLSuseriii
	\glsuseriv
	\Glsuseriv
	\GLSuseriv
	\glsuserv
	\Glsuserv
	\GLSuserv
	\glsuservi
	\Glsuservi
	\GLSuservi

	Changing the Format of the \gls-like Link Text
	\glsentryfmt
	\defglsentryfmt
	\glslabel
	\glstype
	\glsinsert
	\glsifplural
	\glscapscase
	\glscustomtext
	\glsifhyperon
	\glslinkvar
	\glsgenentryfmt
	\glsgenacfmt
	\genacrfullformat
	\genplacrfullformat
	\Genacrfullformat
	\Genplacrfullformat

	Hooks
	\glslinkpostsetkeys
	\glspostlinkhook

	Enabling and Disabling Hyperlinks to Glossary Entries

	Using Glossary Terms Without Indexing
	\glsentrytitlecase
	\glshyperlink
	\glsentryname
	\Glsentryname
	\glsentrytext
	\Glsentrytext
	\glsentryplural
	\Glsentryplural
	\glsentryfirst
	\Glsentryfirst
	\glsentryfirstplural
	\Glsentryfirstplural
	\glsentrydesc
	\Glsentrydesc
	\glsentrydescplural
	\Glsentrydescplural
	\glsentrysymbol
	\Glsentrysymbol
	\glsentrysymbolplural
	\Glsentrysymbolplural
	\glsentryuseri
	\Glsentryuseri
	\glsentryuserii
	\Glsentryuserii
	\glsentryuseriii
	\Glsentryuseriii
	\glsentryuseriv
	\Glsentryuseriv
	\glsentryuserv
	\Glsentryuserv
	\glsentryuservi
	\Glsentryuservi
	\glsentrynumberlist
	\glsdisplaynumberlist
	\glsnumlistsep
	\glsnumlistlastsep
	\glsnoidxdisplayloclisthandler

	Acronyms and Other Abbreviations
	\newacronym
	\glsacrpluralsuffix
	Displaying the Long, Short and Full Forms (Independent of First Use)
	\acrshort
	\Acrshort
	\ACRshort
	\acrshortpl
	\Acrshortpl
	\ACRshortpl
	\acrlong
	\Acrlong
	\ACRlong
	\acrlongpl
	\Acrlongpl
	\ACRlongpl
	\acrfull
	\Acrfull
	\ACRfull
	\acrfullpl
	\Acrfullpl
	\ACRfullpl
	\glsentrylong
	\Glsentrylong
	\glsentrylongpl
	\Glsentrylongpl
	\glsentryshort
	\Glsentryshort
	\glsentryfull
	\Glsentryfull
	\glsentryfullpl
	\Glsentryfullpl

	Changing the Acronym Style
	\setacronymstyle
	\acronymentry
	\acronymsort
	Predefined Acronym Styles
	\firstacronymfont
	\acronymfont
	\acrpluralsuffix
	\glsupacrpluralsuffix
	\glstextup
	Long (Short)
	long-short
	long-sc-short
	long-sm-short
	long-sp-short

	Short (Long)
	short-long
	sc-short-long
	sm-short-long

	Long (Short) User Supplied Description
	long-short-desc
	long-sc-short-desc
	long-sm-short-desc
	long-sp-short-desc

	Short (Long) User Supplied Description
	short-long-desc
	sc-short-long-desc
	sm-short-long-desc

	Do Not Use Acronym (DUA)
	dua
	dua-desc

	Footnote
	footnote
	footnote-sc
	footnote-sm
	footnote-desc
	footnote-sc-desc
	footnote-sm-desc

	Defining A Custom Acronym Style
	\newacronymstyle
	\GenericAcronymFields
	\glskeylisttok
	\glslabeltok
	\glsshorttok
	\glslongtok
	\GlsUseAcrEntryDispStyle
	\GlsUseAcrStyleDefs

	Displaying the List of Acronyms
	Upgrading From the glossary Package
	\oldacronym

	Unsetting and Resetting Entry Flags
	\glsreset
	\glslocalreset
	\glsunset
	\glslocalunset
	\glsresetall
	\glslocalresetall
	\glsunsetall
	\glslocalunsetall
	Counting the Number of Times an Entry has been Used (First Use Flag Unset)
	\glsenableentrycount
	\ifglsresetcurrcount
	\glsresetcurrcounttrue
	\glsresetcurrcountfalse
	\glsentrycurrcount
	\glsentryprevcount
	\cgls
	\cglspl
	\cGls
	\cGlspl
	\cglsformat
	\cglsplformat
	\cGlsformat
	\cGlsplformat

	Displaying a Glossary
	\printnoidxglossary
	\printnoidxglossaries
	\printglossary
	\printglossaries
	\printunsrtglossary
	\printunsrtglossaries
	\printunsrtinnerglossary
	\currentglossary
	\print<…>glossary Options
	type
	title
	toctitle
	style
	numberedsection
	nonumberlist
	nogroupskip
	nopostdot
	entrycounter
	subentrycounter
	sort
	use
	def
	nocase
	case
	word
	letter
	standard

	label
	target
	prefix
	targetnameprefix
	groups
	leveloffset
	flatten

	Glossary Markup
	\glossarysection
	\glsglossarymark
	\glsclearpage
	\glossarytitle
	\glossarytoctitle
	\glssettoctitle
	\glossarypreamble
	\setglossarypreamble
	\apptoglossarypreamble
	\pretoglossarypreamble
	\glossarypostamble
	\glossaryentrynumbers
	\glsresetentrylist
	\glsnoidxprenumberlist
	\glsnonextpages
	\glsnextpages

	Defining New Glossaries
	\newglossary
	\newglossary*
	\altnewglossary
	\ifignoredglossary
	\acronymtype

	Adding an Entry to the Glossary Without Generating Text
	\glsadd
	\glsaddall
	\glsaddallunused

	Cross-Referencing Entries
	\glssee
	Customising Cross-Reference Text
	\glsseeformat
	\glsseelist
	\glsseesep
	\glsseelastsep
	\glsseeitem
	\glsseeitemformat

	Number Lists
	\delimN
	Encap Values (Location Formats)
	\glsignore
	\glsnumberformat
	\glshypernumber
	\glswrglosslocationtextfmt
	\setentrycounter
	\glsentrycounter
	\glswrglossdisableanchorcmds
	\glswrglosslocationtarget

	Range Formations
	\delimR
	\glsSetSuffixF
	\glsSetSuffixFF

	Locations
	\glswrglossdisablelocationcmds

	Page Precedence
	Problematic Locations
	\glossaryentry
	\glslocationcstoencap

	Iterating Over Locations
	\glsnoidxloclist
	\glsnoidxloclisthandler
	\glsnumberlistloop
	\glsnoidxdisplayloc
	\glsnoidxnumberlistloophandler

	Glossary Styles
	\glsnamefont
	Predefined Styles
	\glsdescwidth
	\glspagelistwidth
	\glspostdescription
	List Styles
	\glslistinit
	\glslistexpandedname
	\indexspace
	\glslistgroupheaderfmt
	\glslistnavigationitem
	list
	listgroup
	listhypergroup
	altlist
	altlistgroup
	altlisthypergroup
	listdotted
	\glslistdottedwidth
	sublistdotted

	Longtable Styles
	long
	longborder
	longheader
	longheaderborder
	long3col
	long3colborder
	long3colheader
	long3colheaderborder
	long4col
	long4colborder
	long4colheader
	long4colheaderborder
	altlong4col
	altlong4colborder
	altlong4colheader
	altlong4colheaderborder

	Longtable Styles (Ragged Right)
	longragged
	longraggedborder
	longraggedheader
	longraggedheaderborder
	longragged3col
	longragged3colborder
	longragged3colheader
	longragged3colheaderborder
	altlongragged4col
	altlongragged4colborder
	altlongragged4colheader
	altlongragged4colheaderborder

	Longtable Styles (booktabs)
	\glsrestoreLToutput
	\glsLTpenaltycheck
	\glspenaltygroupskip
	long-booktabs
	long3col-booktabs
	long4col-booktabs
	altlong4col-booktabs
	longragged-booktabs
	longragged3col-booktabs
	altlongragged4col-booktabs

	Supertabular Styles
	super
	superborder
	superheader
	superheaderborder
	super3col
	super3colborder
	super3colheader
	super3colheaderborder
	super4col
	super4colborder
	super4colheader
	super4colheaderborder
	altsuper4col
	altsuper4colborder
	altsuper4colheader
	altsuper4colheaderborder

	Supertabular Styles (Ragged Right)
	superragged
	superraggedborder
	superraggedheader
	superraggedheaderborder
	superragged3col
	superragged3colborder
	superragged3colheader
	superragged3colheaderborder
	altsuperragged4col
	altsuperragged4colborder
	altsuperragged4colheader
	altsuperragged4colheaderborder

	Tree-Like Styles
	\glstreenamefmt
	\glstreegroupheaderfmt
	\glstreenavigationfmt
	\glstreepredesc
	\glstreechildpredesc
	index
	\glstreeitem
	\glstreesubitem
	\glstreesubsubitem
	indexgroup
	indexhypergroup
	tree
	\glstreeindent
	treegroup
	treehypergroup
	treenoname
	treenonamegroup
	treenonamehypergroup
	alttree
	\glssetwidest
	\glsfindwidesttoplevelname
	\glstreenamebox
	alttreegroup
	alttreehypergroup

	Multicols Style
	\glsmcols

	In-Line Style
	inline
	\glsinlineseparator
	\glsinlinesubseparator
	\glsinlineparentchildseparator
	\glspostinline
	\glsinlinenameformat
	\glsinlineifhaschildren
	\glsinlinesubnameformat
	\glsinlineemptydescformat
	\glsinlinedescformat
	\glsinlinesubdescformat
	\glsinlinepostchild

	Defining your own glossary style
	\newglossarystyle
	\renewglossarystyle
	Commands For Use in Glossary Styles
	\glsentryitem
	\glssubentryitem
	\glstarget
	\glolinkprefix
	\glossentryname
	\Glossentryname
	\glossentrydesc
	\Glossentrydesc
	\glossentrysymbol
	\Glossentrysymbol
	\glsgetgrouptitle

	Hyper Group Navigation
	glossary-hypernav.sty
	\glsnavhypertarget
	\glsnavhypergroupdotarget
	\glsnavhyperlink
	\glsnavhyperlinkname
	\glsnavigation
	\glsnavigationitem
	\glshypernavsep
	\glssymbolnav

	Glossary Style Commands
	theglossary
	\glossaryheader
	\glsgroupheading
	\glossentry
	\subglossentry
	\glsgroupskip

	Xindy (Option 3)
	\glsopenbrace
	\glsclosebrace
	\glspercentchar
	\glstildechar
	\glsbackslash
	\glsquote
	Required Styles
	\GlsAddXdyStyle
	\GlsSetXdyStyles

	Language and Encodings
	\GlsSetXdyLanguage
	\GlsSetXdyCodePage

	Locations and Number lists
	\GlsAddXdyCounters
	\GlsAddXdyAttribute
	\glsX<counter>X<format>
	\GlsAddXdyLocation
	\GlsSetXdyLocationClassOrder
	\GlsSetXdyMinRangeLength

	Glossary Groups
	\GlsSetXdyFirstLetterAfterDigits
	\GlsSetXdyNumberGroupOrder

	Utilities
	hyperref
	\glsdisablehyper
	\glsdonohyperlink
	\glsenablehyper
	\glsdohypertarget
	\glsdohyperlink
	\glsdohypertargethook
	\glsdohyperlinkhook
	\glslabelhypertarget
	\glslabelhypertargetprefix
	\glslabelhypertargetdefs
	\glslabelhypertargetvalue
	\glstexorpdfstring

	Case-Changing
	\glsuppercase
	\glslowercase
	\MFUsentencecase
	\glssentencecase
	\glscapitalisewords
	\glsmfuexcl
	\glsmfublocker
	\glsmfuaddmap

	Loops
	\forallglossaries
	\forallacronyms
	\forglsentries
	\forallglsentries

	Conditionals
	\ifglossaryexists
	\ifglsentryexists
	\glsdoifexists
	\glsdoifnoexists
	\glsdoifexistsorwarn
	\glsdoifexistsordo
	\ifglsused
	\GlsXtrIfUnusedOrUndefined
	\ifglshaschildren
	\ifglshasparent
	\ifglshassymbol
	\ifglshaslong
	\ifglshasshort
	\ifglshasdesc
	\ifglsdescsuppressed
	\ifglsfieldvoid
	\ifglshasfield
	\glscurrentfieldvalue
	\ifglsfieldeq
	\ifglsfielddefeq
	\ifglsfieldcseq

	Measuring
	\glsmeasureheight
	\glsmeasuredepth
	\glsmeasurewidth
	\glsifmeasuring
	\glspatchtabularx

	Fetching and Updating the Value of a Field
	\glsentrytype
	\glsentryparent
	\glsentrysort
	\glsfieldfetch
	\glsletentryfield
	\glsunexpandedfieldvalue
	\glsfielddef
	\glsfieldedef
	\glsfieldxdef

	Prefixes or Determiners
	glossaries-prefix.sty
	prefix
	prefixplural
	prefixfirst
	prefixfirstplural

	\glsprefixsep
	\pgls
	\pglspl
	\Pgls
	\Pglspl
	\PGLS
	\PGLSpl
	\ifglshasprefix
	\ifglshasprefixplural
	\ifglshasprefixfirst
	\ifglshasprefixfirstplural
	\glsentryprefix
	\glsentryprefixplural
	\glsentryprefixfirst
	\glsentryprefixfirstplural
	\Glsentryprefix
	\Glsentryprefixplural
	\Glsentryprefixfirst
	\Glsentryprefixfirstplural

	Accessibility Support
	glossaries-accsupp.sty
	Accessibility Keys
	access
	textaccess
	firstaccess
	pluralaccess
	firstpluralaccess
	symbolaccess
	symbolpluralaccess
	descriptionaccess
	descriptionpluralaccess
	longaccess
	longpluralaccess
	shortaccess
	\glsdefaultshortaccess
	shortpluralaccess
	user1access
	user2access
	user3access
	user4access
	user5access
	user6access

	Incorporating Accessibility Support
	\glsfieldaccsupp
	\gls<field-label>accsupp
	\glsaccsupp
	\glsshortaccsupp
	\glsshortplaccsupp
	\glsaccessibility

	Incorporating the Access Field Values
	\glsnameaccessdisplay
	\glstextaccessdisplay
	\glspluralaccessdisplay
	\glsfirstpluralaccessdisplay
	\glssymbolaccessdisplay
	\glssymbolpluralaccessdisplay
	\glsdescriptionaccessdisplay
	\glsdescriptionpluralaccessdisplay
	\glsshortaccessdisplay
	\glsshortpluralaccessdisplay
	\glslongaccessdisplay
	\glslongpluralaccessdisplay
	\glsuseriaccessdisplay
	\glsuseriiaccessdisplay
	\glsuseriiiaccessdisplay
	\glsuserivaccessdisplay
	\glsuservaccessdisplay
	\glsuserviaccessdisplay

	Obtaining the Access Field Values
	\glsentryaccess
	\glsentrytextaccess
	\glsentryfirstaccess
	\glsentrypluralaccess
	\glsentryfirstpluralaccess
	\glsentrysymbolaccess
	\glsentrysymbolpluralaccess
	\glsentrydescaccess
	\glsentrydescpluralaccess
	\glsentryshortaccess
	\glsentryshortpluralaccess
	\glsentrylongaccess
	\glsentrylongpluralaccess
	\glsentryuseriaccess
	\glsentryuseriiaccess
	\glsentryuseriiiaccess
	\glsentryuserivaccess
	\glsentryuservaccess
	\glsentryuserviaccess

	Developer's Note
	\gls@accsupp@engine
	\gls@accessibility

	Sample Documents
	Basic
	Acronyms and First Use
	Non-Page Locations
	Multiple Glossaries
	Sorting
	Child Entries
	Cross-Referencing
	Custom Keys
	Xindy (Option 3)
	No Indexing Application (Option 1)
	Other

	Troubleshooting

	Summaries and Index
	Symbols
	Terms
	glossary entry keys Summary
	\gls-like and \glstext-like options Summary
	\print<…>glossary options Summary
	Acronym style Summary
	glossary styles Summary
	Command Summary
	Symbols
	A
	B
	C
	D
	E
	F
	G
	Glo
	Gls
	Glsxtr
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	W
	X

	Environment Summary
	Package Option Summary
	glossaries-extra
	glossaries

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	Glo
	Gls
	Glsxtr
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

